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Introduccion

@ La criptografia moderna se apoya en problemas de teoria de nUmeros que se consideran
dificiles desde el punto de vista computacional.
@ Nos centraremos en tres familias de problemas y sus criptosistemas publicos asociados:
o Factorizacion de enteros = criptosistema RSA.
o Problema del logaritmo discreto (DLP) en grupos finitos = ElIGamal.
o Logaritmo discreto en curvas elipticas (ECDLP) = criptosistemas ECC.
@ En todos los casos aparece la misma idea:
o ciertas operaciones (multiplicar, exponenciar, multiplicacién escalar en curvas elipticas) son
eficientes,
@ mientras que la operacion inversa (factorizar, tomar logaritmos discretos) es
computacionalmente inviable para parametros bien elegidos.

@ El objetivo es:

Problema matematico complicado ——  Disefio de un criptosistema publico.

Pablo Sebastian Herrera (Universidad del Valle de Guatemala) Aplicaciones de la teoria de nimeros en Criptografia Seminario | de Matematica Aplicada



Problema de factorizacion de enteros

@ En RSA se trabaja con un entero compuesto

N = pq,
donde py g son primos grandes y secretos.
@ Problema de factorizacion:
Dado un entero N que es producto de dos (o mas) primos grandes, encontrar una factoracién no
trivial
N=pq, 1<p,qg<N.

@ Para RSA, conocer una factorizacién de N permite calcular

o(N) =(p—=1)(g—1),

y de ahi la clave privada.
@ La seguridad de RSA descansa en que, para tamarios tipicos (por ejemplo N de 2048 bits), no
se conoce un algoritmo de factorizacién que sea eficiente en el peor caso.
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Equivalencia con el célculo de ¢ (N)

@ Si se conoce la factorizacion N = pq, entonces

o(N) =(p—1)(g—1)
se calcula de forma inmediata.

@ Reciprocamente, bajo ciertas condiciones, conocer ¢(N) permite recuperar py g.
@ En particular, dado N'y ¢(N), se tiene

p+q=N—p(N)+1,  pg=N,

y se pueden hallar p y g resolviendo una ecuacién cuadratica.

@ Intuitivamente calcular la clave privada a partir de la clave publica es esencialmente tan
dificil como factorizar N.
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Experimento: dificultad de factorizar semiprimos

n #digitos Factores primos  Tiempo (s)

2307323 7 [1093,2111] 0.0001

2914107 281 10 [46327,62903] 0.0085
195035301437 12 [281023,694019] 0.0400
58266 774 862333 14 [6759707,8619719] 0.8420
2058228 245360593 16 [28087351,73279543] 5.1180

Cada n es un semiprimo, producto de dos primos grandes: n = p - q.

La columna “# digitos” muestra el tamafo de n en base 10.

La columna “Factores primos” muestra los primos p y q hallados por trial division.
La columna “Tiempo (s)” es el tiempo que tarda el algoritmo ingenuo en factorizar n.

Se observa que, al aumentar sélo unos pocos digitos, el tiempo de factorizacién crece rapidamente.

Para moédulos RSA reales (centenares de digitos), este tipo de ataque por fuerza bruta es totalmente
inviable.
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Criptosistema RSA: generacion de claves

@ Parametros (se eligen una sola vez):

@ Elegir dos primos grandes p y g, tipicamente de tamario similar.
@ Calcular
N=pg,  o(N)=(p-1)(g-1)

@ Escoger e tal que
1 <e<p(N), gcd(e p(N))=1.

© Calcular el inverso multiplicativo
d=e' (mdd p(N)).
@ Clave publica: (N, e).
@ Clave privada: d (y, en la practica, también se guardan p y g para acelerar el descifrado).
@ Dado (N, e) no se conoce un método eficiente para recuperar d sin factorizar N.
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Problema del logaritmo discreto

@ Sea G un grupo abeliano finito escrito multiplicativamente y g € G un generador de un
subgrupo de orden n.

@ Para h € (g) se define el logaritmo discreto de h en base g como el entero x tal que
g =h, 0<x<n-1.
@ Problema del logaritmo discreto (DLP):

Dados (G, g, h), encontrar x tal que g* = h. J

@ Exponenciar g — g* es eficiente (exponenciacion rapida), pero no se conoce un algoritmo
general eficiente para invertir esta operacion en grupos grandes bien elegidos.
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DLP en criptografia: asimetria computacional

@ En la practica se usan grupos como:
e G = Zj con p primo grande,
@ grupos de puntos de curvas elipticas (caso ECC).
@ Para cada intento de ataque:
e hay algoritmos subexponenciales (baby-step giant-step, Pollard rho, index calculus) en algunos
grupos,
e pero su complejidad sigue siendo prohibitiva para tamafos de clave recomendados.

@ Asimetria: computar g* mdéd p es “barato”, pero recuperar x a partir de g* es “caro”.

@ ElGamal explota exactamente esta asimetria: el atacante ve potencias de g pero no tiene
acceso a los exponentes.
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Criptosistema ElGamal: pardmetros y generacion de claves

Parametros publicos:

e Primo grande p,
e generador g de un subgrupo grande de Z;.

Clave privada del receptor:

ac{1,...,p—2} escogido al azar.

Clave publica:
h = g% méd p.

Cualquiera puede usar (p, g, h) para cifrar; sélo quien conoce a puede descifrar.

Recuperar a a partir de (g, h) es un ejemplo del DLP en Z.
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Ejemplo de la dificultad del DLP

Buscamos un exponente k tal que
2k = 24024 (méd 300007).

lteracion k2% méd 300007  Tiempo acumulado (s)

0 1 0.0000
25000 263759 0.0034
50000 186 851 0.0068
75000 282991 0.0109

100000 281583 0.0175
125000 17570 0.0243
149994 24024 0.0278
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Ejemplo de la dificultad del DLP (cont.)

@ Usamos una busqueda ingenua: recorrer k = 0,1, 2, ... y actualizar iterativamente
vk = 2 méd 300007

hasta que vk coincide con 24 024.

@ En el experimento,
k = 149994, 2'%°%% =24024 (mdd 300007),

lo que implica 149 995 intentos en total.

@ Aungue el tiempo total medido es pequefio (= 0,028 s), ya estamos haciendo del orden de 10°
evaluaciones de la potencia modular para un primo relativamente pequerio.

@ La complejidad de la busqueda ingenua crece proporcionalmente al tamario del grupo: si escalamos a
grupos criptogréficos reales (por ejemplo, de tamafio ~ 22°¢), este tipo de ataque se vuelve
completamente inviable.

@ Este ejemplo ilustra la asimetria central del DLP: computar 2 méd p es barato, pero invertir la
operacion (recuperar k) puede ser extremadamente costoso.
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Curvas elipticas sobre cuerpos finitos

@ Sea [F; un cuerpo finito con g elementos.
@ Una curva eliptica sobre I, (en forma corta de Weierstrass) se define por

E:y*=x+ax+b, abel,,
con discriminante
A = —16(4a° +27b%) £ 0
para evitar singularidades.
@ El conjunto de puntos racionales
E(Fq) = {(x,y) € IFg yP=x®fax+b}U{0O}

forma un grupo abeliano bajo la operacion de suma definida geométricamente (regla de la
cuerda y la tangente), con O como elemento neutro.
@ Eltamano de este grupo satisface el acotamiento de Hasse:

[E(Fg)l=q+1—t, [t <2Vq.
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Problema del logaritmo discreto en curvas elipticas (ECDLP)

@ Sea E(IF4) el grupo de puntos de una curva eliptica y sea P € E(IF,) un punto de orden
grande n.

@ Para un entero k se define la multiplicacion escalar

Q=kP=P+P+ - +P.

k veces

o ECDLP (Elliptic Curve Discrete Logarithm Problem):

Dados Py Q = kP en E(IF4), encontrar el entero k. |

@ Computar Q = kP es eficiente (algoritmo “doblar y sumar”), pero no se conoce ningun
algoritmo subexponencial general para recuperar k en curvas adecuadamente seleccionadas.

o Esta diferencia de complejidad es la base de la seguridad de los criptosistemas ECC.
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Ventajas criptograficas de ECC

@ Para un mismo nivel de seguridad, los tamafios de clave en ECC son mucho menores que en
RSA/DLP clasico.
@ Ejempilo tipico:
o RSA de 3072 bits =~ ECC con claves de 256 bits.
@ Consecuencias practicas:
@ menos almacenamiento de claves,
@ operaciones mas rapidas en dispositivos con recursos limitados,
e menor ancho de banda para certificados y firmas.
@ La seguridad se basa en la ausencia de algoritmos subexponenciales eficientes para el
ECDLP en curvas “seguras” (evitando curvas con estructuras especiales que faciliten
ataques).
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Criptosistema ECC tipo EIGamal: pardmetros y claves

o Parametros publicos:

e cuerpo finito Iy,
o curva eliptica E/F,,
e punto generador G € E(IF4) de orden primo grande n.

o Clave privada del receptor:
de{1,...,n—1} escogido al azar.

o Clave publica:
Q= dG € E(Fy).

@ Conocer d a partir de (G, Q) requiere resolver una instancia del ECDLP.
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Criptosistema ECC tipo ElGamal: cifrado y descifrado

@ Supongamos que el mensaje m se representa como un punto M € E(F;) (codificacion
estandar).
o Cifrado de M usando la clave publica Q:
@ El emisor elige un escalar efimero k € {1,...,n— 1} al azar.
@ Calcula
Ci = kG, Co=M+kQ.
© El criptograma es el par (Cy, C).
@ Descifrado con la clave privada d:
@ Secalcula
dC; = dkG = k(dG) = kQ.

@ Se recupera el mensaje
M = C, — dC;.

@ Seguridad: para extraer M a partir de (C1, Cz, G, Q) el atacante deberia resolver instancias
del ECDLP.
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Ejemplo de la dificultad del ECDLP

@ Trabajamos sobre la curva eliptica
E:y*=x*+2x+3 (mdd 40009).

@ Punto base:
P =(3,6), con ord(P) = 2240.

@ Elegimos un exponente secreto
Ksecreto = 1234, Q = Ksecreto P = (30790, 5425).

lteracion k R = kP Tiempo acumulado (s)
1 (3,6) 0.0000

400 (4519,2131) 0.0008

800 (39485,15527) 0.0015

1200 (34035,39010) 0.0023

1234  (30790,5425) 0.0024
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Ejemplo de la dificultad del ECDLP (cont.)

@ El atacante conoce la curva, el primo p, el punto base Py el punto objetivo Q.

@ Ataque ingenuo: recorrer k = 1,2, 3, ... y computar iterativamente
Ry = kP

hasta que Ry coincida con Q.

@ En el experimento se obtuvo
k=1234 = kP =Q,

tras 1234 sumas de puntos en el grupo E(F409), con un tiempo total de & 0,0024 s.

@ De nuevo, el tiempo absoluto es pequefio porque el grupo es diminuto (orden ~ 10%), pero el nimero
de operaciones crece linealmente con el tamano del grupo.

@ En curvas elipticas usadas en criptografia real (orden del grupo ~ 22%8), una biisqueda lineal de k
como esta seria completamente inviable, lo que ilustra la dureza del ECDLP.
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Comparacién experimental de RSA, ElIGamal y EC-ElGamal

Mensaije cifrado en los tres criptosistemas:

Me robe unas pizzas de la pizza party y espero nunca se enteren

Resumen numérico de los experimentos (ataques ingenuos):

Esquema Problema duro lteraciones  Tiempo ataque (s) Cif./Descif. (s)
RSA Factorizacion de enteros 2578 0.000427  0.000130/0.000253
ElGamal DLP enZ; 1234 0.000206  0.001104 /0.001880
EC-ElGamal  ECDLP en E(Fy) 789 0.004932  0.020347 /0.005519

Visualizacion de los resultados:

Tiempos de cifrado y descifrado

‘Tiempo del ataque ingenuo en cada criptosistema

Nimero de iteraciones del ataque ingenuo

00200
00175
00150
T oouzs

£ oouo

00075

fones del ataque (escala log)

Tiempo del ataque (s)

00050

00025

00000
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Tiempos de cifrado y descifrado Tiempo del ataque ingenuo
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Conclusiones

@ La teoria de numeros proporciona los problemas duros que hacen posible la criptografia de
clave publica: factorizacién de enteros (RSA), logaritmo discreto en grupos multiplicativos
(ElGamal) y logaritmo discreto en curvas elipticas (ECC).

@ Enlos tres casos aparece la misma idea central:

o las operaciones “directas” (multiplicar, exponenciar, multiplicar un punto por un escalar) son
eficientes;

o las operaciones inversas (factorizar, calcular logaritmos discretos o resolver ECDLP) son
computacionalmente costosas para parametros bien elegidos.

@ RSA, ElGamal y EC-EIGamal son ejemplos concretos de cémo un problema matematico
abstracto se traduce en un esquema de cifrado préactico, con propiedades como
confidencialidad e incluso firma digital.

@ La seguridad de la criptografia moderna no depende de “ocultar” los algoritmos, sino de la
dificultad computacional de problemas de teoria de nimeros bien estudiados y del uso
cuidadoso de parametros estandarizados.
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