
Aplicaciones de la teoría de números en Criptografía

Pablo Sebastián Herrera

Universidad del Valle de Guatemala

Seminario I de Matemática Aplicada

Pablo Sebastián Herrera (Universidad del Valle de Guatemala) Aplicaciones de la teoría de números en Criptografía Seminario I de Matemática Aplicada 1 / 21



Introducción

La criptografía moderna se apoya en problemas de teoría de números que se consideran
difíciles desde el punto de vista computacional.
Nos centraremos en tres familias de problemas y sus criptosistemas públicos asociados:

Factorización de enteros ⇒ criptosistema RSA.
Problema del logaritmo discreto (DLP) en grupos finitos ⇒ ElGamal.
Logaritmo discreto en curvas elípticas (ECDLP) ⇒ criptosistemas ECC.

En todos los casos aparece la misma idea:
ciertas operaciones (multiplicar, exponenciar, multiplicación escalar en curvas elípticas) son
eficientes,
mientras que la operación inversa (factorizar, tomar logaritmos discretos) es
computacionalmente inviable para parámetros bien elegidos.

El objetivo es:

Problema matemático complicado −→ Diseño de un criptosistema público.
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Problema de factorización de enteros

En RSA se trabaja con un entero compuesto

N = pq,

donde p y q son primos grandes y secretos.
Problema de factorización:

Dado un entero N que es producto de dos (o más) primos grandes, encontrar una factoración no
trivial

N = pq, 1 < p, q < N.

Para RSA, conocer una factorización de N permite calcular

φ(N) = (p − 1)(q − 1),

y de ahí la clave privada.
La seguridad de RSA descansa en que, para tamaños típicos (por ejemplo N de 2048 bits), no
se conoce un algoritmo de factorización que sea eficiente en el peor caso.
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Equivalencia con el cálculo de φ(N)

Si se conoce la factorización N = pq, entonces

φ(N) = (p − 1)(q − 1)

se calcula de forma inmediata.

Recíprocamente, bajo ciertas condiciones, conocer φ(N) permite recuperar p y q.

En particular, dado N y φ(N), se tiene

p + q = N − φ(N) + 1, pq = N,

y se pueden hallar p y q resolviendo una ecuación cuadrática.

Intuitivamente calcular la clave privada a partir de la clave pública es esencialmente tan
difícil como factorizar N.
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Experimento: dificultad de factorizar semiprimos

n # dígitos Factores primos Tiempo (s)

2 307 323 7 [1093, 2111] 0.0001
2 914 107 281 10 [46327, 62903] 0.0085

195 035 301 437 12 [281023, 694019] 0.0400
58 266 774 862 333 14 [6 759 707, 8 619 719] 0.8420

2 058 228 245 360 593 16 [28 087 351, 73 279 543] 5.1180

Cada n es un semiprimo, producto de dos primos grandes: n = p · q.

La columna “# dígitos” muestra el tamaño de n en base 10.

La columna “Factores primos” muestra los primos p y q hallados por trial division.

La columna “Tiempo (s)” es el tiempo que tarda el algoritmo ingenuo en factorizar n.

Se observa que, al aumentar sólo unos pocos dígitos, el tiempo de factorización crece rápidamente.

Para módulos RSA reales (centenares de dígitos), este tipo de ataque por fuerza bruta es totalmente
inviable.
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Criptosistema RSA: generación de claves

Parámetros (se eligen una sola vez):
1 Elegir dos primos grandes p y q, típicamente de tamaño similar.
2 Calcular

N = pq, φ(N) = (p − 1)(q − 1).

3 Escoger e tal que
1 < e < φ(N), gcd(e, φ(N)) = 1.

4 Calcular el inverso multiplicativo
d ≡ e−1 (mód φ(N)).

Clave pública: (N, e).

Clave privada: d (y, en la práctica, también se guardan p y q para acelerar el descifrado).

Dado (N, e) no se conoce un método eficiente para recuperar d sin factorizar N.
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Problema del logaritmo discreto

Sea G un grupo abeliano finito escrito multiplicativamente y g ∈ G un generador de un
subgrupo de orden n.

Para h ∈ ⟨g⟩ se define el logaritmo discreto de h en base g como el entero x tal que

gx = h, 0 ≤ x ≤ n − 1.

Problema del logaritmo discreto (DLP):

Dados (G, g, h), encontrar x tal que gx = h.

Exponenciar g 7→ gx es eficiente (exponenciación rápida), pero no se conoce un algoritmo
general eficiente para invertir esta operación en grupos grandes bien elegidos.
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DLP en criptografía: asimetría computacional

En la práctica se usan grupos como:
G = Z∗

p con p primo grande,
grupos de puntos de curvas elípticas (caso ECC).

Para cada intento de ataque:
hay algoritmos subexponenciales (baby-step giant-step, Pollard rho, index calculus) en algunos
grupos,
pero su complejidad sigue siendo prohibitiva para tamaños de clave recomendados.

Asimetría: computar gx mód p es “barato”, pero recuperar x a partir de gx es “caro”.

ElGamal explota exactamente esta asimetría: el atacante ve potencias de g pero no tiene
acceso a los exponentes.
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Criptosistema ElGamal: parámetros y generación de claves

Parámetros públicos:
Primo grande p,
generador g de un subgrupo grande de Z∗

p .

Clave privada del receptor:

a ∈ {1, . . . , p − 2} escogido al azar.

Clave pública:
h = ga mód p.

Cualquiera puede usar (p, g, h) para cifrar; sólo quien conoce a puede descifrar.

Recuperar a a partir de (g, h) es un ejemplo del DLP en Z∗
p.
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Ejemplo de la dificultad del DLP

Buscamos un exponente k tal que
2k ≡ 24 024 (mód 300 007).

Iteración k 2k mód 300 007 Tiempo acumulado (s)

0 1 0.0000
25 000 263 759 0.0034
50 000 186 851 0.0068
75 000 282 991 0.0109

100 000 281 583 0.0175
125 000 17 570 0.0243

149 994 24 024 0.0278
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Ejemplo de la dificultad del DLP (cont.)

Usamos una búsqueda ingenua: recorrer k = 0, 1, 2, . . . y actualizar iterativamente

vk = 2k mód 300 007

hasta que vk coincide con 24 024.

En el experimento,
k = 149 994, 2149 994 ≡ 24 024 (mód 300 007),

lo que implica 149 995 intentos en total.

Aunque el tiempo total medido es pequeño (≈ 0,028 s), ya estamos haciendo del orden de 105

evaluaciones de la potencia modular para un primo relativamente pequeño.

La complejidad de la búsqueda ingenua crece proporcionalmente al tamaño del grupo: si escalamos a
grupos criptográficos reales (por ejemplo, de tamaño ≈ 2256), este tipo de ataque se vuelve
completamente inviable.

Este ejemplo ilustra la asimetría central del DLP: computar 2k mód p es barato, pero invertir la
operación (recuperar k ) puede ser extremadamente costoso.
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Curvas elípticas sobre cuerpos finitos

Sea Fq un cuerpo finito con q elementos.
Una curva elíptica sobre Fq (en forma corta de Weierstrass) se define por

E : y2 = x3 + ax + b, a, b ∈ Fq,

con discriminante
∆ = −16(4a3 + 27b2) ̸= 0

para evitar singularidades.
El conjunto de puntos racionales

E(Fq) = {(x , y) ∈ F2
q : y2 = x3 + ax + b} ∪ {O}

forma un grupo abeliano bajo la operación de suma definida geométricamente (regla de la
cuerda y la tangente), con O como elemento neutro.
El tamaño de este grupo satisface el acotamiento de Hasse:

|E(Fq)| = q + 1 − t, |t| ≤ 2
√

q.
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Problema del logaritmo discreto en curvas elípticas (ECDLP)

Sea E(Fq) el grupo de puntos de una curva elíptica y sea P ∈ E(Fq) un punto de orden
grande n.

Para un entero k se define la multiplicación escalar

Q = kP = P + P + · · ·+ P︸ ︷︷ ︸
k veces

.

ECDLP (Elliptic Curve Discrete Logarithm Problem):

Dados P y Q = kP en E(Fq), encontrar el entero k .

Computar Q = kP es eficiente (algoritmo “doblar y sumar”), pero no se conoce ningún
algoritmo subexponencial general para recuperar k en curvas adecuadamente seleccionadas.

Esta diferencia de complejidad es la base de la seguridad de los criptosistemas ECC.
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Ventajas criptográficas de ECC

Para un mismo nivel de seguridad, los tamaños de clave en ECC son mucho menores que en
RSA/DLP clásico.
Ejemplo típico:

RSA de 3072 bits ≈ ECC con claves de 256 bits.

Consecuencias prácticas:
menos almacenamiento de claves,
operaciones más rápidas en dispositivos con recursos limitados,
menor ancho de banda para certificados y firmas.

La seguridad se basa en la ausencia de algoritmos subexponenciales eficientes para el
ECDLP en curvas “seguras” (evitando curvas con estructuras especiales que faciliten
ataques).
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Criptosistema ECC tipo ElGamal: parámetros y claves

Parámetros públicos:
cuerpo finito Fq ,
curva elíptica E/Fq ,
punto generador G ∈ E(Fq) de orden primo grande n.

Clave privada del receptor:

d ∈ {1, . . . , n − 1} escogido al azar.

Clave pública:
Q = dG ∈ E(Fq).

Conocer d a partir de (G,Q) requiere resolver una instancia del ECDLP.
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Criptosistema ECC tipo ElGamal: cifrado y descifrado

Supongamos que el mensaje m se representa como un punto M ∈ E(Fq) (codificación
estándar).
Cifrado de M usando la clave pública Q:

1 El emisor elige un escalar efímero k ∈ {1, . . . , n − 1} al azar.
2 Calcula

C1 = kG, C2 = M + kQ.

3 El criptograma es el par (C1,C2).

Descifrado con la clave privada d :
1 Se calcula

dC1 = dkG = k(dG) = kQ.

2 Se recupera el mensaje
M = C2 − dC1.

Seguridad: para extraer M a partir de (C1,C2,G,Q) el atacante debería resolver instancias
del ECDLP.
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Ejemplo de la dificultad del ECDLP

Trabajamos sobre la curva elíptica

E : y2 = x3 + 2x + 3 (mód 40 009).

Punto base:
P = (3, 6), con ord(P) = 2240.

Elegimos un exponente secreto

ksecreto = 1234, Q = ksecretoP = (30 790, 5425).

Iteración k R = kP Tiempo acumulado (s)

1 (3, 6) 0.0000
400 (4519, 2131) 0.0008
800 (39 485, 15 527) 0.0015

1200 (34 035, 39 010) 0.0023

1234 (30 790, 5425) 0.0024
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Ejemplo de la dificultad del ECDLP (cont.)

El atacante conoce la curva, el primo p, el punto base P y el punto objetivo Q.

Ataque ingenuo: recorrer k = 1, 2, 3, . . . y computar iterativamente

Rk = kP

hasta que Rk coincida con Q.

En el experimento se obtuvo
k = 1234 ⇒ kP = Q,

tras 1234 sumas de puntos en el grupo E(F40 009), con un tiempo total de ≈ 0,0024 s.

De nuevo, el tiempo absoluto es pequeño porque el grupo es diminuto (orden ≈ 103), pero el número
de operaciones crece linealmente con el tamaño del grupo.

En curvas elípticas usadas en criptografía real (orden del grupo ≈ 2256), una búsqueda lineal de k
como esta sería completamente inviable, lo que ilustra la dureza del ECDLP.
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Comparación experimental de RSA, ElGamal y EC–ElGamal
Mensaje cifrado en los tres criptosistemas:

Me robe unas pizzas de la pizza party y espero nunca se enteren

Resumen numérico de los experimentos (ataques ingenuos):

Esquema Problema duro Iteraciones Tiempo ataque (s) Cif./Descif. (s)

RSA Factorización de enteros 2578 0.000427 0.000130 / 0.000253
ElGamal DLP en Z∗

p 1234 0.000206 0.001104 / 0.001880
EC–ElGamal ECDLP en E(Fp) 789 0.004932 0.020347 / 0.005519

Visualización de los resultados:

Tiempos de cifrado y descifrado Tiempo del ataque ingenuo Iteraciones del ataque (escala log)
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Conclusiones

La teoría de números proporciona los problemas duros que hacen posible la criptografía de
clave pública: factorización de enteros (RSA), logaritmo discreto en grupos multiplicativos
(ElGamal) y logaritmo discreto en curvas elípticas (ECC).
En los tres casos aparece la misma idea central:

las operaciones “directas” (multiplicar, exponenciar, multiplicar un punto por un escalar) son
eficientes;
las operaciones inversas (factorizar, calcular logaritmos discretos o resolver ECDLP) son
computacionalmente costosas para parámetros bien elegidos.

RSA, ElGamal y EC–ElGamal son ejemplos concretos de cómo un problema matemático
abstracto se traduce en un esquema de cifrado práctico, con propiedades como
confidencialidad e incluso firma digital.

La seguridad de la criptografía moderna no depende de “ocultar” los algoritmos, sino de la
dificultad computacional de problemas de teoría de números bien estudiados y del uso
cuidadoso de parámetros estandarizados.
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