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Idea

La construcción de estos nuevos valores absolutos en Q es la siguiente:
▶ Dado un número p, se quiere decir cuándo dos números racionales

estan cerca, en un sentido que involucre a este primo.
▶ En particular que tan cerca está un número racional x ∈Q del cero

0 ∈Q



Formalmente

El primo p asociado a la función ||p que asigna a cada racional x ∈Q su
valor absoluto |x |p ∈Q

||p : x → |x |p



Nota

Dada la función ||p
▶ Si x = 0 ∈Q =⇒ |0|p = 0
▶ Si x = a

b ̸= 0 ∈Q
Se puede escribir de forma única

x = a
b = pr a′

b′ , con r ,a′,b′ ∈ Z

y p ∤ a′b′



Norma p-ádica

Valuación p-ádica

| · |p = p−vp(x)

donde el orden p-ádico: vp(x) es el exponente de mayor potencia de p
que divide a x .

Ejemplo
Para p = 5 x = 10
Ya que 10 = 51 ∗2 entonces v5(10) = 1

|10|5 = 5−1 = 1
5



Norma p-ádica

Distancia: Real vs p-ádica
Distancia Real | · |

|6−1|= |5|= 5

|26−1|= |25|= 25

Distancia | · |p con p = 5

|6−1|5 = |5|5 = 1
5

|26−1|5 = |25|5
Ya que 25 = 52 entonces

v5(25) = 2 Por lo que

|25|5 = 5−2 = 1
52 = 1

25

En Q5 el número 26 está mas cerca de 1 que 6. Ya que 1
25 < 1

5



Norma p-ádica

Propiedades
La función | · |p satisface las propiedades siguientes, para x ,y ∈Q

1. |x |p = 0 ssi x = 0

2. |xy |p = |x |p|y |p
3. |x + y |p ≤max{|x |p, |y |p}



La norma p-ádica no es arquimediana

▶ Por el axioma de arquímides, dado a ̸= 0 y b racionales. Para el
valor absoluto usual:

|na|> |b|
para algún n suficientemente grande.

▶ Si consideramos en Q el valor absoluto p-ádico, entonces ∀n ∈ Z se
tiene que:

n = 1+ · · ·+1 ∈Q

satisface que:

|n|p = |1+ · · ·+1|p ≤max{|1|p}= 1

Por tanto, ∀a ∈Q y n ∈ N:

|na|p = |n|p|a|p ≤ |a|p

De esta forma, incumple el axioma de Arquímedes.



Resultados interesantes

Figure: Propiedad del triángulo
isósceles: En la métrica p-ádica, la
longitud del tercer lado es ≤max de
los otros dos, forzando a al triángulo
a ser isósceles o equilátero.

Figure: Todo punto es centro:
Cualquier punto y dentro de una
bola abierta B(a, r) es centro de la
misma bola (B(a, r) = B(y , r).)



Propiedad del triángulo isósceles

Prueba:
Definimos los lados:
▶ L1 = dp(x ,y) = |x −y |p
▶ L2 = dp(y ,z) = |y − z |p
▶ L3 = dp(x ,z) = |x − z |p

Podemos expresar L3 usando L1 y L2:

x − z = (x −y)+(y − z)



Propiedad del triángulo isósceles

Aplicando la desigualdad ultra-métrica con a = (x − y) y
b = (y − z):

|x − z |p ≤max{|x −y |p, |y − z |p}

L3 ≤max{L1,L2} (1.1)

Ahora, debemos demostrar que la igualdad se cumple si
L1 ̸= L2.



Propiedad del triángulo isósceles

Sea L1 < L2. Esto implica que max{L1,L2}= L2.
La desigualdad (1.1) se convierte en:

L3 ≤ L2

Ahora, examinamos la relación entre L2 y los otros dos
lados. Podemos escribir:

y − z = (y −x)+(x − z)



Propiedad del triángulo isósceles

Aplicando la desigualdad ultra-métrica con a = (y − x) y
b = (x − z):

|y − z |p ≤max{|y −x |p, |x − z |p}

L2 ≤max{L1,L3} (1.2)



Propiedad del triángulo isósceles

Si L3 < L2, entonces, como asumimos que L1 < L2, el máx-
imo en 1.2) sería:

max{L1,L3}= el mayor de dos números menores que L2

Esto llevaría a la contradicción L2 ≤max{L1,L3}< L2.Por
lo tanto, la única posibilidad compatible con las suposi-
ciones y las desigualdades es que L3 debe ser igual a L2:

L3 = L2



Propiedad del triángulo isósceles

Si L1 < L2, hemos demostrado que L3 = L2.Los tres lados
del triángulo son:

L1,L2,L3 =⇒ L1,L2,L2

Dado que L1 ̸= L2, el triángulo tiene dos lados iguales (L2
y L3), lo que demuestra que todo triángulo en un espacio
p-ádico es isósceles.



Todo punto es centro: B(a, r) = B(y, r)

Bola abierta en la norma p-ádica
Sea | · |p la norma p-ádica. La bola abierta de centro a y de radio p−n es:
B(a,p−n) = {x : |x −a|p < p−n}
En Qp esta bola significa que las primeras n cifras p−ádicas de x
coinciden con las de a.

Prueba:
▶ B(a, r)⊆ B(y , r)

Dado que y es un punto interior de B(a, r), por definición se
cumple que:

d(y ,a) < r (2.1)



Todo punto es centro: B(a, r) = B(y, r)

Tomemos un punto arbitrario x ∈ B(a, r). Por definición
se cumple que:

d(x ,a) < r (2.2)

Queremos demostrar que x también está en B(y , r), lo que
requiere probar que d(x ,y) < r .Usamos la propiedad de la
desigualdad triangular fuerte para los puntos x ,y ,a:

d(x ,y)≤max{d(x ,a),d(y ,a)}



Todo punto es centro: B(a, r) = B(y, r)

Sustituyendo las condiciones (1) y (2) en la desigualdad ultra-
métrica, tenemos:

d(x ,y)≤max{d(x ,a),d(y ,a)}< r

Esto prueba que x ∈ B(y , r). Así, B(a, r)⊆ B(y , r).



Todo punto es centro: B(a, r) = B(y, r)

▶ B(y , r)⊆ B(a, r)
Sabemos que d(a,y) = d(y ,a) < r . Esto significa que a es
un punto interior de la bola B(y , r).
Tomemos un punto arbitrario z ∈ B(y , r). Por definición
se cumple que:

d(z ,y) < r (2.3)

Queremos demostrar que z también está en B(a, r), es
decir, que d(z ,a) < r .Aplicamos la desigualdad ultra-
métrican a los puntos z ,y ,a:

d(z ,a)≤max{d(z ,y),d(y ,a)}



Todo punto es centro: B(a, r) = B(y, r)

Sustituyendo las condiciones (2.2) y (2.3) en la desigualdad
ultra-métrica, tenemos:

d(z ,a)≤max{d(z ,y),d(y ,a)}< r

Esto prueba que z ∈ B(a, r). Así, B(y , r)⊆ B(a, r).
se concluye que:

B(a,r) = B(y,r)

□



Todo punto es centro: B(a, r) = B(y, r)

Dentro de una bola abierta, todos los puntos son igual de p-cercanos
entre sí como lo son al centro original, porque la proximidad está dictada
por las primeras cifras idénticas de sus expansiones p-ádicas. Si dos
puntos comparten las cifras que definen el radio de la bola, cualquiera de
ellos puede ser el centro de ese conjunto de cifras.

Cifras de un entero p-ádico x ∈ Zp

x = a0 +a1p +a2p2 +a3p3 + · · ·=
∞

∑
i=0

aipi

Para Z3 : x = a030 +a131 +a232 +a333 + . . .



Analogías

Con la norma p−ádica podemos definir en forma análoga, los conceptos
como: sucesión de Cauchy, límite de una sucesión, etc.



Ejemplo: Encontrando
√

2 con la Métrica p-ádica

Problema
La ecuación x2 = 2 no tiene solución en Q.

▶ Buscando en Q7: Queremos una solución p-ádica (en p = 7) que
satisfaga x2 ≡ 2 (mod 7n) para toda n.

▶ n = 1: x2 ≡ 2 (mod 7) tiene la solución x1 = 3.



Ejemplo: Encontrando
√

2 con la Métrica p-ádica

Teorema (Lema de Hensel)
Sea P(X ) un polinomio con coeficientes en los enteros p-ádicos
(Zp[X ]).Supongamos que existe una solución aproximada x1 ∈ Zp tal que:

P(x1)≡ 0 (mod p)

La solución inicial es una "buena semilla" si la derivada evaluada en x1 no
es divisible por p:

vp(P′(x1)) = 0

▶ Si la solución inicial no es degenerada (f ′(3) = 6 ̸≡ 0 (mod 7)), la
Métrica p-ádica garantiza que la solución existe y es única.



Ejemplo: Encontrando
√

2 con la Métrica p-ádica

▶ Polinomio: P(x) = x2−2 =⇒ P ′(x) = 2x
▶ Solución Mód 7: x2 ≡ 2 (mod 7). La solución es x1 = 3.
▶ Verificación de No Singularidad: Evaluamos la derivada en x1 = 3:

P ′(3) = 2(3) = 6

Como 6 ̸≡ 0 (mod 7), se cumple la condición v7(P ′(3)) = 0.



Ejemplo: Encontrando
√

2 con la Métrica p-ádica

▶ Construcción de la Sucesión {xn}: Usamos la fórmula
xn+1 = xn +7nk para encontrar las cifras sucesivas de la raíz

▶ Buscamos x2 = x1 +7k, donde x1 = 3.

(3+7k)2 ≡ 2 (mod 49)

9+42k +49k2 ≡ 2 (mod 49)

9+42k ≡ 2 (mod 49) =⇒ 42k ≡−7 (mod 49)

6k ≡−1 (mod 7) =⇒ −k ≡−1 (mod 7) =⇒ k = 1

x2 = 3+7(1) = 10

(Cifras 7-ádicas: 3,1)



Ejemplo: Encontrando
√

2 con la Métrica p-ádica

Table: Construcción de
√

2 en Z7 (Lema de Hensel)

Etapa (n) Congruencia a Resolver Solución xn
1 x2 ≡ 2 (mod 71) x1 = 3
2 x2 ≡ 2 (mod 72) x2 = 10
3 x2 ≡ 2 (mod 73) x3 = 108
4 x2 ≡ 2 (mod 74) x4 = 2167
. . . . . . . . .

n→ ∞ P(α) = 0 α =
√

2

▶ La sucesión {3,10,108, . . .} es una sucesión de Cauchy en d7
y converge al número p-ádico

√
2



Sucesiones

Recordatorio
Si {an} es una sucesión de Cauchy de números reales, entonces
limn→∞ |an−an+1|= 0 pero el recíproco es falso. Ejemplo: {an}= { 1

n}

Lema
Sea {an} una sucesión en Q con el valor absoluto p−ádico.
Entonces,

{an}

es de Cauchy si y solo si

lim
n→∞
|an−an+1|p = 0



Sucesiones

Demostración del lema:
(←) Sólo necesitamos probar que limn→∞ |an+1−an|p = 0 entonces
{an} es de Cauchy.
Para esto, notemos que como este límite es 0, entonces para todo ε > 0
existe un N tal que si n ≥ N, entonces |an+1−an|p < ε.
Podemos estimar la distancia entre dos términos cualesquiera am y an de
la sucesión.
Escribamos m = n + r y observemos que

|am−an|p = |an+r −an+r−1 +an+r−1−an+r−2 + · · ·+an+1−an|p
≤max{|an+r −an+r−1|p, |an+r−1−an+r−2|p, . . . , |an+1−an|p}
< ε.

□



Nota

En el campo Q con el valor absoluto p−ádico le sucede algo similar a lo
que sucede a Q con el valor absoluto usual: hay sucesiones de Cauchy en
Q que no convergen en Q.



Ejemplo

▶ La sucesión de soluciones es {xn}= {3,10,108, . . .}.
▶ Por la forma en que se construye (y por el Lema de Hensel),

la distancia entre términos sucesivos |xn+1−xn|7 es ≤ 7−n.
▶ Esto prueba que {xn} es una sucesión de Cauchy.
▶ El límite de esta sucesión converge en Q7 a la raíz exacta ξ ,

la cual es
√

2.
La Raíz

√
2 en Z7 tiene la expansión:

√
2 = . . .2137



Nota

De forma análoga a como, usando el valor absoluto usual, en Q para
obtener el campo R de los números reales, usando ahora el valor absoluto
p−ádico ||p se puede completar el campo Q, para obtener un campo
nuevo llamando el campo de los números p−ádicos Qp

Completitud de (Q, | · |)→ R

Completitud de (Q, | · |p)→Q



Anillo de enteros 3-ádicos

Z3 es el anillo de convergencia de todas las sucesiones de Cauchy en el
espacio p−ádico
Z3 = {x ∈Q3 : |x |3 ≤ 1}

Figure: Estructura jerárquica de Z3: Los enteros p-ádicos se
descomponen en p bolas disjuntas de radio p−n.



Conclusiones

▶ Los números p-ádicos aclaran que concepto de distancia
depende totalmente del métrica.

▶ Que la métrica p−ádica no sea arquimediana implica
resultados como que todo triángulo es isósceles, que para todo
punto contenido en una bola abierta es el centro de la bola.

▶ Este sistema de números además de ser muy llamativos, son
aplicables en teoría de números moderna, física teórica,
computación y criptografía.
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