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La construccién de estos nuevos valores absolutos en Q es la siguiente:

» Dado un nimero p, se quiere decir cuando dos niimeros racionales
estan cerca, en un sentido que involucre a este primo.

» En particular que tan cerca estd un ndmero racional x € Q del cero

0cQ



Formalmente

El primo p asociado a la funcién ||, que asigna a cada racional x € Q su
valor absoluto |x|, € Q

llp:x = [xlp



Dada la funcién ||,

> Six=0eQ = [0, =0

> Six=7#0€Q

Se puede escribir de forma (nica

/
a a
x=5 :p’g7 conr,a,b ez

y pta't



Norma p-adica

Valuacién p-adica

||p= p*v,s(x)

donde el orden p-adico: v,(x) es el exponente de mayor potencia de p
que divide a x.

Ejemplo
Para p=5x=10
Ya que 10 = 5! %2 entonces v5(10) =1

_ 1
|mB:51:g



Norma p-adica

Distancia: Real vs p-adica

Distancia Real |- |
6-1]=|5/=5

126 — 1| = [25| =25

En Qs el nimero 26 estd mas cerca de 1 que 6. Ya que 2—15 <

Distancia |- |, con p=5

1
|6—1[s = [5]s = 5

126 — 1[5 = [25]5

Ya que 25 = 52 entonces
v5(25) = 2 Por lo que

11
12515 52~ 25

1
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Norma p-adica

Propiedades

La funcién |- |, satisface las propiedades siguientes, para x,y € Q
1. |x|p=0ssix=0
2. [xylp=Ixlplylp
3. Ix+ylp < max{|x[p, lylp}




La norma p-adica no es arquimediana

or el axioma de arquimides, dado a = 0 y b racionales. Para e
valor absoluto usual:
|na| > [b]

para algin n suficientemente grande.

» Si consideramos en QQ el valor absoluto p-adico, entonces Vn € Z se
tiene que:
n=1+---+1€Q

satisface que:
n[p=1[1+--+1]p <max{[l]p} =1
Por tanto, VaeQy neN:
|”3‘p = |”|p‘3|p < |3|P

De esta forma, incumple el axioma de Arquimedes.



Resultados interesantes

Figure: Propiedad del triangulo
isdsceles: En la métrica p-adica, la
longitud del tercer lado es < max de
los otros dos, forzando a al tridngulo
a ser isésceles o equilatero.

Figure: Todo punto es centro:
Cualquier punto y dentro de una
bola abierta B(a,r) es centro de la
misma bola (B(a,r) = B(y,r).)



Propiedad del triangulo is6sceles

Prueba:
Definimos los lados:

> L= dp(va) = ’X_Y|p
> L=dp(y,2) =y —2|p
> L3=dp(x,2) =[x—z|p
Podemos expresar L3 usando Ly y Lo:

x—z=(x—y)+(y—2)



Propiedad del triangulo is6sceles

Aplicando la desigualdad ultra-métrica con a= (x—y) y
b=(y—2z):

‘X_Z‘p < max{|x—y|p,|y—z|p}

L3 S max{Ll,Lz} (1.1)

Ahora, debemos demostrar que la igualdad se cumple si
Ly # L.



Propiedad del triangulo is6sceles

Sea L; < Ly. Esto implica que max{Ly, Lo} = L.
La desigualdad (1.1) se convierte en:

L3 <5

Ahora, examinamos la relacién entre L, y los otros dos
lados. Podemos escribir:

y—z=(—x)+(x-2)



Propiedad del triangulo is6sceles

Aplicando la desigualdad ultra-métrica con a= (y —x) y
b=(x—2z):

ly —z|p < max{|y—x|p,|x—z|p}

L2 < max{Ll, L3} (1.2)



Propiedad del triangulo is6sceles

Si L3 < Ly, entonces, como asumimos que L1 < Ly, el max-
imo en 1.2) seria:

max{Li, L3} = el mayor de dos niimeros menores que L;

Esto llevaria a la contradiccion L, < max{Ly, L3} < Ly.Por
lo tanto, la dnica posibilidad compatible con las suposi-
ciones y las desigualdades es que L3 debe ser igual a Ly:

L3 =105



Propiedad del triangulo is6sceles

Si Ly < Ly, hemos demostrado que L3 = Ly.Los tres lados
del triangulo son:

Li,Lp,l3 = Lyi,L5, L5

Dado que Ly # Ly, el tridngulo tiene dos lados iguales (L
y L3), lo que demuestra que todo tridngulo en un espacio
p-dadico es isésceles.



Todo punto es centro: B(a, r) = B(y, r)

Bola abierta en la norma p-adica

Sea |- |p la norma p-adica. La bola abierta de centro a y de radio p~" es:
Bla,p")={x:|x—alp,<p "}

En Qp esta bola significa que las primeras n cifras p—3adicas de x
coinciden con las de a.

Prueba:

> B(a,r) S B(y,r)
Dado que y es un punto interior de B(a,r), por definicién se
cumple que:
d(y,a)<r (2.1)



Todo punto es centro: B(a, r) = B(y, r)

Tomemos un punto arbitrario x € B(a,r). Por definicion
se cumple que:

d(x,a)<r (2.2)
Queremos demostrar que x también estd en B(y,r), lo que

requiere probar que d(x,y) < r.Usamos la propiedad de la
desigualdad triangular fuerte para los puntos x,y,a:

d(x.y) < max{d(x,a),d(y,a)}



Todo punto es centro: B(a, r) = B(y, r)

Sustituyendo las condiciones (1) y (2) en la desigualdad ultra-
métrica, tenemos:

d(x,y) < max{d(x,a),d(y,a)} <r

Esto prueba que x € B(y,r). Asi, B(a,r) C B(y,r).



Todo punto es centro: B(a, r) = B(y, r)

> Bly,r) < B(a,r)
Sabemos que d(a,y) =d(y,a) < r. Esto significa que a es
un punto interior de la bola B(y,r).
Tomemos un punto arbitrario z € B(y,r). Por definicion

se cumple que:
d(z,y)<r (2.3)

Queremos demostrar que z también esta en B(a,r), es
decir, que d(z,a) < r.Aplicamos la desigualdad ultra-
métrican a los puntos z,y, a:

d(z,a) < max{d(z,y),d(y,a)}



Todo punto es centro: B(a, r) = B(y, r)

Sustituyendo las condiciones (2.2) y (2.3) en la desigualdad
ultra-métrica, tenemos:

d(z,a) < max{d(z,y),d(y,a)} <r

Esto prueba que z € B(a,r). Asi, B(y,r) C B(a,r).
se concluye que:

B(a,r) = B(y,r)



Todo punto es centro: B(a, r) = B(y, r)

Dentro de una bola abierta, todos los puntos son igual de p-cercanos
entre si como lo son al centro original, porque la proximidad esta dictada
por las primeras cifras idénticas de sus expansiones p-adicas. Si dos
puntos comparten las cifras que definen el radio de la bola, cualquiera de
ellos puede ser el centro de ese conjunto de cifras.

Cifras de un entero p-adico x € Zj,

x:ao+alp+agp2+a3p3+~~-= Za,-pi
i=0

Para Z3: x = 2p3° + a13' + a3% + a33° + . ..



Analogias

Con la norma p—adica podemos definir en forma analoga, los conceptos
como: sucesion de Cauchy, limite de una sucesion, etc.



Ejemplo: Encontrando v/2 con la Métrica p-adica

Problema

La ecuacién x2 = 2 no tiene solucién en Q.

» Buscando en Q7: Queremos una solucién p-adica (en p=7) que
satisfaga x> =2 (mod 7") para toda n.

» n=1: x>=2 (mod 7) tiene la solucién x; = 3.



Ejemplo: Encontrando v/2 con la Métrica p-adica

Teorema (Lema de Hensel)

Sea P(X) un polinomio con coeficientes en los enteros p-adicos
(Zp[X]).Supongamos que existe una solucién aproximada x; € Z, tal que:

P(x1)=0 (mod p)

La solucién inicial es una "buena semilla" si la derivada evaluada en x; no
es divisible por p:

vp(P'(x1)) =0

» Si la solucién inicial no es degenerada (f'(3) =60 (mod 7)), la
Métrica p-adica garantiza que la solucién existe y es Gnica.



Ejemplo: Encontrando v/2 con la Métrica p-adica

» Polinomio: P(x) =x?—-2 = P'(x)=2x
» Solucién Méd 7: x> =2 (mod 7). La solucién es x; = 3.

» Verificacién de No Singularidad: Evaluamos la derivada en x; = 3:

Como 6 #0 (mod 7), se cumple la condicién v7(P’(3)) =0.



Ejemplo: Encontrando v/2 con la Métrica p-adica

» Construccién de la Sucesién {x,}: Usamos la férmula
Xn+1 = Xn+ 7"k para encontrar las cifras sucesivas de la raiz

» Buscamos xp = x1 + 7k, donde x; = 3.

(34+7k)>=2 (mod 49)
9442k +49k*> =2 (mod 49)

9+42k=2 (mod 49) = 42k=-7 (mod 49)
6k=—-1 (mod7) = —k=-1 (mod7) = k=1
x=34+7(1)=10
(Cifras 7-adicas: 3,1)



Ejemplo: Encontrando v/2 con la Métrica p-adica

Table: Construccién de v/2 en Z7 (Lema de Hensel)

Etapa (n) Congruencia a Resolver | Solucién x,
1 x?>=2 (mod 7%) x1=3
2 x?>=2 (mod 77) xy = 10
3 x2 =2 (mod 73) x3 =108
4 (mod 7%) x4 = 2167
n— oo P(a) =0 a=2

» La sucesion {3,10,108,...} es una sucesién de Cauchy en dy
y converge al nimero p-adico /2



Sucesiones

Si {an} es una sucesidén de Cauchy de nimeros reales, entonces
- _ , . . _ 1
limp e |an — any1| = 0 pero el reciproco es falso. Ejemplo: {a,} = {3}

Sea {a,} una sucesién en Q con el valor absoluto p—adico.
Entonces,
{an}

es de Cauchy si y solo si

Jm a0~ ansalp =0

.




Sucesiones

Demostracién del lema:

(«) Sélo necesitamos probar que lim,_,. |ap+1 — an|p = 0 entonces
{an} es de Cauchy.

Para esto, notemos que como este limite es 0, entonces para todo € >0
existe un N tal que si n> N, entonces |a,1+1 — an|p < €.

Podemos estimar la distancia entre dos términos cualesquiera a,, y a, de
la sucesioén.

Escribamos m = n+r y observemos que

|3m - an|p = ‘anJrr —antr-1+antr-1—anyr—2+-+any1— 3n|p
< max{|an+r - an+r71|p7 |an+r71 - an+r72|pa ) |3n+1 - an|p}
<E.



En el campo Q con el valor absoluto p—adico le sucede algo similar a lo
que sucede a Q@ con el valor absoluto usual: hay sucesiones de Cauchy en
@ que no convergen en Q.



Ejemplo

» La sucesién de soluciones es {x,} = {3,10,108,...}.

» Por la forma en que se construye (y por el Lema de Hensel),
la distancia entre términos sucesivos |Xp4+1 — Xp|7 es < 77".

» Esto prueba que {x,} es una sucesién de Cauchy.

» El limite de esta sucesién converge en Q7 a la raiz exacta &,
la cual es v/2.

La Raiz /2 en Z; tiene la expansién:

V2 =...213;



De forma andloga a como, usando el valor absoluto usual, en Q para
obtener el campo R de los nliimeros reales, usando ahora el valor absoluto
p—adico ||, se puede completar el campo Q, para obtener un campo
nuevo llamando el campo de los ndmeros p—adicos Qp

Completitud de (Q,|-|) = R
Completitud de (Q,||,) = Q



Anillo de enteros 3-adicos

Zs3 es el anillo de convergencia de todas las sucesiones de Cauchy en el
espacio p—adico
Zz={x€Qz:|x[3<1}

Figure: Estructura jerarquica de Zs3: Los enteros p-adicos se
descomponen en p bolas disjuntas de radio p~".



Conclusiones

» Los nimeros p-adicos aclaran que concepto de distancia
depende totalmente del métrica.

» Que la métrica p—Aadica no sea arquimediana implica
resultados como que todo tridngulo es isdsceles, que para todo
punto contenido en una bola abierta es el centro de la bola.

P Este sistema de ndmeros ademas de ser muy llamativos, son
aplicables en teoria de niimeros moderna, fisica tedrica,
computacién y criptografia.
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