El Grupo Monstruoy
la Conjetura Monster Moonshine

Por: lan Castellanos



Grupos Simples

* Un grupo simple es aquel en el que sus unicos subgrupos normales
son el grupo identidad y él mismo.

* Esto hace que los grupos simples no puedan partirse en subgrupos.

* Teorema de la clasificacion de grupos simples finitos:
Sea G un grupo simple finito. Entonces G es uno de los siguientes:
* Un grupo ciclico de orden primo.
* Un grupo alternante
* Un miembro de una de las 16 familias infinitas de grupos de Lie.
* Una de las 26 excepciones de grupos esporadicos



Grupos Simples Esporadicos

* Grupos de Mathieu: * Grupo de Suzuki: Suz o F5_
My1, M1z, M3, M33, Moy * Grupo O’Nan: O'N(ON)
* Gruposde Janko: J;,/Jo 0HJ,J50

* Grupo de Harada-Norton: HN o
HJM, ], F-, o Fs

* Grupos de Conway: Co4, Co0,, Co4
* Grupos de Fischer:

* Grupo de Lyons: Ly
* Grupo de Thompson: Th oF33 0

Fiyy, Fizs, Fizg 0 F3y F,
* Grupo de Highman-Sims: H5 * Grupo MonstruoBebé: Bo F,. o
* Grupo de McLaughlin: McL F,
* Grupode Held: Heo F;, 0 F, e Grupo Monstruo: M o F;

* Grupo de Rudvalis: Ru



The Periodic Table Of Finite Simple Groups
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Grupo Monstruo

* El grupo Monstruo M es el mas grande de los grupos simples
esporadicos de manera que |M| = 8 x 10°3

* Es un grupo de rotaciones en 196,883 dimensiones i.e., cada
elemento es expresado en una matriz de 196,883 X 196,883.



Clases de Conjugados

* Seay € @G, es un grupo finito, entonces se define la clase de
conjugados como:

*c(y) ={gyg g €G}
* Se dice que c(y) parte el grupo G.



Representaciones

* La Teoria de Representaciones es el estudio de como las
simetrias ocurren en la naturaleza; esto es, el estudio de como los
grupos actuan por medio de transformaciones lineales en
espacios vectoriales (Wadsley S., 2021).

* Una representacion p de un grupo G en un espacio vectorial I es
un homomorfismo de grupo p: G = GL(V), donde GL(V) es el
grupo de transformaciones lineales invertibles de V.

* Notacion: (p, V)



Ejemplo de Representaciones

* Se considera el subespacio:

V = {(xy,x5,x3) € R3:x; + x, + x3 = 0}

Se elige como basesv; = (1,—1,0) yv, = (1,0,—1).

Entonces las representaciones son:

p)=(y 2), p(2)=(C; 9).p((123) =}

—1

1)



Representaciones

* G-invariante: Sea la representacion p: G = GL(V). Se dice que un
subespacio k — lineal W de W es G — invariante si
p(@)(W) s W,vgeG

i.e.p(g)(w) EWVgeEG&WEW
* En ese caso se llama a W una subrepresentacion de V.

 Subrepresentacion propia: Se le [lama a una subrepresentacion
WdeVsiW+V&W+*0

* Sedice que V # 0 esirreducible si no tiene subrepresentaciones
propias.



Representaciones

* Hay tantos irreducibles en G como c(y) en G.

* Toda representacion de un grupo G es isomorfa a la suma directa
de irreducibles

* i.e., dado un cambio de bases de VV se puede asumir que p es
evaluada en matrices cuadradas diagonales cuyos tamanos son

las dimensiones de los irreducibles



Representaciones del Grupo Monstruo

* Se tiene el supuesto [por Conway & Norton] de que el menor
irreducible no trivial de M es de dimensidon 196883.

* Asimismo, se tiene que M tiene 194 dimensiones irreducibles.

e Se tiene la sucesion de dimensiones de irreducibles como:
* (hn=1..104 = 1,196883, 21296876,842609326, ...



Toro complejo

* Sea el lattice (enrejado), sidw,, w,, € C*, 7 = Z—Z € H ,donde
H es el semiplano de Poincaré, se define entonces:

A= wiZ ® w,Z conbase {w,w,},de manera A € Z

* El toro complejo se define como:

C/A ={z+ A:z € C} esun grupo abeliano bajo lasumaenC.



Toro complejo




Toro complejo

* Si se considera el toro complejo como una clase de equivalencia
de lattices (rejas) en C, siendo la relacion de equivalencia la
multiplicacion.

* Entonces en cada clase hay un lattice A, T € H, cuya base tiene
la forma (at + b, ct + d) para(a,b,c,d) € Z* 3 ad —bc = 1



Transformaciones lineales fraccionales

* Una transformacion lineal fraccional (aqui considerada en el
semiplano de Poincaré superior H ) es una funcion:

az+ b
T(z) = Sa,b,c,d e C&ad—bc #0
cz+d
., . a b
Esta transformacion es representada por la matrizy = (c d)
. _(a b\ _ _ az+b
Y se escribe yz = (c d) =



Grupos Modulares

* Son funciones complejas que tienen un gran grupo de simetrias
relacionadas al grupo de matrices. Para un anillo R se definen los
grupos:

*GL,(R) ={y € M,+,(R)|det(y) # 0} Grupo lineal general en R
*SL,(R) ={y € GL,(R)| det(y) = 1} Grupo lineal especialen R
* PSL,(R) = SL,(R)/{xI} Grupo especial de proyecciones en R



Grupos Modulares

* SL,(Z) es el grupo modular homogéneo
Se tiene que (S, T) genera el grupo de manera que:

S=((1) _01),T=((1) 1)352=—1&T"=(é ’I),nez

* PSL,(Z) es el grupo modular inhomogéneo
La base de este grupo es {T, S} definidos como antes



Dominio fundamental

 Es un subconjunto A € H, que es simplemente conectado (no
tiene agujeros).

* Contiene exactamente un punto de cada orbita bajo la accion de
PSL,(Z).

* Espacio modular del toro complejo: M; =H /PSL,(Z)

« Se identifica el elemento p = e?™/3 = p2
at+b

ct+d

* Este es producido por laaccion yt =



Dominio fundamental

1 .
(TEA) & |11 =2 1and — 5 < Re(T) <

=

bl | b=t



Funciones Modulares

* Una funcién de H invariante bajo la accién de PSL,(Z):
at + b
f@© =fM+1)=f
Por definicion de invariante cumple con las condiciones:

fE+Df(@) & f(-2) = f(@)

Una funcion definida asi sobre PSL,(Z) es una funcion modular



Formas modulares

* Dado que el estudio de las funciones modulares es complicado,
para su estudio se usan las formas modulares:

* Una forma modular f de peso 2k, k € N es una funcion
holomorficaen H , tal que:

f(1) = (ct + d)**f (: 1 2) VM € PSL,(Z)

de manera gue crece exponencialmente de manera que J(1) —




Serie de Eisenstein

* Es una forma modular de peso 2k, definida como sigue:



Formas modulares

De la teoria de formas modulares se tiene que el conjunto M, de
formas modulares es un espacio vectorial complejo.

Asimismo, se tiene que M es el anillo polinomial M = C|G,, G¢] .

Es posible buscar funciones modulares como los cocientes de
formas modulares del mismo pero sobre los elementos de M, que
consisten en funciones modulares constantes.

Se elige M, para construir dichas funciones modulares mas
simples porque k = 12 es el menor valor para el cual dim(M;,) > 1.



J-iInvariante de Klein

* Es larazon de elementos de M4, linealmente independientes

expresada como: ;
T
j(t) = 1728 9>(1)

g2(7)3 — 27g5(7)?
Es una funcion modular.

=) g, = 6OG4, g3 = 14OG6

Se tiene que toda funcion modular es una fraccion racional de j.
De igual manera, el campo de funciones modulares es C(j).



Expansiones-qg

e Tanto las formas como las funciones modulares han de satisfacer
f(t +1) = f(r) para que admitan una descomposiciéon de
Fourier en términos de g = e?™'7,

* Bajot = q(1), el plano H tiende al disco unitario.
* Entonces para todo f|{g}] es invariante bajot »> 7+ 1

* Se tiene que los coeficientes de la expansion q de j son enteros,
siendo sus primeros términos:

j(©) = Z7o 1 c(n)q" = -+ 744 + 196884 + 214937602 + -+

* ] =j— 744 se dice que es la funcion j normalizada.



Conjetura de Thompson

* Existe una representacion infinito dimensional

(pﬂ , Vﬂ) =@D;>_1 Vl-13F de M, de manera que para cada Vl-13F es la
expansion — q de laj — invariante normalizada

@ =) dim@f)q,
2—1



Serie de McKay-Thompson

* Se estudia la siguiente serie, porque la dimension de una
representacion es la traza de p(e).

= ), Tr (089 1) =—+ZH<

Se tiene que hay una de estas series por cada clase de conjugacion
|g] de M.

En la serie, g € M es cualquier representacion de [g].
H, es una clase de funciones de M.



Conjetura Monster Moonshine

* Conmensurable: Dos subgrupos son conmensurables si su
interseccion es finita.

* Se tiene que las funciones en H que son PSL,(Z) — invariantes
son las funciones modulares

* Se sabe que todas estas pueden ser expresadas como funciones
racionales de ] o de manera equivalente, como funciones
racionales de J.

* De esta manera J es el Hauptmodul normalizado de PSL,(Z).



Conjetura Monster Moonshine

* Existe una representacion infinita-dimensional (pM, 744 =D Viﬂ)

del grupo monstruo, tal que cada Vi13F es finito-dimensional, y de
tal manera que para cada clase de conjugacion | g]| la serie de
McKay-Thompson Tj,; es la expansion-q del Hauptmodul

normalizado de un subgrupo I, < PSL,(R) conmensurable con
PSL,(Z).
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