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Suma de cuadrados I

Teorema 1. Un número n no puede escribirse como suma de dos cuadrados si y sólo si, en su
factorización en primos, aparece al menos un primo congruente con 3 módulo 4 elevado a una
potencia impar.

Demostración. Supongamos que p es un primo tal que p ≡ 3 (mod 4) y que aparece en la
factorización de n con exponente impar. Es decir, existe e ≥ 0 tal que

p2e+1 | n y p2e+2 ∤ n. (1)

Supongamos, por contradicción, que n = x2 + y2 para algunos enteros x , y .
Sea d = (x , y) y definamos:

x1 =
x

d
, y1 =

y

d
, n1 =

n

d2 . (2)

Entonces
x2
1 + y2

1 = n1, (x1, y1) = 1. (3)



Suma de cuadrados II

Si pf es la mayor potencia de p que divide a d , entonces n1 es divisible por p2e−2f+1. Este
exponente es impar y al menos 1, así que p | n1.
Si p | x1, de (3) se deduce p | y1, lo cual contradice (x1, y1) = 1. Por tanto, p ∤ x1, y existe un
número u tal que

x1u ≡ y1 (mód p). (4)

Reemplazando en (3):

0 = x2
1 + y2

1 ≡ x2
1 + (x1u)

2 = x2
1 (1 + u2) (mód p). (5)

Como (x1, p) = 1, se cancela x2
1 y queda

1 + u2 ≡ 0 (mód p). (6)

Esto implica que −1 es un residuo cuadrático módulo p, lo cual es imposible pues p ≡ 3
(mód 4). Por tanto, n = x2 + y2 es imposible. ■



Suma de cuadrados III

Esta parte demuestra una dirección del teorema. Para completar la doble implicación,
presentaremos ahora cuatro lemas esenciales.

Lema 1.
(x2 + y2)(w2 + z2) = (xw + yz)2 + (xz − yw)2, ∀x , y ,w , z ∈ Z. (7)

Este lema muestra que si dos números pueden escribirse como suma de dos cuadrados,
entonces también su producto puede representarse de la misma forma.

Lema 2. Si n se puede expresar como suma de dos cuadrados, entonces lo mismo ocurre con
k2n, para todo k ∈ Z.

Demostración. Si n = x2 + y2, entonces

k2n = (kx)2 + (ky)2. (8)

■



Suma de cuadrados IV

Lema 3. Todo número entero positivo n puede escribirse como

n = k2
r∏

i=1

pi , (9)

donde k es un entero y los pi son primos distintos.

Lema 4. Todo primo congruente con 1 módulo 4 puede escribirse como la suma de dos
cuadrados.

Si p ≡ 1 (mód 4), existen enteros x , y tales que

x2 + y2 = kp, (10)

para algún k ≥ 1. Si k = 1, la prueba está completa. Si k > 1, construiremos nuevos x1, y1
tales que

x2
1 + y2

1 = k1p, con k1 < k. (11)
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Demostración. Como p ≡ 1 (mód 4), −1 es un residuo cuadrático módulo p. Por tanto,
existe u tal que

u2 ≡ −1 (mód p). (12)

De esto se sigue que
u2 + 1 = kp. (13)

Definamos s, t tales que:

s ≡ x (mód k), t ≡ y (mód k), s, t ∈
(
−k

2 ,
k
2

)
. (14)

Entonces
s2 + t2 ≡ x2 + y2 ≡ 0 (mód k), (15)

de modo que s2 + t2 = k1k para algún k1 entero. Usando el Lema 1, se cumple:

(s2 + t2)(x2 + y2) = (sx + ty)2 + (sy − tx)2 = k1k
2p. (16)
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Como k divide a ambos términos, definimos:

x1 =
sx + ty

k
, y1 =

sy − tx

k
, (17)

y obtenemos la ecuación (11).
Además, s2 + t2 ≤ k2

2 , lo que implica k1 < k . Así, por descenso, se obtiene k = 1 y el resultado
se cumple. ■

Demostración. [Final del Teorema] Por el Lema 3, todo n puede escribirse como

n = k2 · 2α ·
∏

q≡1(mod 4)

qβq , (18)

donde α, βq ∈ {0, 1}.
Por el Lema 4, cada primo q ≡ 1 (mód 4) puede expresarse como suma de dos cuadrados, y
2 = 12 + 12 también cumple esa propiedad.
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Por el Lema 1, el producto de números con esa propiedad vuelve a tenerla. Finalmente, por el
Lema 2, multiplicar por k2 no altera la forma de suma de cuadrados.
Por lo tanto, n puede escribirse como suma de dos cuadrados. Esto completa la contrapuesta y,
por tanto, el teorema. ■



Introducción al Teorema de Lagrange

De lo anterior surge la pregunta. Si hay ciertos números que puedo representar como suma de
dos cuadrados ¿Podría representar más números como sumas de más cuadrados?

La respuesta es sí y el teorema de Lagrange es el teorema que no solo nos afirma la
representación de enteros como sumas de cuadrados, pero también nos indica que son
específicamente 4 cuadrados los necesarios para representar a cualquier número entero.
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Suma de cuatro cuadrados I

Formalmente el teorema de Lagrange dice lo siguiente:

Teorema Cuatro cuadrados de Lagrange.
Para un número entero positivo n cualquiera, n puede expresarse como la suma de cuatro
cuadrados.

Ejemplos

3 = 12 + 12 + 12 + 02

5 = 22 + 12 + 02 + 02

23 = 12 + 22 + 32 + 32

Para demostrar este teorema es necesario algunos lemas previos para facilitar la demostración.



Suma de cuatro cuadrados II

Como Primer lema para la suma de cuatro cuadrados, se tiene la siguiente identidad. Tal
identidad fue descubierta por Euler y nos dice que la representación en cuatro cuadrados se
mantiene si multiplicamos dos números con representación en cuatro cuadrados.

Lema Identidad de Euler.

(x2
1 + x2

2 + x2
3 + x2

4 )(y
2
1 + y2

2 + y2
3 + y2

4 ) =

(x1y1 + x2y2 + x3y3 + x4y4)
2

+ (x1y2 − x2y1 + x3y4 − x4y3)
2

+ (x1y3 − x3y1 + x4y2 − x2y4)
2

+ (x1y4 − x4y1 + x2y3 − x3y2)
2

Demostración. Se puede verificar el resultado multiplicando simplemente ambos términos o
bien, hay una demostración más directa utilizando matrices complejas.
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Consideremos la siguiente identidad de matrices complejas.(
α β

−β α

)(
γ δ

−δ γ

)
=

(
αγ − βδ αδ + βγ

−αδ + βγ αγ − βδ

)
.

al calcular el determinante de la matriz resultante se obtiene

|αγ − βδ̄|2 + |αδ + βγ̄|

al hacer α = x1 − ix2, β = −x3 − ix4, γ = y1 + iy2, δ = y3 + iy4 se obtiene la identidad. ■



Suma de cuatro cuadrados IV

Lema 5. Si 2m es una suma de dos cuadrados entonces m también es suma de dos cuadrados.

Demostración. En primer lugar, notese que si 2m = x2 + y2 entonces x , y tienen la misma
paridad. Ahora vea lo siguiente:

m =

(
x + y

2

)2

+

(
x − y

2

)2

■

Lema 6. Si p es un primo impar entonces existen a, b, k tales que a2 + b2 + 1 = kp

Demostración. Considere los conjuntos

A = {a2 ∈ Z/pZ ∋ 0 ≤ a ≤ p − 1
2

}
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B = {−b2 − 1 ∈ Z/pZ ∋ 0 ≤ b ≤ p − 1
2

}

Cada conjunto posee p+1
2 elementos de módulo p, de modo que A ∩ B ̸= ∅. Por lo que habrá

a2 ≡ −b2 − 1 mod p. Lo que es equivalente a decir que a2 + b2 + 1 ≡ 0 mod p. ■

Veamos un ejemplo, tomemos p = 13, entonces p−1
2 = 13−1

2 = 6. Entonces aqui 0 ≤ a, b ≤ 6.

a a2 a2 mód 13
0 0 0
1 1 1
2 4 4
3 9 9
4 16 3
5 25 12
6 36 10

⇒ A = {0, 1, 3, 4, 9, 10, 12}.
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b b2 −b2 − 1 (−b2 − 1) mód 13
0 0 −1 12
1 1 −2 11
2 4 −5 8
3 9 −10 3
4 16 −17 9
5 25 −26 0
6 36 −37 2

⇒ B = {0, 2, 3, 8, 9, 11, 12}.

A = {0, 1, 3, 4, 9, 10, 12}, B = {0, 2, 3, 8, 9, 11, 12}.

Del ejemplo se puede ver que habrán elementos que se intersecten y se puede asegurar la
existencia de a2 + b2 + 1 ≡ 0 mod p.



Demostración Teorema de Lagrange I

Ahora que tenemos los lemas necesarios, procedemos a la demostración del teorema de cuatro
cuadrados de Lagrange. El enunciado fue mostrado anteriormente en la presentación.

Demostración. Consideremos p un número primo impar. Por el lema 6, algún múltiplo de p
es suma de dos cuadrados y uno. Es decir kp = a2 + b2 + 1, para k algún entero mayor o igual
que 1.

Definamos c = 1 y d = 0. Entonces la ecuación anterior se puede reescribir de la siguiente
manera:

kp = a2 + b2 + c2 + d2

Si k = 1, se trivializa y ya se tiene que p es suma de cuatro cuadrados.
Veamos el caso en el que k > 1



Demostración Teorema de Lagrange II

Caso k es un número par: Si k es par entonces k = 2n para algún entero n. Entonces se

tiene lo siguiente:

kp = (a+ b)2 + (a− b)2 + (c + d)2 + (c − d)2

si sustituimos k se tiene que

2np = (a+ b)2 + (a− b)2 + (c + d)2 + (c − d)2

Por el lema 5, se tiene que np también será una suma de cuatro cuadrados. Particularmente

np =

(
a+ b

2

)2

+

(
a− b

2

)2

+

(
c + d

2

)2

+

(
c − d

2

)2



Demostración Teorema de Lagrange III

Este proceso se repite hasta que el coeficiente que acompañe a p sea un dos, para que al la
mitad finalmente se tenga 1 como el coeficiente que acompaña a p y finalmente se tiene que p
es la suma de cuatro cuadrados.

Caso k es un número impar: Para este caso consideremos w , x , y , z enteros tales que

w ≡ a (mod k), x ≡ b (mod k), y ≡ c (mod k), z ≡ d (mod k)

de tal forma que las nuevos valores estén entre
(
−k

2 ,
k
2

)
.

Debido al intervalo donde están las nuevas variables, se cumple que

w2 + x2 + y2 + z2 < 4
(
k

2

)2

= k2

y por como definimos las variables



Demostración Teorema de Lagrange IV

w2 + x2 + y2 + z2 ≡ 0 (mod k)

Por lo tanto se tiene que

w2 + x2 + y2 + z2 = nk

para algun n entero menor que k . Nuevamente, por la forma en la que definimos las variables se
tiene que

ax − bw − cz + dy

ay + bz − cw − dx

az − by + cx − dw

son enteros divisibles entre k . Finalmente como

aw + bx + cy + dz ≡ a2 + b2 + c2 + d2 ≡ 0 (mod p)



Demostración Teorema de Lagrange V

, por el primer lema, se tiene lo siguiente:

np =
(kn)(pk)

k2

=
1
k2 (a

2 + b2 + c2 + d2)(w2 + x2 + y2 + z2)

=

(
aw + bx + cy + dz

k

)2

+

(
ax − bw − cz + dy

k

)2

+

(
ay + bz − cw − dx

k

)2

+

(
az − by + cx − dw

k

)2

■



Notas adicionales

Probablemente se preguntarán ¿Qué pasa en el caso que p = 2?
Es sencillo, solamente nótese que

2 = 12 + 12 + 02 + 02

Ejemplos: Representaciones como suma de cuatro cuadrados

7 = 22 + 12 + 12 + 12

15 = 3 · 5 = (12 + 12 + 12 + 02)(22 + 12 + 02 + 02) = 32 + 12 + 22 + 12

18 = 2 · 32 = (12 + 12 + 02 + 02)(32 + 02 + 02 + 02) = 32 + (−3)2 + 02 + 02

Así, cualquier número compuesto puede representarse también como suma de cuatro cuadrados.
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Más alla de las sumas de cuadrados I

Con este gran descubrimiento, la representación de números no quedo solamente en lo que
acabamos de ver respecto de cuadrados, pero busco ir mucho más alla.

La motivación de esta investigación era hallar la cantidad mínima posible para representar
números como sumas de cuadrados. Gauss en su momento propuso un teorema que hablabla de
una caracterización para hallar los números podían representarse como suma de tres cuadrados.

Teorema Sumas de tres Cuadrados de Gauss. Un entero n ≥ 0 es suma de tres cuadrados
sí y sólo sí n no es de la forma 4(8b + 7) para cualesquiera a, b ∈ N.



Más alla de las sumas de cuadrados II

La generalización de tal problema fue propuesta por Waring. El enunció que En general, para
cualquier n ∈ N ¿Existe un entero positivo S = S(n) tal que cualquier número natural se puede
escribir como suma de hasta s n-ésimas potencias?

El problema conocido popularmente como El problema de Waring fue respondido de forma
afirmativa por Hilbert en 1909.

Sea g(n) el mínimo de estos números s, es decir, el mínimo número de potencias
necesarias para reescribir cualquier número natural. Algunos valores para g(n) son:

g(2) = 4

g(3) = 9

g(4) = 19

g(5) = 37

g(6) = 73


