
Ecuación de Pell
Ian Castellanos



Historia

• Poema del ganado del rey Sol escrito por Arquímedes, enviado a 
Eratóstenes.

• 1653 d.C.- Desafío de Fermat: demostrar que 𝑥2 − 𝑑𝑦2 = 1, 𝑑 > 1
tiene un número infinito de soluciones.

• Wallis y Brouncker proponen un conjunto de métodos de 
solución, pero no llegan a demostrar la conjetura. Los métodos 
están relacionados a fracciones continuas de 𝑑

• 1768 d.C.- Lagrange demuestra que los métodos de Wallis y 
Brouncker siempre tienen solución.



Casos triviales de la ecuación de Pell

• ∀𝑑 ∈ ℤ, 𝑥2 − 𝑑𝑦2 = 1 𝑠𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑒 𝑑𝑒 𝑚𝑎𝑛𝑒𝑟𝑎 𝑡𝑟𝑖𝑣𝑖𝑎𝑙 𝑐𝑜𝑛 𝑥 =
± 1 & 𝑦 = 0

• 𝑆𝑖 𝑑 < −1 ⇒ 𝑥2 − 𝑑𝑦2 ≥ 1 𝑒𝑥𝑐𝑒𝑝𝑡𝑜 𝑒𝑛 𝑒𝑙 𝑐𝑎𝑠𝑜 𝑥 = 𝑦 = 0

• 𝑑 = −1 ⇒ 𝑥 = 0, 𝑦 = ±1

• 𝑑 = 𝑛2 ⇒ 𝑥2 − 𝑑𝑦2 = 1 ⇒ 𝑥 + 𝑛𝑦 𝑥 − 𝑛𝑦 = 1

⇔ 𝑥 + 𝑛𝑦 = 𝑥 − 𝑛𝑦 = ±1 ⇒ 𝑥 =
𝑥 + 𝑛𝑦 𝑥 − 𝑛𝑦

2
= ±1

& 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑛𝑜 𝑡𝑖𝑒𝑛𝑒 𝑠𝑜𝑙𝑢𝑐𝑖𝑜𝑛𝑒𝑠 𝑎𝑝𝑎𝑟𝑡𝑒 𝑑𝑒 𝑙𝑎 𝑡𝑟𝑖𝑣𝑖𝑎𝑙:
𝑥 = ±1, 𝑦 = 0.

𝑃𝑜𝑟𝑞𝑢𝑒: 𝑥 + 𝑛𝑦 + 𝑥 − 𝑛𝑦 = 2 ⇒ 2𝑥 = 2 ⇒ 𝑥 = 1



Casos triviales de la ecuación de Pell

• De lo anterior se tiene que el caso considerado en adelante es 
aquel en que 𝑑 ∈ ℤ ∋ 𝑑 ≠ 𝑛2 (𝑑 𝑒𝑠 𝑖𝑟𝑟𝑎𝑐𝑖𝑜𝑛𝑎𝑙), con el fin de tener 
más soluciones además de la trivial.

• Además, se restringen las soluciones de 𝑥2 − 𝑑𝑦2 = 1 a 
soluciones positivas 𝑥, 𝑦 > 0 puesto que, cuando 𝑦 > 0 se tienen 
conjuntos de cuatro combinaciones: ±𝑥,±𝑦.

• De esta manera se buscan solo las positivas porque al conocer 
estas se conoce el resto.



Teoremas asociados

• Teorema 1: 𝑝, 𝑞 𝑠𝑜𝑙𝑢𝑐𝑖ó𝑛 𝑝𝑜𝑠𝑡𝑖𝑡𝑖𝑣𝑎 𝑑𝑒 𝑥2 − 𝑑𝑦2 = 1

⇒
𝑝

𝑞
𝑒𝑠 𝑢𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑒 𝑑𝑒 𝑙𝑎 𝑒𝑥𝑝𝑎𝑛𝑠𝑖ó𝑛 𝑑𝑒 𝑓𝑟𝑎𝑐𝑐𝑖𝑜𝑛𝑒𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑠 𝑑𝑒 𝑑

Demostración:Quitar essta demostración
𝑝, 𝑞 > 0, 𝑝𝑜𝑟 ℎ𝑖𝑝ó𝑡𝑒𝑠𝑖𝑠 𝑠𝑒 𝑡𝑖𝑒𝑛𝑒 𝑝2 − 𝑑𝑞2 = 1

⇒ 𝑝 − 𝑞 𝑑 𝑝 + 𝑞 𝑑 = 1

𝑆𝑒𝑎 𝑝 > 𝑞

⇒
𝑝

𝑞
− 𝑑 =

1

𝑞(𝑝 + 𝑞 𝑑)

⇒ 0 <
𝑝

𝑞
− 𝑑 <

𝑑

𝑞 𝑞 𝑑 + 𝑞 𝑑
=

𝑑

2𝑞2 𝑑
=

1

2𝑞2



Teoremas asociados

• 𝑆𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎 𝑒𝑙 𝑡𝑒𝑜𝑟𝑒𝑚𝑎: 𝑥 𝑖𝑟𝑟𝑎𝑐𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑜. 𝑆𝑖
𝑎

𝑏
∈ ℚ, 𝑏 ≥ 1 & 𝑎, 𝑏 = 1 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑒: 𝑥 −

𝑎

𝑏
<

1

2𝑏2
⇒

𝑎

𝑏
𝑒𝑠 𝑢𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑒

𝑝𝑛

𝑞𝑛
𝑑𝑒 𝑙𝑎 𝑒𝑥𝑝𝑎𝑛𝑠𝑖ó𝑛 𝑑𝑒 𝑥

⇒ 𝑃𝑜𝑟 𝑡𝑒𝑜𝑟𝑒𝑚𝑎 𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟,
𝑝

𝑞
𝑒𝑠 𝑢𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑒 𝑑𝑒 𝑑

Q.E.D

Importante: En general, la recíproca del teorema anterior es falsa.

• El teorema siguiente brinda información del tamaño de los valores de  k = 𝑝𝑛
2 − 𝑑𝑞𝑛

2



Teoremas asociados

• Teorema 2: 𝑝
𝑞
𝑒𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑒 𝑑𝑒 𝑙𝑎 𝑒𝑥𝑝𝑎𝑛𝑠𝑖ó𝑛 𝑑𝑒 𝑑 ⇒

𝑥 = 𝑝, 𝑦 = 𝑞 𝑒𝑠 𝑢𝑛𝑎 𝑠𝑜𝑙𝑢𝑐𝑖ó𝑛 𝑑𝑒 𝑙𝑎𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠:

𝑥2 − 𝑑𝑦2 = 𝑘, 𝑘 < 1 + 2 𝑑.

Demostración:(quitar esta demostración)
𝑆𝑒𝑎

𝑝

𝑞
𝑢𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑒 𝑑𝑒 𝑑

⇒ 𝑑𝑎𝑑𝑜 𝑞𝑢𝑒 𝑝𝑜𝑟 𝑐𝑜𝑟𝑜𝑙𝑎𝑟𝑖𝑜
𝑝𝑛
𝑞𝑛

𝑒𝑠 𝑒𝑙 𝑛 é𝑠𝑖𝑚𝑜 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑒 𝑑𝑒𝑙 𝑖𝑟𝑟𝑎𝑐𝑖𝑜𝑛𝑎𝑙 𝑑

⇒ 𝑑 −
𝑝

𝑞
<

1

𝑞2
𝐼

⇒ 𝑝 − 𝑞 𝑑 <
1

𝑞

⇒ 𝑝 + 𝑞 𝑑 = 𝑝 − 𝑞 𝑑 + 2𝑞 𝑑 ≤ 𝑝 − 𝑞 𝑑 + 2𝑞 𝑑 <
1

𝑞
+ 2𝑞 𝑑 ≤ 1 + 2 𝑑 𝑞 (𝐼𝐼)

⇒ 𝑆𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑛 𝑙𝑎𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝐼 & 𝐼𝐼 𝑐𝑜𝑚𝑜 𝑠𝑖𝑔𝑢𝑒:

𝑝2 − 𝑑𝑞2 = 𝑝 − 𝑞 𝑑 𝑝 + 𝑞 𝑑 ≤
1

𝑞
1 + 2 𝑑 𝑞 = 1 + 2 𝑑

Q.E.D.



Ejemplo 1

𝑆𝑒𝑎 𝑑 = 7, 𝑐𝑜𝑛 𝑒𝑥𝑝𝑎𝑛𝑠𝑖ó𝑛 𝑒𝑛 𝑓𝑟𝑎𝑐𝑐𝑖𝑜𝑛𝑒𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑠 𝑑𝑒 7

= 2; 1,1,1,4 𝑐𝑢𝑦𝑜𝑠 𝑝𝑟𝑖𝑚𝑒𝑟𝑜 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑒𝑠 𝑠𝑜𝑛:
2

1
,
3

1
,
5

2
,
8

3
…

⇒ 𝑝𝑛
2 − 7𝑞𝑛

2

⇒ 𝐸𝑙 𝑡𝑒𝑜𝑟𝑒𝑚𝑎 2 𝑒𝑠𝑡𝑖𝑝𝑢𝑙𝑎 𝑞𝑢𝑒 𝑥 = 𝑝𝑛 & 𝑦 = 𝑞𝑛
𝐿𝑎𝑠 𝑝𝑜𝑠𝑖𝑏𝑙𝑒𝑠 𝑟𝑒𝑠𝑝𝑢𝑒𝑠𝑡𝑎𝑠 𝑠𝑜𝑛 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠, 𝑐𝑜𝑛 1 + 2 7 ≈ 6.2915

• 22 − 7 1 2 = −3

• 32 − 7 1 2 = 2

• 52 − 7 2 2 = −3

• 82 − 7 3 2 = 1
∴ 𝑒𝑙 ú𝑛𝑖𝑐𝑜 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑒 𝑞𝑢𝑒 𝑐𝑢𝑚𝑝𝑙𝑒 𝑐𝑜𝑛 𝑥2 − 7𝑦2 = 1 𝑒𝑠 𝑥 = 8 & 𝑦 = 3



La estructura de la expansión en fracciones 
continuas de 𝑑

𝑆𝑒𝑎 𝑑 ∈ ℤ+ ∋ 𝑑 𝑛𝑜 𝑒𝑠 𝑢𝑛 𝑐𝑢𝑎𝑑𝑟𝑎𝑑𝑜 𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑜, 𝑠𝑒 𝑡𝑖𝑒𝑛𝑒 𝑞𝑢𝑒
𝑙𝑎 𝑒𝑥𝑝𝑎𝑛𝑠𝑖ó𝑛 𝑒𝑛 𝑓𝑟𝑎𝑐𝑐𝑖𝑜𝑛𝑒𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑠 𝑑𝑒𝑙 𝑚𝑖𝑠𝑚𝑜 𝑡𝑖𝑒𝑛𝑒 𝑙𝑎 𝑓𝑜𝑟𝑚𝑎

𝑑 = 𝑎0; 𝑎1, 𝑎2, 𝑎3, … , 𝑎3, 𝑎2, 𝑎1, 2𝑎0 , 𝑎1 = 𝑑

𝑃𝑜𝑟 𝑡𝑒𝑜𝑟𝑒𝑚𝑎 1, 𝑠𝑒 𝑡𝑖𝑒𝑛𝑒 𝑞𝑢𝑒 𝑥2 − 𝑑𝑦2 = 1 𝑡𝑖𝑒𝑛𝑒 𝑠𝑜𝑙𝑢𝑐𝑖ó𝑛
⇒ 𝑡𝑖𝑒𝑛𝑒 𝑠𝑜𝑙𝑢𝑐𝑖𝑜𝑛𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑎𝑠 𝑥 = 𝑝𝑘 & 𝑦 = 𝑞𝑘
∋
𝑝𝑘
𝑞𝑘

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑒 𝑑𝑒 𝑑



La estructura de la expansión en fracciones 
continuas de 𝑑

𝐴𝑠𝑖𝑚𝑖𝑠𝑚𝑜 𝑠𝑒 𝑡𝑖𝑒𝑛𝑒 𝑞𝑢𝑒 𝑒𝑙 𝑝𝑒𝑟í𝑜𝑑𝑜 𝑛 𝑑𝑒 𝑙𝑎 𝑒𝑥𝑝𝑎𝑛𝑠𝑖ó𝑛 𝑑𝑒 𝑑
𝑝𝑟𝑜𝑣𝑒𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑐𝑖ó𝑛 𝑛𝑒𝑐𝑒𝑠𝑎𝑟𝑖𝑎 𝑝𝑎𝑟𝑎 𝑚𝑜𝑠𝑡𝑟𝑎𝑟 𝑞𝑢𝑒 𝑥2 − 𝑑𝑦2 = 1
𝑡𝑖𝑒𝑛𝑒 𝑠𝑜𝑙𝑢𝑐𝑖ó𝑛 𝑒𝑛 ℤ.

𝐸𝑠𝑡𝑎𝑠 𝑠𝑜𝑙𝑢𝑐𝑖𝑜𝑛𝑒𝑠 𝑠𝑜𝑛 𝑒𝑛 𝑟𝑒𝑎𝑙𝑖𝑑𝑎𝑑 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑎𝑠 𝑦 𝑜𝑏𝑡𝑒𝑛𝑖𝑑𝑎𝑠 𝑑𝑒
𝑝𝑘
𝑞𝑘

.

𝑆𝑒 𝑡𝑖𝑒𝑛𝑒 𝑞𝑢𝑒 𝑑 = 𝑎0; 𝑎1, 𝑎2, … 𝑠𝑒 𝑜𝑏𝑡𝑖𝑒𝑛𝑒𝑛 𝑎𝑙 𝑑𝑒𝑓𝑖𝑛𝑖𝑟:

𝑥0 = 𝑑 & 𝑥𝑘+1 =
1

𝑥𝑘 − 𝑥𝑘
, 𝑘 ∈ ℕ



La estructura de la expansión en fracciones 
continuas de 𝑑

𝐸𝑙 𝑝𝑟𝑜𝑝ó𝑠𝑖𝑡𝑜 𝑑𝑒 𝑙𝑜𝑠 𝑠𝑖𝑔𝑢𝑖𝑒𝑛𝑡𝑒𝑠 𝑡𝑒𝑜𝑟𝑒𝑚𝑎𝑠 𝑒𝑠 𝑒𝑙 𝑑𝑒 𝑒𝑠𝑡𝑎𝑏𝑙𝑒𝑐𝑒𝑟 𝑞𝑢𝑒:

𝑆𝑖 𝑛 𝑒𝑠 𝑙𝑎 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑 𝑑𝑒𝑙 𝑝𝑒𝑟í𝑜𝑑𝑜 𝑝𝑎𝑟𝑎 𝑑

⇒
𝑝𝑘𝑛−1
𝑞𝑘𝑛−1

𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑒: 𝑝𝑘𝑛−1
2 − 𝑑𝑞𝑘𝑛−1

2 = −1 𝑘𝑛



Lema 1

𝑆𝑒𝑎 𝑑 = 𝑎0; 𝑎1, 𝑎2, … 𝑠𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑛 𝑠0 = 0, 𝑡0 = 1,

𝑠𝑘+1 = 𝑎𝑘𝑡𝑘 − 𝑠𝑘 , 𝑡𝑘+1 =
𝑑 − 𝑠𝑘+1

2

𝑡𝑘
, 𝑘 ∈ ℕ

𝐸𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑠𝑒 𝑐𝑢𝑚𝑝𝑙𝑒 𝑙𝑜 𝑠𝑖𝑔𝑢𝑖𝑒𝑛𝑡𝑒:

a) 𝑠𝑘 , 𝑡𝑘 ∈ ℤ, 𝑡𝑘 ≠ 0

b) 𝑡𝑘|(𝑑 − 𝑠𝑘
2)

c) 𝑥𝑘 =
𝑠𝑘+ 𝑑

𝑡𝑘
, 𝑘 ≥ 0

• Este lema se demuestra por inducción.



Teorema 3
𝑝𝑘
𝑞𝑘

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑒𝑠 𝑑𝑒 𝑙𝑎 𝑒𝑥𝑝𝑎𝑛𝑠𝑖ó𝑛 𝑑𝑒 𝑑

⇒ 𝑝𝑘
2 − 𝑑𝑞𝑘

2 = −1 𝑘+1 𝑡𝑘+1, 𝑡𝑘+1 > 0, 𝑘 = 0,1,2,3, …

Demostración: (quitar demostración)
𝑃𝑎𝑟𝑎 𝑑 = 𝑎0; 𝑎1, … , 𝑎𝑘 , 𝑥𝑘+1 𝑠𝑒 𝑠𝑎𝑏𝑒 𝑞𝑢𝑒 𝑑 =

𝑥𝑘+1𝑝𝑘 + 𝑝𝑘−1
𝑥𝑘+1𝑞𝑘 + 𝑞𝑘−1

𝑆𝑒 𝑠𝑢𝑠𝑡𝑖𝑡𝑢𝑦𝑒 𝑥𝑘+1 =
𝑠𝑘+1 + 𝑑

𝑡𝑘+1
𝑒𝑛 𝑙𝑎 𝑒𝑥𝑝𝑟𝑒𝑠𝑖ó𝑛 𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟:

𝑑 =

𝑠𝑘+1 + 𝑑
𝑡𝑘+1

∗ 𝑝𝑘 + 𝑝𝑘−1

𝑠𝑘+1 + 𝑑
𝑡𝑘+1

∗ 𝑞𝑘 + 𝑞𝑘−1



𝑆𝑒 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑒𝑛:
𝑑 𝑠𝑘+1𝑞𝑘 + 𝑡𝑘+1𝑞𝑘−1 − 𝑝𝑘 = 𝑠𝑘+1𝑝𝑘 + 𝑡𝑘+1𝑝𝑘−1 − 𝑑𝑞𝑘

𝑆𝑒 𝑡𝑖𝑒𝑛𝑒 𝑞𝑢𝑒 𝑙𝑎 𝑝𝑎𝑟𝑡𝑒 𝑑𝑒𝑟𝑒𝑐ℎ𝑎 𝑒𝑠 𝑟𝑎𝑐𝑖𝑜𝑛𝑎𝑙 𝑦 𝑑 𝑒𝑠 𝑖𝑟𝑟𝑎𝑐𝑖𝑜𝑛𝑎𝑙
𝑝𝑜𝑟 𝑙𝑜 𝑞𝑢𝑒 𝑠𝑒 𝑡𝑖𝑒𝑛𝑒 𝑞𝑢𝑒:
𝑠𝑘+1𝑞𝑘 + 𝑡𝑘+1𝑞𝑘−1 = 𝑝𝑘 & 𝑠𝑘+1𝑝𝑘 + 𝑡𝑘+1𝑝𝑘+1 = 𝑑𝑞𝑘
⇒ 𝑝𝑘(𝑠𝑘+1𝑞𝑘 + 𝑡𝑘+1𝑞𝑘−1) = 𝑝𝑘𝑝𝑘 & − 𝑞𝑘(𝑠𝑘+1𝑝𝑘 + 𝑡𝑘+1𝑝𝑘+1) = 𝑑𝑞𝑘(−𝑞𝑘)
⇒ 𝑝𝑘 𝑠𝑘+1𝑞𝑘 + 𝑡𝑘+1𝑞𝑘−1 + −𝑞𝑘 𝑠𝑘+1𝑝𝑘 + 𝑡𝑘+1𝑝𝑘+1 = pk

2 − 𝑑𝑞𝑘
2

= 𝑡𝑘+1(𝑝𝑘𝑞𝑘−1 − 𝑝𝑘−1𝑞𝑘)
𝑃𝑜𝑟 𝑡𝑒𝑜𝑟𝑒𝑚𝑎 15.3 𝑒𝑛 𝐵𝑢𝑟𝑡𝑜𝑛 , 𝑝𝑘𝑞𝑘−1 − 𝑝𝑘−1𝑞𝑘 = −1 𝑘−1 = −1 𝑘+1

⇒ 𝑝𝑘
2 − 𝑑𝑞𝑘

2 = −1 𝑘+1𝑡𝑘+1
𝑃𝑜𝑟 𝑝𝑟𝑜𝑝𝑖𝑒𝑑𝑎𝑑𝑒𝑠 𝑑𝑒 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑒𝑠 𝑠𝑒 𝑡𝑖𝑒𝑛𝑒 𝐶2𝑘 < 𝑑 < 𝐶2𝑘+1, 𝑘 ≥ 0

𝐷𝑎𝑑𝑜 𝑞𝑢𝑒 𝐶𝑘 =
𝑝𝑘
𝑞𝑘

• 𝑝𝑘
2 − 𝑑𝑞𝑘

2 > 0, 𝑘 𝑖𝑚𝑝𝑎𝑟

• 𝑝𝑘
2 − 𝑑𝑞𝑘

2 < 0, 𝑘 𝑝𝑎𝑟



Se tiene  𝑝𝑘
2−𝑑𝑞𝑘

2

𝑝𝑘−1
2 −𝑑𝑞𝑘−1

2 = −
𝑡𝑘+1

𝑡𝑘
, 𝑘 ≥ 1

⇒
𝑝𝑘
2 − 𝑑𝑞𝑘

2

𝑝𝑘−1
2 − 𝑑𝑞𝑘−1

2 < 0 & 0 < −
𝑡𝑘+1
𝑡𝑘

𝑆𝑒 𝑡𝑖𝑒𝑛𝑒 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑡1 = 𝑑 − 𝑎0
2 > 0

⇒ 𝑡𝑘+1 > 0

Q.E.D
Corolario: 
𝑆𝑖 𝑛 𝑒𝑠 𝑙𝑎 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑 𝑑𝑒𝑙 𝑝𝑒𝑟í𝑜𝑑𝑜 𝑑𝑒 𝑙𝑎 𝑒𝑥𝑝𝑎𝑛𝑠𝑖ó𝑛 𝑑𝑒 𝑑, 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠
𝑡𝑗 = 1 ⇔ 𝑛|𝑗



Ejemplo 2

𝑆𝑒𝑎 15 = 3; 1, 6 ⇒ 𝑛 = 2

Se tienen los primeros cuatro convergentes:

𝐶1 =
3

1
, 𝐶2 =

4

1
, 𝐶3 =

27

7
, 𝐶4 =

31

8
Por teorema 2:
32 − 15 ∗ 12 = 272 − 15 ∗ 72 = −6
42 − 15 ∗ 12 = 312 − 15 ∗ 82 = 1

Por corolario 2|2 & 2|4
⇒ 𝑡1 = 𝑡3 = 6, 𝑡2 = 𝑡4 = 1



Teorema 4

𝑆𝑒𝑎
𝑝𝑘
𝑞𝑘

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑒𝑠 𝑑𝑒 𝑙𝑎 𝑒𝑥𝑝𝑎𝑛𝑠𝑖ó𝑛 𝑑 𝑦 𝑠𝑒𝑎 𝑛 𝑙𝑎 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑 𝑑𝑒 𝑙𝑎 𝑒𝑥𝑝𝑎𝑛𝑠𝑖ó𝑛.

• 𝑆𝑖 𝑛 𝑒𝑠 𝑝𝑎𝑟 ⇒ 𝑡𝑜𝑑𝑎𝑠 𝑙𝑎𝑠 𝑠𝑜𝑙𝑢𝑐𝑖𝑜𝑛𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑎𝑠 𝑑𝑒 𝑥2 − 𝑑𝑦2 = 1 𝑠𝑜𝑛:
𝑥 = 𝑝𝑘𝑛−1 & 𝑦 = 𝑞𝑘𝑛−1, 𝑘 = 1,2,3,…

• 𝑆𝑖 𝑛 𝑒𝑠 𝑖𝑚𝑝𝑎𝑟 ⇒ 𝑡𝑜𝑑𝑎𝑠 𝑙𝑎𝑠 𝑠𝑜𝑙𝑢𝑐𝑖𝑜𝑛𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑎𝑠 𝑑𝑒 𝑥2 − 𝑑𝑦2 = 1 𝑠𝑜𝑛:
𝑥 = 𝑝2𝑘𝑛−1 & 𝑦 = 𝑞2𝑘𝑛−1, 𝑘 = 1,2,3,…



Demostración: (este si se va a demostrar)
𝑃𝑜𝑟 𝑡𝑒𝑜𝑟𝑒𝑚𝑎, 𝑠𝑒 𝑡𝑖𝑒𝑛𝑒 𝑞𝑢𝑒 𝑡𝑜𝑑𝑎 𝑠𝑜𝑙𝑢𝑐𝑖ó𝑛 𝑥0 = 𝑝𝑗 , 𝑦𝑜 = 𝑞𝑗

𝑝𝑎𝑟𝑎 𝑎𝑙𝑔ú𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑒
𝑝𝑗

𝑝𝑗
𝑑𝑒 𝑑.

𝑃𝑜𝑟 𝑡𝑒𝑜𝑟𝑒𝑚𝑎 𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑗
2 − 𝑑𝑞𝑗

2 = −1 𝑗+1𝑡𝑗+1
⇒ 𝑗 + 1 𝑒𝑠 𝑝𝑎𝑟 & 𝑡𝑗+1 = 1 𝑐𝑜𝑛 𝑒𝑙 𝑓𝑖𝑛 𝑞𝑢𝑒 𝑞𝑢𝑒𝑑𝑒 𝑙𝑎 𝑓𝑜𝑟𝑚𝑎 𝑑𝑒 𝑒. 𝑃𝑒𝑙𝑙
⇒ 𝑛| 𝑗 + 1 𝑝𝑜𝑟 𝑐𝑜𝑟𝑜𝑙𝑎𝑟𝑖𝑜
⇒ 𝑗 + 1 = 𝑛𝑘, 𝑝𝑎𝑟𝑎 𝑎𝑙𝑔ú𝑛 𝑘
𝑆𝑖 𝑛 𝑒𝑠 𝑖𝑚𝑝𝑎𝑟 ⇒ 𝑘 𝑒𝑠 𝑝𝑎𝑟.
𝑆𝑖 𝑛 𝑒𝑠 𝑝𝑎𝑟 ⇒ 𝑐𝑢𝑎𝑙𝑞𝑢𝑖𝑒𝑟 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑘 𝑏𝑎𝑠𝑡𝑎 𝑝𝑎𝑟𝑎 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑟𝑙𝑜.

Q.E.D.



Ejemplo 3

𝑆𝑒𝑎 𝑥2 − 7𝑦2 = 1, 7 = [2; 1,1,1,4]

⇒ 𝑙𝑜𝑠 𝑝𝑟𝑖𝑚𝑒𝑟𝑜𝑠 10 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑒𝑠 𝑠𝑜𝑛:

3

1
,
4

1
,
7

2
,
11

3
,
18

5
,
119

33
,
137

38
,
256

71
,
393

109
,
649

180

⇒ 𝑥 = 𝑝10𝑘−1 𝑦 = 𝑞10𝑘−1, 𝑘 = 1,2,3, …

𝑥 = 𝑝9 = 649, 𝑦 = 𝑞9 = 180



La solución fundamental

𝐸𝑠 𝑙𝑎 𝑚𝑒𝑛𝑜𝑟 𝑠𝑜𝑙𝑢𝑐𝑖ó𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑎 𝑥0, 𝑦0 ∋ 𝑥0 < 𝑥′& 𝑦0 < 𝑦′∀𝑥′, 𝑦′

• 𝑃𝑜𝑟 𝑡𝑒𝑜𝑟𝑒𝑚𝑎 3, 𝑠𝑒 𝑡𝑖𝑒𝑛𝑒 𝑞𝑢𝑒 𝑥2 − 𝑑𝑦2 = 1

𝑡𝑖𝑒𝑛𝑒 𝑠𝑜𝑙𝑢𝑐𝑖𝑜𝑛𝑒𝑠 𝑒𝑛 𝑛 𝑜 2𝑛 𝑝𝑎𝑠𝑜𝑠.

• Con este concepto se busca generar de manera más rápida las 
soluciones de la ecuación de Pell.

• Los siguientes teoremas buscan un proceso sencillo para el 
cálculo de las soluciones a partir de la solución fundamental.



Teorema 5

𝑆𝑒𝑎 𝑥1, 𝑦1𝑙𝑎 𝑠𝑜𝑙𝑢𝑐𝑖ó𝑛 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑑𝑒 𝑥
2 − 𝑑𝑦2 = 1.

⇒ ∀𝑥𝑛, 𝑦𝑛 ∈ ℤ 𝑑𝑒𝑓𝑖𝑛𝑖𝑑𝑎𝑠 𝑝𝑜𝑟

𝑥𝑛 + 𝑦𝑛 𝑑 = 𝑥1 + 𝑦1 𝑑
𝑛
, 𝑛 = 1,2,3,…

𝑠𝑜𝑛 𝑢𝑛𝑎 𝑠𝑜𝑙𝑢𝑐𝑖ó𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑎.

Demostración:
𝑆𝑒 𝑡𝑖𝑒𝑛𝑒𝑛 𝑥1, 𝑦1 > 0 & 𝑥𝑛, 𝑦𝑛 ∈ ℤ+

𝑆𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎 𝑎𝑠𝑖𝑚𝑖𝑠𝑚𝑜 𝑞𝑢𝑒 𝑥1
2 − 𝑑𝑦1

2 = 1 𝑝𝑜𝑟 𝑑𝑒𝑓𝑖𝑛𝑖𝑐𝑖ó𝑛

𝑥𝑛
2 − 𝑑𝑦𝑛

2 = 𝑥𝑛 + 𝑦𝑛 𝑑 𝑥𝑛 − 𝑦𝑛 𝑑 = 𝑥1 + 𝑦1 𝑑
𝑛
𝑥1 − 𝑦1 𝑑

𝑛

= 𝑥1
2 − 𝑑𝑦1

2 𝑛 = 1𝑛 = 1
∴ 𝑥𝑛

2 − 𝑑𝑦𝑛
2 = 1 & 𝑥𝑛, 𝑦𝑛 𝑒𝑠 𝑢𝑛𝑎 𝑠𝑜𝑙𝑢𝑐𝑖ó𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑎.

Q.E.D.



Teorema 5

𝑆𝑖 𝑥1, 𝑦1𝑒𝑠 𝑙𝑎 𝑠𝑜𝑙𝑢𝑐𝑖ó𝑛 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙, 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑝𝑎𝑟𝑎 𝑡𝑜𝑑𝑎 𝑠𝑜𝑙𝑢𝑐𝑖ó𝑛

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑎 𝑥𝑛, 𝑦𝑛 ∈ ℤ 𝑒𝑠𝑡á𝑛 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑑𝑜𝑠 𝑝𝑜𝑟:
𝑥𝑛 + 𝑦𝑛 𝑑 = 𝑥1 + 𝑦1 𝑑

𝑛
𝑛 = 1,2,3, …

Demostración:
𝐴𝑑 𝑎𝑏𝑠𝑢𝑟𝑑𝑢𝑚, 𝑙𝑎 𝑠𝑜𝑙𝑢𝑐𝑖ó𝑛 𝑢, 𝑣 𝑛𝑜 𝑠𝑒 𝑜𝑏𝑡𝑖𝑒𝑛𝑒 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑑𝑒

𝑥1 + 𝑦1 𝑑
𝑛
∋ 𝑥1 + 𝑦1 𝑑

𝑛
< 𝑢 + 𝑣 𝑑 < 𝑥1 + 𝑦1 𝑑

𝑛+1

⇒ 𝑥𝑛 + 𝑦𝑛 𝑑 < 𝑢 + 𝑣 𝑑 < 𝑥𝑛 + 𝑦𝑛 𝑑 𝑥1 + 𝑦1 𝑑

𝑥𝑛 − 𝑦𝑛 𝑑 𝑥𝑛 + 𝑦𝑛 𝑑 < 𝑥𝑛 − 𝑦𝑛 𝑑 𝑢 + 𝑣 𝑑

< (𝑥𝑛 + 𝑦𝑛 𝑑)(𝑥1 + 𝑦1 𝑑)(𝑥𝑛 − 𝑦𝑛 𝑑)



𝐷𝑎𝑑𝑜 𝑞𝑢𝑒 𝑥𝑛
2 − 𝑑𝑦𝑛

2 = 1 𝑠𝑒 𝑡𝑖𝑒𝑛𝑒

1 < 𝑥𝑛 − 𝑦𝑛 𝑑 𝑢 + 𝑣 𝑑 < 𝑥1 + 𝑦1 𝑑
𝑆𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑛 𝑙𝑎𝑠 𝑠𝑖𝑔𝑢𝑖𝑒𝑛𝑡𝑒𝑠 𝑒𝑥𝑝𝑒𝑠𝑖𝑜𝑛𝑒𝑠 𝑑𝑒 𝑠, 𝑟 ∈ ℤ
𝑟 + 𝑠 𝑑 = (𝑥𝑛 − 𝑦𝑛 𝑑)(𝑢 + 𝑣 𝑑)
𝑆𝑒𝑎𝑛: 𝑟 = 𝑥𝑛𝑢 − 𝑦𝑛𝑣𝑑 𝑠 = 𝑥𝑛𝑣 − 𝑦𝑛𝑢
⇒ 𝑟2 − 𝑑𝑠2 = 𝑥𝑛

2 − 𝑑𝑦𝑛
2 𝑢2 − 𝑑𝑣2 = 1 ∶

1 < 𝑟 + 𝑠 𝑑 < 𝑥1 + 𝑦1 𝑑
𝑆𝑒 𝑝𝑟𝑜𝑐𝑒𝑑𝑒 𝑎 𝑑𝑒𝑚𝑜𝑠𝑡𝑟𝑎𝑟 𝑞𝑢𝑒 𝑟, 𝑠 𝑠𝑜𝑛 𝑠𝑜𝑙𝑢𝑐𝑖𝑜𝑛𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑎𝑠:

𝑆𝑖 1 < 𝑟 + 𝑠 𝑑 & 𝑟 + 𝑠 𝑑 𝑟 − 𝑠 𝑑 = 1 ⇒ 0 < 𝑟 − 𝑠 𝑑 < 1

⇒ 2𝑟 = 𝑟 + 𝑠 𝑑 + 𝑟 − 𝑠 𝑑 > 1 + 0 > 0

⇒ 2𝑠 𝑑 = 𝑟 + 𝑠√𝑑 − 𝑟 − 𝑠 𝑑 > 1 − 1 = 0
⇒ 𝑟, 𝑠 > 0 & 𝑥1 < 𝑟 & 𝑦1 < 𝑠

⇒ 𝑥1 + 𝑦1 𝑑 < 𝑟 + 𝑠 𝑑 (→←)

Q.E.D.



Ejemplo

• Determinación de números que son triangulares y cuadrados al 
mismo tiempo.

𝑛2 =
𝑚(𝑚 + 1)

2
, 𝑛,𝑚 ∈ ℤ

8𝑛2 = 4𝑚 𝑚 + 1 = 4𝑚2 + 4𝑚 = 2𝑚 + 1 2 − 1
⇒ 𝑥 = 2𝑚 + 1 & 𝑦 = 2𝑛
⇒ 2𝑦2 = 𝑥2 − 1
⇒ 𝑥2 − 2𝑦2 = 1



Perspectiva algebraica

• Se define ℤ 𝑑 = {𝑎 + 𝑏 𝑑: 𝑎, 𝑏 ∈ ℤ}

• ℤ[ 𝑑] es un anillo conmutativo con 1 = 1 + 0 𝑑

• Se busca describir las unidades de ℤ 𝑑 .

• Conjugado: 𝑎 + 𝑏 𝑑 ∈ ℤ[ 𝑑] entonces su conjugado es 𝑎 − 𝑏 𝑑

• Norma: La norma de 𝑎 + 𝑏 𝑑 ∈ ℤ[ 𝑑] es el entero:
𝑁 𝑥 + 𝑦 𝑑 = 𝑎 + 𝑏 𝑑 𝑎 − 𝑏 𝑑 = 𝑎2 − 𝑑𝑏2



Perspectiva algebraica

• La solubilidad de la ecuación de Pell 𝑥2 − 𝑑𝑦2 = 1 es equivalente 
a describir los elementos del anillo ℤ 𝑑 con norma 1:

𝑁 𝑥 + 𝑦 𝑑 = 𝑥2 − 𝑑𝑦2 = 1
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