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Congruencias (Revisión)
Recordemos que al resolver una congruencia

f (x) ≡ 0 (mod n), (1)

con n compuesto de la forma n = pk1
1 pk2

2 · · ·pkr
r , el Teorema Chino nos dice que dicha

congruencia admite solución si, y sólo si, cada congruencia del sistema
f (x) ≡ 0 (mod pk1

1 ),

...
f (x) ≡ 0 (mod pkr

r ),

tiene solución.
De hecho, si N(pki

i ) indica el número de soluciones de la congruencia f (x) ≡ 0 (mod pki
i ),

entonces el número de soluciones de (1) es
N(n) = N(pk1

1 ) · N(pk2
2 ) · · ·N(pkr

r ).
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Congruencias (Revisión)
Ejemplo: Resolver la ecuación x2 + x + 3 ≡ 0 (mod 15).
Observe que (x + 8)2 ≡ x2 + 16x + 64 ≡ x2 + x + 4 (mod 15). Entonces, la congruencia
arriba es equivalente a resolver (x + 8)2 − 1 ≡ (x + 8 − 1)(x + 8 + 1) ≡ (x + 7)(x + 9) ≡ 0
(mod 15).
Por el Teorema Chino, esta última ecuación es equivalente al sistema

(x + 7)(x + 9) ≡ (x + 1)x ≡ 0 (mod 3),
(x + 7)(x + 9) ≡ (x + 2)(x + 4) ≡ 0 (mod 5),

de modo que x ≡ 0, 2 (mod 3) y x ≡ 1, 3 (mod 5).
Combinando los cuatro casos anteriores, obtenemos

• x ≡ 0 (mod 3), x ≡ 1 (mod 5) ⇒ x ≡ 6 (mod 15).
• x ≡ 0 (mod 3), x ≡ 3 (mod 5) ⇒ x ≡ 3 (mod 15).
• x ≡ 2 (mod 3), x ≡ 1 (mod 5) ⇒ x ≡ 11 (mod 15).
• x ≡ 2 (mod 3), x ≡ 3 (mod 5) ⇒ x ≡ 8 (mod 15).

Portanto, la soluciones son x ≡ 3, 6, 8, 11 (mod 15).
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Congruencias (Revisión)
Ejemplo: Resolver la ecuación x2 + x + 7 ≡ 0 (mod 189).
Observe que 189 = 33 · 7. Además, (x + 14)2 ≡ x2 + 28x + 196 ≡ x2 + x + 7 ≡ 0 (mod 27).
Por el Teorema Chino, esta última ecuación es equivalente al sistema

(x + 14)2 ≡ 0 (mod 33),

x2 + x + 7 ≡ x(x + 1) ≡ 0 (mod 7),
de modo que x ≡ −14 ≡ 13 (mod 27) y x ≡ 0, 6 (mod 7).
Combinando los dos casos anteriores, obtenemos

• x ≡ 13 (mod 27), x ≡ 0 (mod 7). Hacemos n1 = 7, n2 = 27, c1 = 7−1 ≡ 4 (mod 27) y
c2 = 27−1 ≡ 6−1 ≡ 6 (mod 7).
Luego, x = 13c1n1 + 0c2n2 = 13(4)(7) = 364 ≡ 175 ≡ −14 (mod 189).

• x ≡ 13 (mod 27), x ≡ 6 (mod 7). Hacemos n1 = 7, n2 = 27, c1 = 7−1 ≡ 4 (mod 27) y
c2 = 27−1 ≡ 6−1 ≡ 6 (mod 7).
Luego, x = 13c1n1 + 6c2n2 = 13(4)(7) + 6(6)(27) = 1336 ≡ 13 (mod 189).

Portanto, la soluciones son x ≡ 13,−14 (mod 189).
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Lema de Hensel
El problema de resolver una congruencia se reduce siempre a resolver congruencias
módulo p, ó módulo pk. Para resolver una congruencia polinomial f (x) ≡ 0 (mod pk),
comenzamos con una solución módulo p, luego pasamos al módulo p2, luego a p3, y por
iteración a pk.
Suponga que x = a es una solución de f (x) ≡ 0 (mod pj) y queremos usarla para
obtener una solución módulo pj+1. La idea es intentar obtener una solución de la forma
x = a + tpj, donde t se determina mediante la expansión de Taylor

f (a + tpj) = f (a) + tpjf ′(a) + 1
2 t2p2jf ′′(a) + . . .+ 1

n! t
npnjf (n)(a), (2)

donde n = deg f .
Todas las derivadas más allá de la n-ésima son idénticamente cero. Ahora, en módulo
pj+1, la ecuación (2) da

f (a + tpj) ≡ f (a) + tpjf ′(a) (mod pj+1), (3)

como muestra el siguiente argumento.
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Lema de Hensel
Lo que queremos establecer es que los coeficientes de t2, t3, . . . , tn en la ecuación (2)
son todos divisibles por pj+1, por lo que se anulan en (3). Esto parece obvio ya que las
potencias de p en esos términos son p2j,p3j, . . . ,pnj; pero esto no es del todo inmediato
por la presencia de los denominadores 2!, 3!, . . .n! en estos términos.

La explicación es que la fracción f (k)(a)
k! ∈ Z, para cada valor de k = 2, . . . ,n. Para ver esto,

sea cxr un término arbitrario de f (x). El término correspondiente a f (k)(a) es

c r(r − 1)(r − 2) · · · (r − k + 1)ar−k.

Este término es el producto de k enteros consecutivos, de modo que es divisible entre
k!. Portanto, los coeficientes de t2, t3, . . . , tn en (2) son divisibles por pj+1.
La congruencia (3) revela cómo debe elegirse t si x = a + tpj es una solución de f (x) ≡ 0
(mod pj+1). Queremos que sea una solución de

f (a) + tpjf ′(a) ≡ 0 (mod pj+1). (4)
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Lema de Hensel
Como f (x) ≡ 0 (mod pj) tiene solución x = a, ambos lados de la congruencia (4) tienen
un factor pj. Eliminando este factor, resulta

tf ′(a) ≡ − 1
pj f (a) (mod p), (5)

la cual es una congruencia lineal en t. Esta congruencia puede no tener solución, una
solución ó p soluciones. Si f ′(a) ̸≡ 0 (mod p), esta congruencia tiene exactamente una
solución, y hemos demostrado el siguiente resultado

Teorema (Lema de Hensel)
Suponga que f (x) es un polinomio con coeficientes enteros. Si f (a) ≡ 0 (mod pj) y
f ′(a) ̸≡ 0 (mod p), entonces existe un único t (mod p) tal que f (a+ tpj) ≡ 0 (mod pj+1).

Si f (a) ≡ 0 (mod pj) y f (b) ≡ 0 (mod pk), con j < k, entonces decimos que b se está por
encima de a, o que b es el levantamiento de a, o que a se eleva a b.
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Lema de Hensel
Si f (a) ≡ 0 (mod pj), entonces la raíz a se llama no singular si f ′(a) ̸≡ 0 (mod p); de lo
contrario es una raíz singular.
Por el Lema de Hensel, vemos que una raíz no singular a (mod p) se eleva a una raíz
única a2 (mod p2). Dado que a2 ≡ a (mod p), se sigue que f ′(a2) ≡ f ′(a) ̸≡ 0 (mod p).
Una segunda aplicación del Lema de Hensel, implica que podemos levantar a2 para
formar una raíz a3 de f (x) módulo p3. En general, encontramos que una raíz no singular
a (mod p) se eleva a una raíz única aj módulo pj, para j = 2, 3, . . .·

Por (5) vemos que esta secuencia se genera mediante la recursividad

aj+1 ≡ aj + tpj ≡ aj −
f (aj)

f ′(aj)
≡ aj − f (aj) f ′(aj)

−1 (mod p), (6)

donde f ′(a)−1 es un número entero elegido de modo que f ′(a) f ′(a)−1 ≡ 1 (mod p).
Obs! Note que (6) es análogo al método de Newton para hallar la raíz de una función
diferenciable.
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Lema de Hensel
Ejemplo: Resolver x2 + x + 47 ≡ 0 (mod 73).
Note que f (x) = x2 + x + 47 ≡ x2 + x + 5 ≡ (x + 4)2 + 3 ≡ (x2 + 4)− 22 ≡ (x + 2)(x + 6)
(mod 7). Luego, x ≡ 1, 5 (mod 7) son las únicas soluciones de x2 + x + 47 ≡ 0 (mod 7).
Como f ′(x) = 2x + 1, vemos que f ′(1) = 3 ̸≡ 0 (mod 7), y f ′(5) = 11 ≡ 4 ̸≡ 0 (mod 7).
Entonces, las raíces no son singulares.

• Tomando a1 = 1, f ′(1) = 5, y de (6) tenemos que a1 se eleva a
a2 = a1 − f (a1)f ′(a1)

−1 = 1 − 49(3)−1 = 1 − 49(5) = 1 (mod 72).

Ahora f ′(a2) = f ′(1) = 3, y una nueva aplicación de Hensel implica

a3 = a2 − f (a2)f ′(a2)
−1 = 1 − 49(3)−1 = 1 − 49(5) = −244 ≡ 99 (mod 73).

• Si a1 = 5, ⇒ a2 = a1 − f (a1)f ′(a1)
−1 = 5 − 77(4)−1 = 5 − 77(2) = −149 ≡ −2 (mod 72).

Como f ′(−2) = 4, ⇒ a3 = a2 − f (a2)f ′(a2)
−1 = −2 − 49(2) = −100 ≡ 243 (mod 73).

De ahí que 99 y 243 son las soluciones deseadas (mod 343).
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Lema de Hensel
Pasamos ahora al problema más difícil de levantar raíces singulares.
Suponga que f (a) ≡ 0 (mod pj) y que f ′(a) ≡ 0 (mod p). De la expansión de Taylor (2),
vemos que f (a + tpj) ≡ f (a) (mod pj+1), para todo t ∈ Z.
Entonces, si f (a) ≡ 0 mod pj+1, se tiene que f (a + tpj) ≡ 0 (mod pj+1), de modo que la
raíz única a (mod pj) se eleva a p raíces módulo pj+1.
Pero si f (a) ̸= 0 (mod pj+1), entonces ninguna de las p clases de residuos a + tpj es una
solución módulo pj+1, y luego no hay raíces (mod pj+1) encima de a (mod pj).
Ejemplo: Resolver x2 + x + 7 (mod 81).
Comenzando con f (x) = x2 + x + 7 (mod 3), tenemos
x2 + x + 7 ≡ x2 + x + 1 ≡ (x + 2)2 ≡ (x − 1)2 ≡ 0 (mod 3). Luego, a1 = x ≡ 1 (mod 3) es la
única solución.
En este caso, f ′(1) = 3 ≡ 0 (mod 3), y f (1) = 3 ≡ 0 (mod 9), de modo que a2 = a1 + tp es
solución de la congruencia f (x) ≡ 0 (mod 32), para todo t ∈ Z.
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Lema de Hensel
Tenemos entonces las raíces para a2: x ≡ 1, 4, 7 (mod 9).

• Tome a2 = 1. Ahora f (1) = 9 ̸≡ 0 (mod 27), f ′(1) = 3 ≡ 0 (mod 3), y por lo tanto no
hay raíz x (mod 27) para la cual x ≡ 1 (mod 9).

• Para a2 = 4. Ahora f (4) = 27 ≡ 0 (mod 27), f ′(1) = 9 ≡ 0 (mod 3), y por lo tanto
a3 = 4 + tp2 son raíces módulo 27. Así, hay tres raíces raíz x = 4, 13, 22 (mod 27), que
son congruentes con 4 (mod 9).

• Por otro lado, si a2 = 7, ahora f (7) = 63 ̸≡ 0 (mod 27), f ′(7) = 15 ≡ 0 (mod 3), por lo
que no hay raíces a3 (mod 27) congruentes con 7 (mod 9).

Ahora estamos en condiciones de determinar cuáles de las raíces 4, 13, 22 (mod 27) se
pueden levantar hasta las raíces (mod 81).
Encontramos que f (4) = 27 ̸≡ 0 (mod 81), f (13) = 189 ≡ 27 ̸≡ 0 (mod 81) y
f (22) = 513 ≡ 27 ̸≡ 0 (mod 81), de donde deducimos que la congruencia f (x) ≡ 0 no
tiene solución (mod 81).
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Lema de Hensel
Ejercicio: Discutir las soluciones de la congruencia x2 + x + 223 ≡ 0 (mod 3j).
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Lema de Hensel
En este ejemplo, vemos que una solución singular a (mod p) puede elevarse a algunas
potencias superiores de p, pero no necesariamente a potencias arbitrariamente altas.
Ahora mostramos que si la potencia de p que divide a f (a) es suficientemente grande en
comparación con la potencia de p que divide a f ′(a), entonces la solución se puede
levantar sin límite.

Teorema
Sea f (x) un polinomio con coeficientes enteros. Suponga que f (a) ≡ 0 (mod pj), que
pτ || f ′(a), y que j ≥ 2τ + 1. Si b ≡ a (mod pj−τ ), entonces f (b) ≡ f (a) (mod pj) y
pτ || f ′(b). Además, hay una única t (mod p) tal que f (a + tpj−τ ) ≡ 0 (mod pj+1).

En esta situación, una colección de pτ soluciones (mod pj) dan lugar a pτ soluciones
(mod pj+1), mientras que la potencia de p dividiendo f ′ permanece constante. Dado que
las hipótesis del teorema se aplican con a reemplazado por a + tpj−τ y (mod pj)
reemplazado por (mod pj+1), con τ sin cambios, el levantamiento puede repetirse y
continúa indefinidamente.
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Lema de Hensel
Prueba: Por la expansión de Taylor (2), vemos que

f (b) = f (a + tpj−τ ) ≡ f (a) + tpj−τ f ′(a) (mod p2j−2τ ).

Aquí el módulo es divisible por pj+1, ya que 2j − 2τ = j + (j − 2τ) ≥ j + 1. Entonces
f (a + tpj−τ ) ≡ f (a) + tpj−τ f ′(a) (mod pj+1).

Como ambos términos del lado derecho son divisibles por pj, el lado izquierdo también
lo es. Además, al dividir la congruencia entre pj, encontramos que

f (a + tpj−τ )

pj ≡ f (a)
pj + t pj−τ f ′(a)

pj (mod p),

y el coeficiente de t es primo relativo con p, de modo que hay un único t (mod p) para el
cual el lado derecho es divisible por p. Esto establece la afirmación final del teorema.
Para completar la prueba, observe que f ′(x) es un polinomio con coeficientes enteros,
de modo que

f ′(a + tpj−τ ) ≡ f ′(a) (mod pj−τ ),

para cualquier t ∈ Z.
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Lema de Hensel

Pero j − τ ≥ τ + 1, por lo que esta congruencia se mantiene (mod pj+1). Dado que
pτ || f ′(a), concluimos que pτ || f ′(a + tpj−τ ).
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