Ecuaciones Diofantinas I Ecuación de Legendre

Nicolle Escobar

Universidad del Valle de Guatemala esc20647@uvg.edu.gt

13 de octubre de 2023

Tabla de contenido

- Recordatorio
 - Definición: Ecuación diofantina
 - Proposición
 - Ejemplo
 - Teorema chino del residuo
 - Principio de las casillas
- Suma de cuadrados
 - Ternas pitagóricas
 - Teorema de Legendre

Definición

Se llama ecuación diofantina a cualquier ecuación algebraica de dos o más incógnitas, cuyos coeficientes recorren el conjunto de los números enteros, de las cuales se buscan soluciones que pertenezcan a los números enteros.

Un tipo particular son las ecuaciones pitagóricas. Si (x, y, z) con $x, y, z \in \mathbb{Z}$, es una terna pitagórica, también lo serán

- \bullet (y, x, z)
- (ky, kx, kz)
- (-x, y, z), (x, -y, z), (y, x, -z)
- cualquier otra terna mediante una combinación de las anteriores

Proposición

Las ternas pitagóricas primitivas (x, y, z) son de la forma

$$X = uv$$
, $Y = \frac{v^2 - u^2}{2}$, $Z = \frac{v^2 + u^2}{2}$

Se dice que una terna es primitiva si (x,y,z) = 1.

– Ejemplo

Las primeras ternas pitagóricas primitivas (x, y, z) con $z \le 100$ son

Χ	У	Z
3	4	5
5	12	13
8	15	17
7	24	25
9	40	41
11	60	61
12	35	37
13	84	85
16	63	65
20	21	29
28	45	53
65	72	97

Cuadro: Ternas pitagóricas primitivas

Teorema chino del residuo

Sea b_1, b_2, \dots, b_k tal que a_1, a_2, \dots, a_k son coprimos a pares (dos en dos), el sistema de ecuaciones

$$x \equiv b_1 \pmod{a_1}$$

 $x \equiv b_2 \pmod{a_2}$
 \vdots
 $x \equiv b_k \pmod{a_k}$

admite una solución que es única módulo $A = a_1 a_2 \dots a_k$

Principio de las casillas

Sea $k, m \in \mathbb{Z}$. Si n = km + 1 objetos son distribuidos en m conjuntos, entonces por el principio de casillas se afirma que al menos uno de los conjuntos contendrá al menos k + 1 objetos.

Ternas Pitagóricas

Las triplas de números enteros positivos (x,y,z) que satisfacen la ecuación $x^2+y^2=z^2$ se llaman triplas o ternas pitagóricas. Nótese que $x^2+y^2=z^2$ admite soluciones triviales de la forma $(\pm x,0,\pm x)$ y $(0,\pm y,\pm y)$ para $x,y\in\mathbb{Z}$. Podemos suponer que x,y,z son primos relativos en pares.

Si queremos encontrar todas las ternas pitagóricas (x, y, z) entonces x = dx', y = dy', z = dz', entonces

$$x^{2} + y^{2} = z^{2} \implies (dx')^{2} + (dy')^{2} = (dz')^{2}$$

$$\implies d^{2}((x')^{2} + (y')^{2}) = d^{2}(z')^{2}$$

$$\implies (x')^{2} + (y')^{2} = (z')^{2}$$

Una terna pitagórica cuyos términos son primos relativos es una terna pitagórica primitiva.

Ternas Pitagóricas

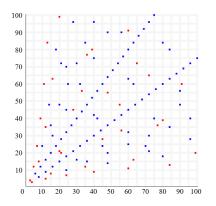


Figura: Distribución de ternas pitagóricas sobre \mathbb{R}^2_+ . Los puntos rojos representan ternas primitivas.

Teorema 4.4

Sean $a,b,c\in\mathbb{Z}$, enteros libres de cuadrados, primos relativos entre sí, dos a dos, y de signos distintos. La ecuación $ax^2 + by^2 + cz^2 = 0$ tiene solución no trivial $(x,y,z) \neq (0,0,0)$, con $x,y,z\in\mathbb{Z}$ si, y sólo si, -bc es un cuadrado módulo a, -ca es cuadrado módulo b y -ab es cuadrado módulo c.

Prueba. (\Longrightarrow) Por hipótesis, podemos suponer que x, y y z son primos relativos dos a dos, pues d|x, d|y, entonces $d^2|x^2, d^2|y^2 \Longrightarrow$

Demostración

 $\implies d^2|ax^2+by^2=-cz^2$. Por lo tanto, $d^2|cz^2$ y como c es libre de cuadrados, d|z. Esto también puede escribirse de forma que x=dx',y=dy',z=dz', con $x',y',z'\in\mathbb{Z}$, y sustituyendo en la ecuación inicial,

$$ax^2 + by^2 + cz^2 = 0 \implies a(dx')^2 + b(dy')^2 + c(dz')^2 = 0$$

 $\implies a(x')^2 + b(y')^2 + c(z')^2 = 0$

Por otro lado, como $by^2 + cz^2 \equiv 0 \pmod{a} \implies b^2y^2 \equiv -bcz^2 \pmod{a}$. Nótese que z y a deben ser primos relativos, pues si p es primo tal que p|a,p|z, entonces tendremos que $p|by^2$. Sin embargo, como p|y, se contradice que y y z son primos relativos.

Demostración

Por lo tanto, a, z son primos relativos entre sí. De esta forma, z es invertible módulo a y se obtiene $(byz^{-1})^2 \equiv -bc \pmod{a}$. Entonces queda demostrado que -bc es residuo cuadrático módulo a.

Nótese que por simetría de la ecuación, puede generalizarse el resultado para demostrar que -ca es cuadrado módulo b y que -ab es cuadrado módulo c.

(\iff) Podemos suponer sin pérdida de generalidad que a < 0, b < 0 y c > 0. Por hipótesis, $\exists u \in \mathbb{Z}$ tal que $u^2 \equiv -bc$ (mód a). Entonces tenemos que

$$ax^2 + by^2 + cz^2 \equiv by^2 + cz^2 \equiv b^{-1}((by)^2 + bcz^2)$$

 $b^{-1}((by)^2 - u^2z^2) \equiv b^{-1}(by - uz)(by + uz)$

Demostración

$$\equiv (y - b^{-1}uz)(by + uz)$$

$$\equiv L_1(x, y, z)M_1(x, y, z)$$

donde $L_1(x, y, z) = d_1x + e_1y + f_1z$ y $M_1(x, y, z) = g_1x + h_1y + i_1z$ son funciones lineales con $d_1 = g_1 = 0$, $e_1 = 1$, $f_1 = -b^{-1}u$, $h_1 = b$ y $i_1 = u$, de forma similar

$$ax^{2} + by^{2} + cz^{2} \equiv L_{2}(x, y, z)M_{2}(x, y, z) \pmod{b}$$

 $ax^{2} + by^{2} + cz^{2} \equiv L_{3}(x, y, z)M_{3}(x, y, z) \pmod{c}$

con $L_k(x, y, z) = d_k x + e_k y f_k z$ y $M_k(x, y, z) = g_k x + h_k + i_k z$, k = 2, 3. Como a, b, c son primos relativos entre sí, dos en dos, por el Teorema Chino,

Teorema de Legendre

Demostración

podemos hallar dos funciones lineales L(x, y, z) = dx+ey+fz, M(x, y, z) = gx + hy + iz tal que

$$L \equiv L_1 \pmod{a}, \quad L \equiv L_2 \pmod{b}, \quad L \equiv L_3 \pmod{c}$$

 $M \equiv M_1 \pmod{a}, \quad M \equiv M_2 \pmod{b}, \quad M \equiv M_3 \pmod{c}$

es el resultado del sistema de congruencias. Luego,

$$ax^2 + by^2 + cz^2 \equiv L(x, y, z)M(x, y, z) \pmod{abc}$$

Ahora, considerando todas las triplas $(x,y,z) \in \mathbb{Z}^3$ con $0 \le x \le \sqrt{|bc|}, 0 \le y \le \sqrt{|ca|}, 0 \le z \le \sqrt{|ab|}$. Tenemos $(\lfloor \sqrt{|bc|} \rfloor + 1)(\lfloor \sqrt{|ab|} \rfloor + 1) > abc$.

Demostración

De estas triplas, por el principio de Dirichlet, existen dos triplas distintas entre estas,

$$(x_1, y_1, z_1)$$
 y (x_2, y_2, z_2) con $L(x_1, y_1, z_1) \equiv L(x_2, y_2, z_2)$ (mód *abc*) $\iff L(x_1 - x_2, y_1 - y_2, z_1 - z_2) \equiv 0$ (mód *abc*), donde, haciendo $\tilde{x} = x_1 - x_2, \tilde{y} = y_1 - y_2, \tilde{z} = z_1 - z_2$ tenemos

$$a\tilde{x}^2 + b\tilde{y}^2 + c\tilde{z}^2 \equiv L(\tilde{x}, \tilde{y}, \tilde{z})M(\tilde{x}, \tilde{y}, \tilde{z}) \equiv 0 \pmod{abc}$$

Nótese que $(\tilde{x}, \tilde{y}, \tilde{z}) \neq (0,0,0)$. Además, $|\tilde{x}| < \sqrt{|bc|}, |\tilde{y}| < \sqrt{|ac|}$ y $|\tilde{z}| < \sqrt{|ab|}$. Por hipótesis, a,b,c son primos relativos dos a dos y libres de cuadrados, entonces no procede la igualdad. Como a,b < 0 y c > 0 tenemos,

Demostración

$$-2abc=a|bc|+b|ac|< a ilde{x}^2+b ilde{y}^2\leq a ilde{x}^2+b ilde{y}^2+c ilde{z}^2\leq c ilde{z}^2<|ab|\,c=abc.$$
 Como $abc|a ilde{x}^2+b ilde{y}^2+c ilde{z}^2$, entonces se tiene que $a ilde{x}^2+b ilde{y}^2+c ilde{z}^2=0$. En el caso que $a ilde{x}^2+b ilde{y}^2+c ilde{z}^2=-abc$ se tiene

$$0 = (a\tilde{x}^2 + b\tilde{y}^2 + c\tilde{z}^2 + abc)(\tilde{z}^2 + ab)$$
$$= a(\tilde{x}\tilde{z} + b\tilde{y})^2 + b(\tilde{z}\tilde{y} - a\tilde{x})^2 + c(\tilde{z} + ab)^2$$

lo cual tiene como resultado $(\tilde{x}\tilde{z}+b\tilde{y},\tilde{y}\tilde{z}-a\tilde{x},\tilde{z}^2+ab)$ con $\tilde{z}^2+ab\neq 0$.

Ejemplo

Considérese la ecuación

$$x^2 + 3y^2 - 7z^2 = 0$$
con $(1,3) = 1, (1,-7) = 1, (3,-7) = 1$. Se tiene
$$-ac = -(1)(-7) = 7 \equiv 1 \pmod{3}$$

$$-ab = -(1)(3) = -3 \equiv 4 \pmod{7}$$

$$-bc = -(3)(-7) = 21 \equiv 0 \pmod{1}$$

References

Fabio E. Brochero Martinez, Carlos G. Moreira, Nicolau Saldanha, Eduardo Tengan (1999)

Teoria dos Números

Um passeio com primos e outros números familiares pelo mundo inteiro 148-153

Pablo Soberón (2014) Revista Tzaloa, año 2 *El Principio de las Casillas*