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The continued fraction expansion of a real number x is a very efficient
process for finding the best rational approximations of x. Moreover,
continued fractions are a very versatile tool for solving problems related
with movements involving two different periods. This situation occurs
both in theoretical questions of number theory, complex analysis, dy-
namical systems... as well as in more practical questions related with
calendars, gears, music... We will see some of these applications.

1 The algorithm of continued fractions

Given a real number x, there exist an unique integer bxc, called the
integral part of x, and an unique real {x} ∈ [0, 1[, called the fractional
part of x, such that

x = bxc + {x}.

If x is not an integer, then {x} , 0 and setting x1 := 1/{x} we have

x = bxc +
1
x1
.
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Again, if x1 is not an integer, then {x1} , 0 and setting x2 := 1/{x1}

we get

x = bxc +
1

bx1c +
1
x2

.

This process stops if for some i it occurs {xi } = 0, otherwise it continues
forever. Writing a0 := bxc and ai = bxic for i ≥ 1, we obtain the so-
called continued fraction expansion of x:

x = a0 +
1

a1 +
1

a2 +
1

a3 +
. . .

,

which from now on we will write with the more succinct notation

x = [a0, a1, a2, a3, . . .].

The integers a0, a1, . . . are called partial quotients of the continued
fraction of x, while the rational numbers

pk
qk

:= [a0, a1, a2, . . . , ak]

are called convergents. The convergents are the best rational approxi-
mations of x in the following sense: If p and q > 0 are integers such
that �����

p
q
− x

�����
<

1
2q2 , (1)

then p/q is a convergent of x. Indeed, of any two consecutive con-
vergents pk/qk and pk+1/qk+1 of x, one at least satisfies (1) (see [7,
Theorems 183 and 184]).
If x = a/b is a rational number, then the method for obtaining the

continued fraction of x is nothing else than the Euclidean algorithm for
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computing the greatest common divisor of a and b:

a = a0b + r0, 0 ≤ r0 < b, x1 = b/r0,

b = a1r0 + r1, 0 ≤ r1 < r0, x2 = r0/r1,

r0 = a2r1 + r2, 0 ≤ r2 < r1, x3 = r1/r2,

· · ·

Therefore, on the one hand, since the Euclidean algorithm always
stops, the continued fraction of a rational number is always finite. On
the other hand, it is obvious that a finite continued fraction represents
a rational number. Hence, in conclusion, we have shown that a real
number is rational if and only if its continued fraction expansion is
finite.
Note that, if ak ≥ 2, then

[a0, a1, a2, . . . , ak] = [a0, a1, a2, . . . , ak−1, ak − 1, 1], (2)

Thus a rational number can be expressed as a continued fraction in at
least two ways. Indeed, it can be proved [7, Theorem 162] that any
rational number can be written as a continued fraction in exactly two
ways, which are given by (2).

2 The number of days in a year

Let us see an application of continued fractions to the design of a
calendar. How many days are in a year? A good answer is 365.
However, the astronomers tell us that the Earth completes its orbit
around the Sun in approximately 365.2422 days. The continued fraction
of this figure is

365.2422 = [365, 4, 7, 1, 3, 4, 1, 1, 1, 2].

The second convergent is

365.25 = 365 +
1
4
,
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which means a calendar of 365 days per year but a leap year every 4
years. The forth convergent gives the better approximation

365.2424 . . . = [365, 4, 7, 1] = 365 +
8
33
.

The Gregorian calendar, named after Pope Gregorio XIII who intro-
duced it in 1582, is based on a cycle of 400 years: there is one leap year
every year which is a multiple of 4 but not of 100 unless it is a multiple
of 400. This means that in 400 years one omits 3 leap years, thus there
are

400 · 365 + 100 − 3 = 146097

days. On the other hand, in 400 years the number of days counted with
an year of 365 + 8

33 days is

400 ·
(
365 +

8
33

)
= 146096.9696 . . .

a very good approximation!

3 Design a planetarium

Christiaan Huygens (1629–1695) among being a mathematician, as-
tronomer, physicist and probabilist, was also a great horologist. He
designed more accurate clocks then the ones available at his time. In
particular, his invention of the pendulum clock was a breakthrough in
timekeeping. Huygens also built a mechanical model of the solar sys-
tem. He wanted to design the gear ratios in order to produce a proper
scaled version of the planetary orbits. He knew that the time required
for the planet Saturn to orbit around the Sun is about

77708431
2640858

= 29.425448 . . . = [29, 2, 2, 1, 5, 1, 4, . . .].

The forth convergent is

[29, 2, 2, 1] =
206
7
.
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Figure 1: Huygens’ planetary gears [1].

Therefore, Huygens made the gear regulating the Saturn’s motion with
206 teeth, and the gear regulating Earth’s motion with 7 teeth, as shown
in Fig. 1.

4 Build a musical scale

The successive harmonics of a note of frequency n are the vibrations
with frequencies 2n, 3n, 4n, ... The successive octaves of a note of
frequency n are the vibrations with frequencies 2n, 4n, 8n, ... Our ears
recognize notes at the octave one from another. Using octaves, one
replaces each note by a note with frequency in a given interval, say
[n, 2n[. The classical choice in Hertz is [264, 528[, which means tuning
the C tone to 264 Hz (see [6, §20.3]). However, we shall use [1, 2[ for
simplicity.
Hence, each note with frequency f is replaced by a note with fre-

quency r ∈ [1, 2[ such that

f = 2ar, a = blog2 f c ∈ Z, r = 2{log2 f } ∈ [1, 2[.

This is a multiplicative version of the Euclidean division.
A note with frequency 3, which is a harmonic of 1, is at the octave

of a note of frequency 3/2. The interval [1, 3/2[ is called fifth, and the
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ratio of its end points is 3/2. The interval [3/2, 2[ is called fourth, with
ratio 4/3. The successive fifths are the notes in the interval [1, 2[ which
are at the octave of notes with frequencies

1, 3, 9, 27, 81, . . .

namely:

1,
3
2
,
9
8
,
27
16
,
81
64
, . . .

We shall never come back to the initial value 1, since the Diophantine
equation 2a = 3b has no solution in integers a and b.
In other words, the logarithm of 3 in basis 2 is irrational. Powers of 2

which are close to power of 3 correspond to good rational approximation
a/b to log2 3. Thus it is natural to look at the continued fraction
expansion:

log2 3 = 1.58496250072 . . . = [1, 1, 1, 2, 2, 3, 1, 5, . . .].

The approximation

log2 3 ≈ [1, 1, 1, 2] =
8
5

means that 28 = 256 is not too far from 35 = 243, that is, 5 fifths
produce almost 3 octaves. The next approximation

log2 3 ≈ [1, 1, 1, 2, 2] =
19
12

tells us that 219 = 524288 is close to 312 = 531441, that is(
3
2

)12
= 129.74 . . . ≈ 27 = 128.

This means that 12 fifths are just a bit more than 7 octaves.
The figure

312

219 = 1.01364,
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is called the Pythagorean comma (or ditonic comma) and produces an
error of about 1.36%, which most people cannot hear.
Further remarkable approximations between perfect powers are:

53 = 125 ≈ 27 = 128,

that is, (
5
4

)3
= 1.953 . . . ≈ 2,

so that 3 thirds (ratio 5/4) produce almost 1 octave; and

210 = 1024 ≈ 103,

which means that one kibibyte (1024 bytes) is about one kilobyte (1000
bytes), and that doubling the intensity of a sound is close to adding 3
decibels.

5 Exponential Diophantine equations

Another way to avoid the problem that we cannot solve the equation
2a = 3b in positive integers a and b, might be looking for powers
of 2 which are just one unit from powers of 3, that is |2a − 3b | = 1.
This question was asked by the French composer Philippe de Vitry
(1291–1361) to the medieval Jewish philosopher and astronomer Levi
ben Gershon (1288–1344). Gershon proved that there are only three
solutions (a, b) to the Diophantine equation 2a − 3b = ±1, namely
(1, 1), (2, 1), (3, 2).
Indeed, suppose that 2a − 3b = −1. If a = 1 then, obviously, b = 1.

If a ≥ 2 then 3b ≡ 1 (mod 4), so that b = 2k for some positive integer
k, and consequently

2a = 3b − 1 = (3k − 1)(3k + 1),

which implies that both 3k − 1 and 3k + 1 are powers of 2. But the only
powers of 2 which differ by 2 are 2 and 4, hence k = 1, b = 2, and
a = 3.
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Similarly, suppose that 2a − 3b = 1. Hence 2a ≡ 1 (mod 3), so that
a = 2k for some positive integer k and

3b = 2a − 1 = (2k − 1)(2k + 1),

which implies that both 2k − 1 and 2k + 1 are powers of 3. But the only
powers of 3 which differ by 2 are 1 and 3, hence k = 1, a = 2, and
b = 1.
This kind of questions lead to the study of the so called exponential

Diophantine equations. A notable case is the Catalan’s equation

xp − yq = 1,

where x, y, p, q are integers all ≥ 2. In 2002 Mihăilescu [9] showed
that 32 − 23 = 1 is the only solution, as conjectured by Catalan in 1844.

6 Electric networks

The electrical resistance of a series of two resistances R1 and R2 is
R1 + R2 (see Fig. 2). If R1 and R2 are instead in a parallel network (see

Figure 2: Two resistances R1 and R2 in series.

Fig. 3), then the resulting resistance R satisfies

1
R
=

1
R1
+

1
R2
.

Therefore, it follows easily that the resistance U of the circuit of Fig. 4
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Figure 3: Two resistances R1 and R2 in parallel.

is given by

U =
1

S +
1

R +
1
T

.

A similar kind of reasoning shows that the resistance of the infinite

Figure 4: A series–parallel network.

circuit of Fig. 5 is given by the following continued fraction expansion

[R0, S1, R1, S2, R2, . . .].

Electric networks and continued fractions have been used to solve
the “Squaring the square” problem, which states: Is it possible to
decompose an integer square into the disjoint union of integer squares,
all of which are distinct? The answer to this problem is positive.
Indeed, in 1978 Duijvestijn found a decomposition of the 122 × 122
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Figure 5: An infinite circuit.

square into 21 distinct integer squares (see Fig. 6). Furthermore, there
are no solutions with less than 21 squares, and Duijvestijn’s solution is
the only with 21 squares (see [3]).

Figure 6: Duijvestijn’s solution.
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7 Quadratic numbers

Joseph-Louis Lagrange (1736–1813) proved that the continued fraction
expansion of a real number x is ultimately periodic, i.e.,

x = [a0, . . . , ak, b1, . . . , bh, b1, . . . , bh, . . .]

if and only if x is a quadratic number, that is, x is the root of a quadratic
polynomial with rational coefficients (see [5, Chap. IV, §10]).
In such a case, we use the shorter notation

x = [a0, . . . , ak, b1, . . . , bh],

in a ways similar to how it is done for repeating decimals.

7.1 Fibonacci sequence and the Golden Ratio

The Fibonacci sequence (Fn)n≥0 was introduced by Leonardo Pisano
(1170–1250), also known asFibonacci. It is defined as F0 := 0, F1 := 1,
and Fn+2 = Fn+1 + Fn for all integers n ≥ 0, and its first terms are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

The unique positive real numbers Φ satisfying

Φ = 1 +
1
Φ

(3)

is given by

Φ =
1 +
√

5
2

and it is known as the Golden Ratio. The Golden Ratio makes its
appearance in many different contexts, from Mathematics to Arts [8].
From (3) it is clear that the continued fraction expansion of Φ is

Φ = [1, 1, 1, . . .] = [1],
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the simplest infinite continued fraction. Notably, the convergents of Φ
are precisely the ratios of consecutive Fibonacci numbers

[1] =
F2

F1
, [1, 1] =

F3

F2
, [1, 1, 1] =

F4

F3
, [1, 1, 1, 1] =

F5

F4
, . . .

so that
Φ = lim

n→+∞

Fn+1

Fn
.

7.2 Continued fraction for
√

2

The square root of 2 satisfies

√
2 = 1 +

1
√

2 + 1
,

while
√

2 = 1 +
1

2 +
1

√
2 + 1

,

hence the continued fraction expansion of
√

2 is given by
√

2 = [1, 2, 2, 2, . . .] = [1, 2].

7.3 Paper folding

The number
√

2 appears in the A series paper sizes. Precisely, since
√

2
is twice its inverse, i.e.,

√
2 = 2/

√
2, folding a rectangular piece of paper

with sides in proportion
√

2 yields a new rectangular piece of paper with
sides in proportion

√
2 again. The sizes of an A0 paper are defined to

be in proportion
√

2 and so that the area is 1 m2. Thus, rounded to the
nearest millimetre, an A0 paper is 841 by 1189 millimetres. Note that

841
1189

=
29
49
= [1, 2, 2, 2, 2]
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Figure 7: The A series format.

is the fifth convergent of
√

2. The sizes of A1, A2, A3, and so forth are
defined by successively halving the A0 paper, as in Fig. 7.

The Golden Ratio Φ has a similar property. If we start with a
rectangle with Golden Ratio proportion, then we can fold it in order to
get a square and a smaller rectangle which sizes are again in Golden
Ratio proportion, as shown in Fig. 8. In fact, the Golden Ratio is the

Figure 8: The “Golden rectangle”.

unique number with this property.
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7.4 The irrationality of
√

2: Two geometric proofs

Considerations similar to the ones of the previous section can lead to
“geometric” proofs of the irrationality of

√
2.

A first proof is the following:

• Start with a rectangle having side lengths 1 and 1 +
√

2 (see
Fig. 9).

• Decompose it into two squares of sides 1 and a rectangle of sides
1 and 1 +

√
2 − 2 =

√
2 − 1.

• The second rectangle has sides in proportion

1
√

2 − 1
= 1 +

√
2,

hence it can be decomposed in two squares and a rectangle whose
sides are again in 1 +

√
2 proportion.

• This process does not end.

Figure 9: A rectangle dissection proving the irrationality of
√

2.

If we were started with a rectangle having integer side lengths, then it is
clear that the process would have stopped after finitely many steps (the
side lengths of the successive rectangles produce a decreasing sequence
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of positive integers). The same conclusion holds for a rectangle with
side lengths in rational proportion (reduce to a common denominator
and scale). Therefore, 1 +

√
2 is irrational, and so is

√
2.

It is also possible to give a proof in just one dimension:

• Start with an interval of length t = 1 +
√

2 (see Fig. 10).

• Decompose it in two intervals of length 1 and one interval of
length

√
2 − 1 = 1/t.

• The smaller interval can now be split in two intervals of length
1/t2 and one of length 1/t3.

• This process does not stop.

Figure 10: An interval dissection proving the irrationality of
√

2.

Reasoning in a way similar to the previous, it follows easily that if the
interval length is a rational number then the process must stop. Thus
we get again that

√
2 is irrational.

7.5 The Pell’s equation x2 − dy2 = 1

Let d be a positive integer which is not a square. The Diophantine
equation

x2 − dy2 = 1 (4)
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is known as Pell’s equation [5, Chap. IV, §11]. It can be rewritten as(
x −
√

dy
) (

x +
√

dy
)
= 1,

hence, for y > 0, we have that x/y is a rational approximation of√
d. This is the reason why a strategy for solving (4) is based on the

continued fraction expansion of
√

d.
It is quite curious that for relatively small values of d the solutions

(x, y) of (4) can be very large. For example, the Indian mathematician
Brahmagupta (~628) asked for solution for d = 92. The continued
fraction expansion of

√
92 is

√
92 = [9, 1, 1, 2, 4, 2, 1, 1, 18],

and a solution (x, y) = (1151, 120) is obtained from

[9, 1, 1, 2, 4, 2, 1, 1] =
1151
120

.

Another example is the one of Bhaskara (~1150), that using the same
method of Brahmagupta showed that a solution for d = 61 is given by

x = 1766319049, y = 226153980.

But a more impressive example was given by Fermat, who asked to his
friend Brouncker a solution for d = 109, saying that he choose a small
value of d to make the problem not too difficult. However, the smallest
solution is

x = 158070671986249, y = 15140424455100,

which is also given by

*
,

261 + 25
√

109
2

+
-

6

= 158070671986249 + 15140424455100
√

109.
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8 Continued fractions for e and π

Leonard Euler (1707–1784) proved that the continued fraction for e is
given by

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, . . .]

= [2, 1, 2m, 1]m≥1.

This result implies that e is not rational neither a quadratic irrational.
(Indeed, in 1874 Charles Hermite proved that e is transcendental.)
Actually, Euler showed the more general result that for any integer
a ≥ 1 it holds

e1/a = [1, a − 1, 1, 3a − 1, 1, 1, 5a − 1, 1, . . .]

= [1, (2m + 1)a − 1, 1]m≥1.

JohannHeinrich Lambert (1728–1777) proved tan(v) is irrational when
v , 0 is rational. Hence π is irrational, since tan(π/4) = 1. The
continued fraction expansion of π,

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, . . .].

is much more mysterious than the one of e. Indeed, it is still an
open problem to understand if the sequence of partial quotients of π is
bounded or not.

9 Continued fractions for analytic functions

Also some analytic functions have a kind of continued fraction expan-
sion. For example, the tangent:

tan(x) =
x

1 −
x2

3 −
x2

5 −
x2

7 − . . .

.
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The study of continued fractions of analytic functions is strictly con-
nected to the theory of Padé approximations, which are rational function
approximations of analytic functions (see [4]).

10 Gauss map and ergodic theory

Let (X, µ) be a probability space and let H : X → X be a map that
preserve the measure µ, i.e., µ(H−1(E)) = µ(E) for any measurable
E ⊆ X . The Birkhoff’s Ergodic Theorem [13, §1.6] states that if H is
ergodic, which means that H−1(E) = E implies µ(E) = 0 or µ(E) = 1,
then for any f ∈ L1

µ (X ) we have

lim
n→∞

1
n

n∑
k=1

f (H (k) (x)) =
∫
X

f dµ,

for almost all x ∈ X , respect to the measure µ, where H (k) denotes the
k-th iterate of H .
We have seen that the partial quotient of a continued fraction are

obtained by iterating the map

T : x 7→
1
x
−

⌊
1
x

⌋
,

which is called Gauss map. It can be proved that the Gauss map
preserve the measure

µ(E) :=
1

log 2

∫
E

dx
x + 1

, E ⊆ [0, 1],

and that it is ergodic. This facts connect continued fractions with the
study of chaotic dynamical systems. In particular, exploiting this con-
nection, it can be proved the following result of Aleksandr Yakovlevich
Khinchin: For all real numbers

x = [a0, a1, a2, . . .],
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but a set of Lebesgue measure zero, it holds

lim
n→∞

n

√√
n∏

k=1
ak = K0,

where

K0 :=
∞∏
r=1

(
1 +

1
r (r + 2)

) log2 r

≈ 2.685452 . . .

is known as Khinchin’s constant.

11 Connection with the Riemann zeta function

We recall that for real s > 1, the Riemann zeta function is defined by

ζ (s) =
∞∑
n=1

1
ns
.

Notably, ζ (s) is related to the Gauss map T by the following formula

ζ (s) =
1

s − 1
− s

∫ 1

0
T (x)xs−1ds.

12 Generalizations of continued expansion in
higher dimension

Simultaneous rational approximations of real numbers is a much more
difficult problem than the rational approximation of a single number.
In fact, the continued fraction expansion algorithm has many specific
features and so far there is no extension of this algorithm in higher
dimension with all such properties.
However, some attempts has been made, in particular the Jacobi–

Perron algorithm [2] uses a kind of ternary continued fraction expansion
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to deal with cubic irrationality. This topic is strictly related the Geom-
etry of numbers, started by Hermann Minkowski (1864–1909), which
is the study of convex bodies and integer vectors in the n-dimensional
space Rn. One of the most important result of this field is the LLL
algorithm [10], named after Arjen Lenstra, Hendrik Lenstra and Laszlo
Lovasz, that given m vectors in Rn it produces a basis of the lattice they
generate with often a smaller norm than the initial ones.
For more recent results see the works of Wolfgang Schmidt, Leon-

hard Summerer, and Damien Roy [11, 12] in the so-called Parametric
geometry of numbers.
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