
1

Definición

Inputs

Ejemplos

Notación Asintótica

Análisis de Algoritmos

Alan Reyes-Figueroa

Teoría de la Computación           (Aula 21) 01.octubre.2025



2

Análisis de Algoritmos

 Estimar los recursos (tiempo y memoria) 
que un algoritmos requiere para 
funcionar.

 Estructura

 Operaciones

 Algoritmos:  argumentos de entrada

 El consumo de recursos del algoritmo se 
escribe en función del “tamaño” de estos 
inputs.



3

Inputs: Ejemplos

 Input: Arreglo a.

 Tamaño: número de elementos del 
arreglo a.

 Input: Un número entero n.

 Tamaño: Número de bits que requiere 
la representación binaria de n.



4

Inputs: Ejemplos

 Input: Grafo G.

 Tamaño: Número de nodos de G.
      Número de nodos + aristas.

 Input: Base de datos.

 Tamaño:  Número de variables x 
Número de registros.



5

Tiempo de Ejecución

Buscamos determinar el tiempo de ejecución 
(running time) de un algoritmo, esto es, el 
número de pasos u operaciones primitivas 
realizadas.

Ejemplo: (Algoritmo para contar coincidencias en un arreglo):

Input: Array a;  int b.

n = len(a) Asignación t = c1

count = 0 Asignación t = c1

For i in range(0, n): Ciclo t = n *
if (a[i] == b): Comparación t = c2

count = count + 1 Asignación t = c1

     Suma t = c3



6

Ejemplo 1

Ejemplo: sumar los valores en un arreglo. 
Inputs: array a.

Operación Tiempo

n = len(a)

suma = 0

for i in range(0, n):

suma = suma + a[i]

return suma



7

Ejemplo 1

Ejemplo: sumar los valores en un arreglo. 
Inputs: array a.

¿Cuántas operaciones hace en total?

T = 1 + 2c0 + 3c1 + n(3c0 + 2c1 + c2 + 2c3)

Operación Tiempo

n = len(a) t = c0 + c1 (lectura + asignación)

suma = 0 t = c1 (asignación)

Ciclo:   1 asignación i al inicio 

for i in range(0, n): t = c0+c1+c2+c3 (comp + lec + suma + asig)

suma = suma + a[i] t = 2c0 + c3 + c1 (2 lectura + suma + asign.)

return suma t = c0 + c1 (lectura + asignación)



8

Sumas útiles



9

Ejemplo 2

Ejemplo: Hacer el ordenamiento de un array 
mediante bubblesort. Inputs: array a.

Operación Tiempo

n = len(a)

for i in range(0, n):

for j in range(0, n-i-1):

if (a[j] > a[j+1]):

temp = a[j]

a[j] = a[j+1]

a[j+1] = temp

return a



10

Ejemplo 2

Ejemplo: Hacer el ordenamiento de un array 
mediante bubblesort. Inputs: array a.

Operación Tiempo

n = len(a) t = c0 + c1 (lectura + asignación)

for i in range(0, n):

Ciclo:  1 asignación i al inicio 
t = c0+c1+c2+c3 (comp + lec + suma + asig)

for j in range(0, n-i-1):

Ciclo:   1 asignación j al inicio 
t = c0+c1+c2+c3 (comp + lec + suma + asig)

if (a[j] > a[j+1]): t = 2c0 + c2 (2 lecturas + comparación)

temp = a[j] t = c0 + c1 (lectura + asignación)

a[j] = a[j+1] t = c0 + c1 (lectura + asignación)

a[j+1] = temp t = c0 + c1 (lectura + asignación)

return a t = c0 + c1 (lectura + asignación)



11

Ejemplo 3

Ejemplo: Contar ocurrencias de b en un arreglo. 
Inputs: array a, int b.

¿Cuántas operaciones hace en total?

T = 1 + 2c0 + 3c1 + n(3c0+c1+c2 +c3) + k(c0+c1+c3)

Operación Tiempo

n = len(a) t = c0 + c1 (lectura + asignación)

count = 0 t = c1 (asignación)

for i in range(0, n):

Ciclo:  1 asignación al inicio para i 
t = c0 + c3 + c1 (lectura + suma + asign.)

if (a[i] == b): t = 2c0 + c2 (lectura + lectura + comp.)

count = count + 1 t = c0 + c3 + c1 (lectura + suma + asign.)

return count t = c0 + c1 (lectura + asignación)



12

Ejemplo 4

Ejemplo: Hallar el máximo de un arreglo. 
Inputs: array a.

¿Cuántas operaciones hace en total?

T = 1 + 3c0 + 3c1 + n(3c0+c1+c2+c3) + k(c0+c1)

Operación Tiempo

n = len(a) t = c0 + c1 (lectura + asignación)

max = a[0] t = c0 + c1 (lectura + asignación)

for i in range(1, n):

Ciclo:  1 asignación al inicio para i
t = c0 + c3 + c1 (lectura + suma + asign.)

if (a[i] > max): t = 2c0 + c2 (lectura + lectura + comp.)

max = a[i] t = c0 + c1 (lectura + asignación)

return max t = c0 + c1 (lectura + asignación)



13

Tiempo de Ejecución

 No calculamos directamente el tiempo de 
ejecución (en ns, μs) por varias razones:
- no se comporta igual en cada máquina
- variabilidad
- dificultad en los cálculos.

 Es mucho más simple calcular el número 
de operaciones ejecutadas dentro del 
algoritmos en función de tamaño del input.



14

Escenarios

 Para un mismo algoritmo (y mismos 
inputs) podemos tener variaciones en el 
tiempo de ejecución de un algoritmo. 

 Consideramos tres escenarios:

 worst-case (peor caso), 

 average-case (caso promedio), 

 best-case (mejor caso).



15

Ejemplo

Ejemplo: (Algoritmo para contar coincidencias en 
un arreglo, versión simplificada):

Input: Array a;  int b.

¿Cuántas operaciones hace el algoritmo?

T = c1 + c1 + n(c2 + k(c1 + c3))

Operación Tiempo

n = len(a) Asignación t = c1

count = 0 Asignación t = c1

For i in range(0,n): Ciclo t = n *

if (a[i] == b): Comparación t = c2

count = count + 1 Asignación t = c1

Suma t = c3



16

Ejemplo

Analizamos tres posibles casos: 

Mejor Caso: 
T = 2c0 + 2c1 + c2 + n(2c0 + 2c2 ) 

Peor Caso: 
T = 2c0 + 2c1 + c2 + n(2c0 + 2c2) + n(c0 + c1 + c3) 

Caso Promedio: 
T = 2c0 + 2c1 + c2 + n(2c0 + 2c2 ) + n/2(c0 + c1 + c3)



17

Ejemplo

 Si construimos una fórmula para contar las 
operaciones del algoritmo, a los coeficientes en 
el mejor caso los podemos resumir en 
constantes a y b, así como en el peor caso en 
a, b y c.

 Para el mejor caso tendremos una función 
lineal como tiempo de ejecución, mientras que 
para el peor caso tendremos una cuadrática.

 Nos interesa: comparar dos algoritmos en 
cuanto a su tiempo de ejecución (tasa de 
crecimiento). 



19

Notación Asintótica

 Notación big-Oh:   O (g(x))

Decimos que f es O-grande respecto de g, 
f(x) = O(g(x)), cuando x → a, si existe 
una constante C > 0 tal que

|f(x)| ≤ C|g(x)|, para todo |x-a| ≤ r.

 Equivalentemente, f(x) = O(g(x)) cuando 
x → a si existe C > 0 tal que

limx→a |f(x)/g(x)| ≤ C.



20

Notación Asintótica

 Notación big-Oh:   O (g(x))

Decimos que f es O-grande respecto de g, 
f(x) = O(g(x)), cuando x → ∞ si existen 
constantes positivas r y C con

|f(x)| ≤ C|g(x)|, para todo |x| ≥ r.

 Equivalentemente, f(x) = O(g(x)) cuando 
x → ∞ si existe C > 0 tal que

limx→∞ |f(x)/g(x)| ≤ C.



21

Notación Asintótica

 f(n) = O(g(n)) quiere decir:
asintóticamente (para valores muy grandes de 
n), g crece mucho rápido que f.



22

Notación Asintótica

 Notación big-Omega:   Ω (g(x))

Decimos que f es Ω-grande respecto de g, 
f(x) = Ω(g(x)), cuando x → ∞ si existen 
constantes positivas r y C con

|f(x)| ≥ C|g(x)|, para todo |x| ≥ r.

 Equivalentemente, f(x) = Ω(g(x)) cuando 
x → ∞ si existe C > 0 tal que

limx→∞ |f(x)/g(x)| ≥ C.



23

Notación Asintótica

 f(n) = Ω(g(n)) quiere decir:
asintóticamente (para valores muy grandes de 
n), f crece mucho rápido que g.



24

Notación Asintótica

 Notación big-Theta:   Θ (g(x))

Decimos que f es Θ-grande respecto de g, 
f(x) = Θ(g(x)), cuando x → ∞ si existen 
constantes positivas r y c1, c2 con
c1|g(x)| ≤ |f(x)| ≤ c2|g(x)|, para |x| ≥ r.

 Equivalentemente, f(x) = Θ(g(x)) cuando 
x → ∞ si existe C > 0 tal que

c1 ≤ limx→∞ |f(x)/g(x)| ≤ c2.



25

Notación Asintótica

 f(n) = O(g(n)) quiere decir:
asintóticamente (para valores muy grandes de 
n), f y g crecen de forma similar.



26

Notación Asintótica

 Notación little-oh:   o (g(x))

Decimos que f es o-pequeña respecto g, 
f(x) = o(g(x)), cuando x → ∞ si

limx→∞ |f(x)/g(x)| = 0.



27

Notación Asintótica

Típicamente vamos a tener:

f(x) = O(g(x)) => g(x) = Ω(f(x))

f(x) = Ω(g(x)) => g(x) = O(f(x))

f(x) = o(g(x))  => g(x) = Ω(f(x))  y 
limx→∞ |g(x)/f(x)| = ∞

f(x) = Θ(g(x)) <=>  g(x) = Θ(f(x))

Si f(x) = Θ(g(x)) y  limx→∞ |g(x)/f(x)| = 1, 
f y g son asintóticamente equivalentes.



28

Ejemplos

 Ejemplo 1:  Estudiar la relación 
asintótica entre las funciones
f(n) = n3 - n + 1 g(n) = n3

 Ejemplo 2:  ¿Qué es f(n) = O(log n)?

 Ejemplo 3:  ¿Qué significa f(n) = O(1)?



29

Ejemplos

 Ejemplo 4:  ¿Cuál función es mayor?
f(n) = log n g(n) = sqrt(n)

 Ejemplo 5:  ¿Cuál es mayor?
f(n) = 0.5n1.5 g(n) = 25n log10 n

 Ejemplo 6:  ¿Cuál es mayor?
f(n) = n3 + 5 g(n) = n3 - 1



30

Ejemplos

 Ejemplo 7:  ¿Cuál es mayor?
f(n) = n1000 g(n) = 5n

 Ejemplo 8:  ¿Cuál es mayor?
f(n) = 10n g(n) = nn

 Ejemplo 9:  ¿Qué es mayor?
f(n) = nn g(n) = n!



31

Ejemplos

 Ejemplo 10:  Hay dos algoritmos A y B, 
con tiempos de ejecución
TA(n) = 5n log10 n ms
TB(n) = 25n ms

 ¿Cuál es mejor asintóticamente?

 Cuál es mejor para resolver un problema 
de tamaño n=512?



32

Growth ratio

 O(log(n))

 O(√n)

 O(n)

 O(nlog(n))

 O(n2)

 O(n3)

 …

 O(2n)

 O(3n)

 O(10n)

 …

 O(nn)

 O(n!)



33

 O(1)  hacer una operación arit.

 (log(n))  búsqueda binaria

 O(n)  búsqueda lineal

 O(nlog(n)) MergeSort

 O(n2)  suma de matrices,
   shortest path entre 2 nodos
   Knapsack problem

 O(n3)  producto de matrices
   Dijkstra en grafo completo

 O(kn)  optimización finita exhaustiva
   n-queens
O(n!)  determinante por cofactores
   traveling salesman problem
   

Ejemplos: Growth


	Diapositiva 1
	Diapositiva 2: Análisis de Algoritmos
	Diapositiva 3: Inputs: Ejemplos
	Diapositiva 4: Inputs: Ejemplos
	Diapositiva 5: Tiempo de Ejecución
	Diapositiva 6: Ejemplo 1
	Diapositiva 7: Ejemplo 1
	Diapositiva 8: Sumas útiles
	Diapositiva 9: Ejemplo 2
	Diapositiva 10: Ejemplo 2
	Diapositiva 11: Ejemplo 3
	Diapositiva 12: Ejemplo 4
	Diapositiva 13: Tiempo de Ejecución
	Diapositiva 14: Escenarios
	Diapositiva 15: Ejemplo
	Diapositiva 16: Ejemplo
	Diapositiva 17: Ejemplo
	Diapositiva 19: Notación Asintótica
	Diapositiva 20: Notación Asintótica
	Diapositiva 21: Notación Asintótica
	Diapositiva 22: Notación Asintótica
	Diapositiva 23: Notación Asintótica
	Diapositiva 24: Notación Asintótica
	Diapositiva 25: Notación Asintótica
	Diapositiva 26: Notación Asintótica
	Diapositiva 27: Notación Asintótica
	Diapositiva 28: Ejemplos
	Diapositiva 29: Ejemplos
	Diapositiva 30: Ejemplos
	Diapositiva 31: Ejemplos
	Diapositiva 32: Growth ratio
	Diapositiva 33

