Máquinas de Turing III (*Turing Machines*)

Alan Reyes-Figueroa Teoría de la Computación

(Aula 24) 30.octubre.2024

Restricciones
Extensiones
Modelos de programación

Resumen

- A primera vista, las máquinas de Turing no parecen muy poderosas.
 - ☐ ¿Realmente pueden hacer todo lo que un computador puede hacer?
- Discutimos algunas modificaciones para convencernos del potencial de las MT y que pueden simular a cualquier computador.

Resumen

- Necesitamos estudiar las restricciones en el modelo básico de una máquina de Turing (e.g., cintas infinitas sólo en una dirección).
- Asumiendo una forma restricta hace más simple el hablar de simular máquinas de Turing.
 - □ Esto es esencial para exhibir un lenguaje que no sea recursivamente enumerable.

Resumen

- También necesitamos estudiar generalizaciones del modelo básico de máquina de Turing.
- □ Necesitamos argumentar que no existe un modelo más poderoso en el caso de "computar" cosas.
 - ☐ Ejemplo: Una máquina de Turing nodeterminista con 50 cintas 6-dimensionales no es mejor que el modelo básico.

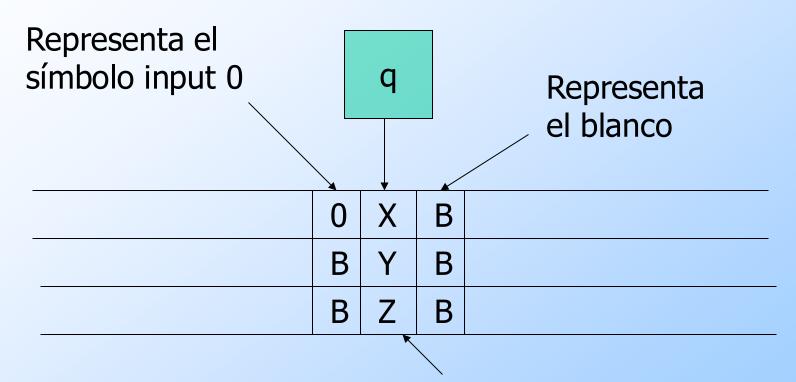
Modelo: Tracks múltiples

Pensar en símbolos de cinta como vectores de k componentes.

$$X = (X_1, X_2, X_3, ..., X_k)$$

- □ Cada componente X_i se elige dentro de un alfabeto Γ_i .
- □ Esto hace que el modelo tenga aparentemente k *pistas* (o *tracks*).
- □ Hacemos los símbolos input blancos en todas, excepto en una de las pistas.

Tracks múltiples



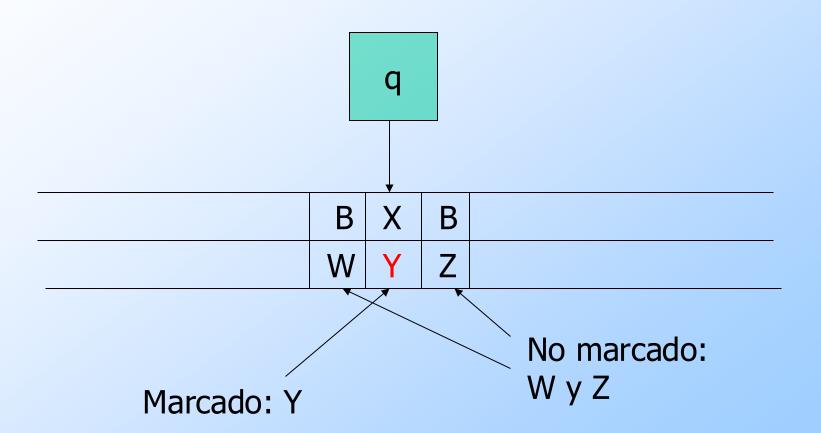
Representa un símbolo [X, Y, Z]

δ:
$$Q \times (\Gamma_1 \times ... \times \Gamma_k) \rightarrow Q \times (\Gamma_1 \times ... \times \Gamma_k) \times D$$

Truco: Marcaje

- Un uso común para las cintas o tracks adicionales es el de *marcar* ciertas posiciones.
- □ Casi todos las celdas tienen una B (blank) en esta pista, pero varios tienen símbolos especiales (marcas) que permiten a la máquina encontrar lugares particulares en la cinta.

Marcaje



Truco: Almacenamiento en caché

- ☐ En inglés (*caching in the state*)
- ☐ El estado puede también ser un vector.
- □ La primera componente es el *estado* control (control state).
- □ Las otras componentes guardan información de un alfabeto finito.

Ejemplo: usando los trucos

- Construimos una máquina de Turing que copia su entrada input w de manera infinita.
- Estados control:
 - q: Marca la posición actual y recuerda los símbolos input vistos.
 - p: Corre a la derecha, recordando el símbolo y buscando una B. Escribe este símbolo.
 - r: Corre a la izquierda, buscando la marca.

Ejemplo

- Los estados tienen la forma [x, Y], donde
 - □ x es q, p, ó r
 - ☐ Y es 0, 1, ó B.
 - □ Sólo p usa los símbolos 0 y 1.
- Los símbolos de cinta son de la forma [U, V], donde
 - □ U es X (la "marca") ó B.
 - □ V es 0, 1 (los símbolos input) ó B.
 - □ [B, B] es el blanco de la máquina de Turing;[B, 0] y [B, 1] son los inputs.

Función de Transición

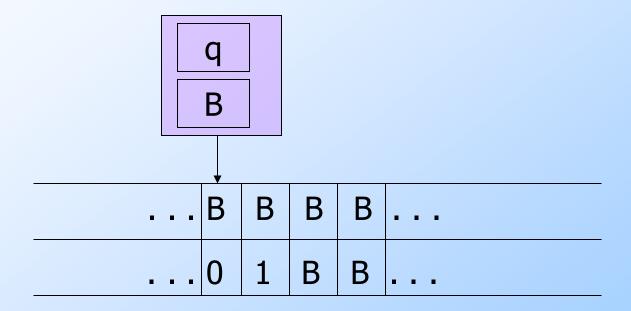
- □ Convención: a y b cada uno representa "ó 0 ó 1." (exclusivo)
- $\square \delta([q,B], [B,a]) = ([p,a], [X,a], R).$
 - □ En el estado q, copiamos el símbolo input bajo el lector (i.e., a) en el estado.
 - Marcamos la posición de lectura.
 - □ Vamos al estado p, y nos movemos a la derecha.

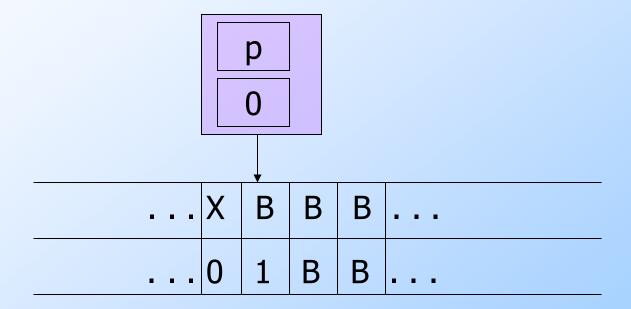
Función de Transición

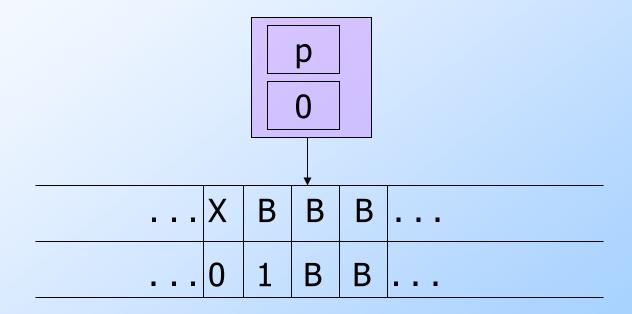
- \square δ([p,a], [B,b]) = ([p,a], [B,b], R).
 - En el estado p, hacia la derecha, buscamos un blanco (no sólo B en la pista de marcas).
- $\square \delta([p,a], [B,B]) = ([r,B], [B,a], L).$
 - □ Cuando encontramos la B, la reemplazamos por el símbolo (a) guardado en la "cache".
 - □ Vamos al estado r y nos movemos a la izq.

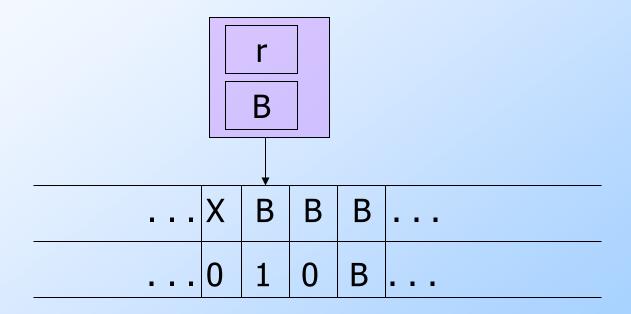
Función de Transición

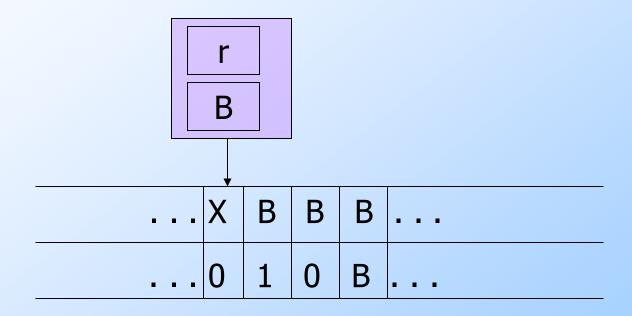
- $\square \delta([r,B], [B,a]) = ([r,B], [B,a], L).$
 - □ En el estado r, nos movemos a la izquierda, buscando la marca.
- $\square \delta([r,B], [X,a]) = ([q,B], [B,a], R).$
 - Cuando hallamos la marca, vamos al estado q y nos movemos a la derecha.
 - □ Removemos la marca de donde estaba.
 - q pondrá una nueva marca, y el ciclo se repite.

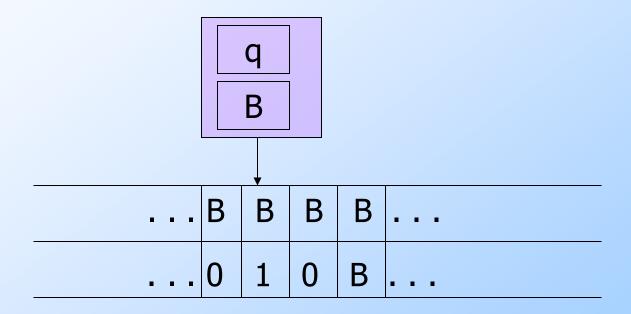


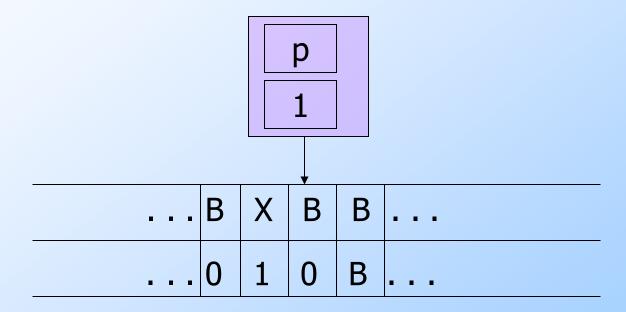


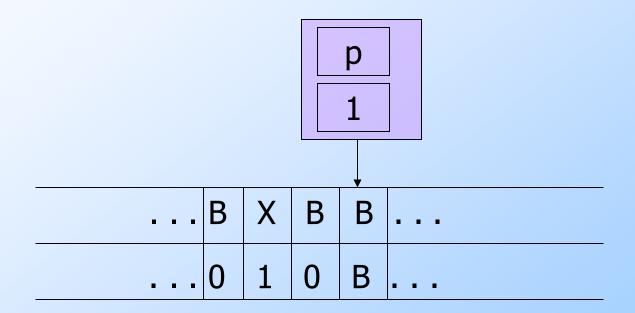


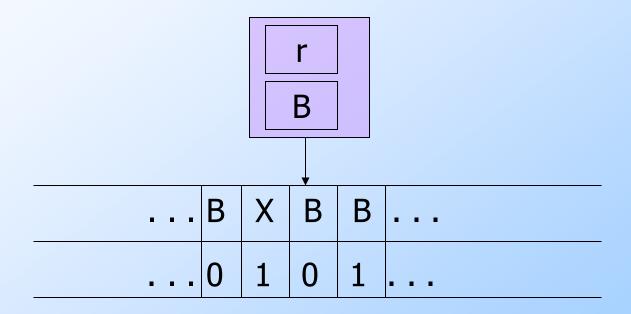


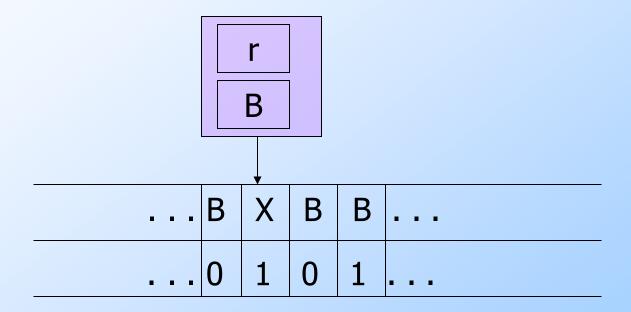


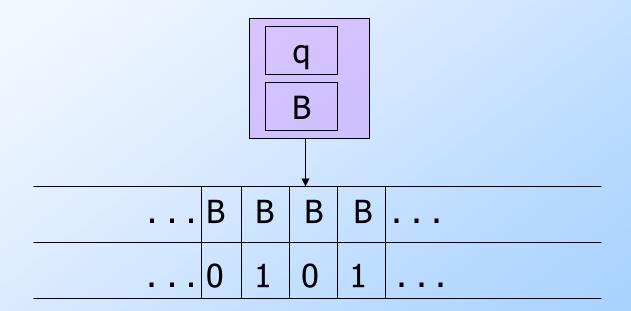


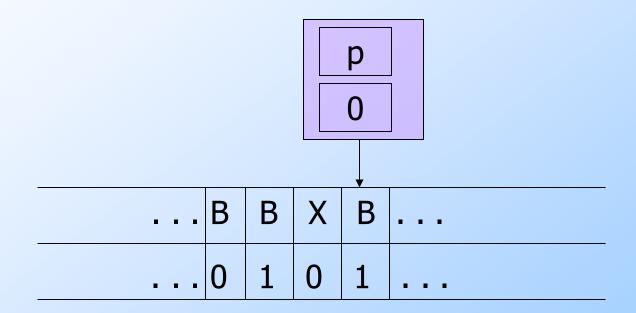








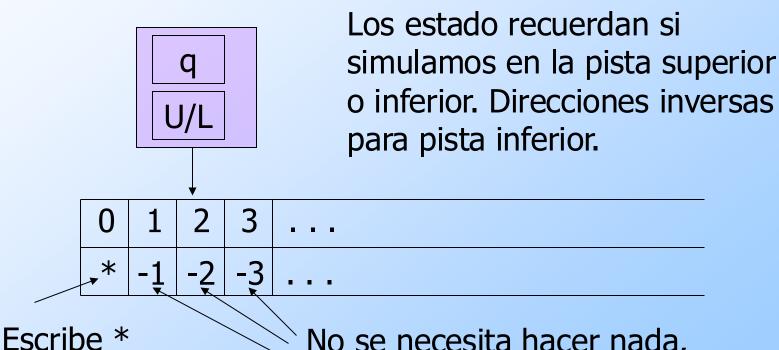




Cintas Semi-infinitas

- Podemos asumir que la máquina de Turing nunca se mueve a la izquierda de la posición inicial del lector.
- Denotamos esta posición por 0; las celdas a la derecha son las 1, 2, ... y las celdas a la izquierda son las -1, -2, ...
- La nueva máquina de Turing tiene dos pistas:
 - ☐ La 1ra guarda las celdas 0, 1, 2, ...
 - □ La 2da guarda el marcador, celdas -1, -2, ...

Simulando Cinta Infinita con una Cinta Semi-infinita



Aquí en la 1a movida.

No se necesita hacer nada, ya que éstos son B al inicio.

Más Restricciones – Read in Text

- Dos stacks pueden simular una cinta.
 - Uno guarda las posiciones a la izquierda del lector; el otro guarda las posiciones a la derecha.
- De hecho, definimos ambos stacks como counters = sólo dos símbolos de stack, uno de los cuales sólo aparece en el segundo.

Extensiones

La idea es construir modelos de máquinas de Turing más generales (o con más capacidad) que la máquina de Turing estándar.

- 1. Máquinas multi-cinta.
- 2. Máquinas de Turing no-deterministas.
- 3. Guardar pares de key-values.

Máquinas multi-cinta

- □ Permitimos a una máquina de Turing poseer k cintas, (k ≥ 1).
- Los movimientos de la máquina dependen del estado, y de todos los símbolos bajo los k lectores de cinta.

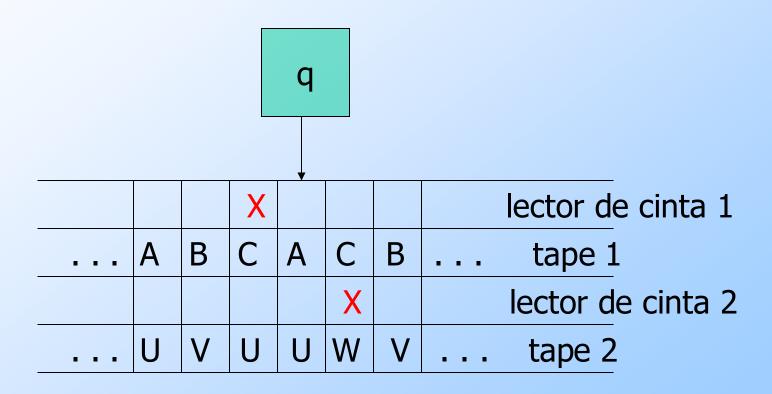
$$\delta: \mathbb{Q} \times \Gamma^k \to \mathbb{Q} \times \Gamma^k \times \mathbb{D}^k$$

En una movida, la máquina puede cambiar de estado, escribir en cada una de las cintas, y mover cada lector de manera independiente.

Simulando k cintas con una

- ☐ Usamos 2k pistas.
- Cada cinta de la máquina multi-cinta se representa por un track diferente.
- La posición del lector en cada cinta se representa por una marca en un track adicional.

Simulación multi-cinta



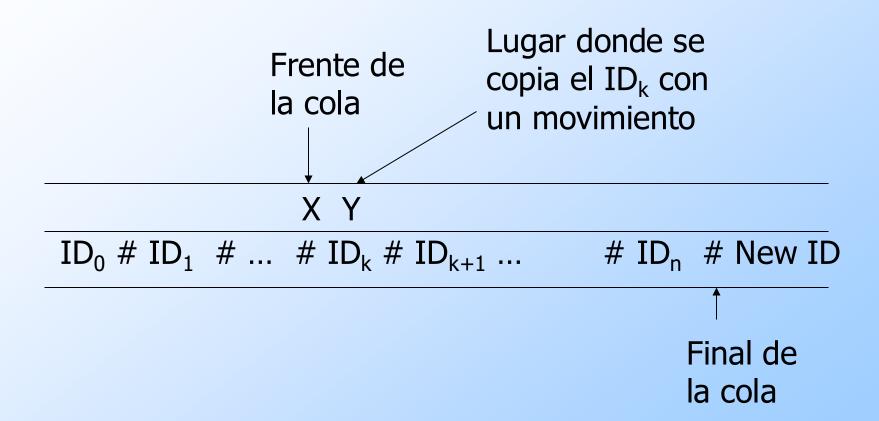
MT no-deterministas

- Permiten a la máquina de Turing la opción de moverse o no moverse, en cada paso.
 - □ Cada elección es una tripla (q,Y,d) (estado, símbolo, dirección), al igual que en el caso determinístico.
- La máquina acepta su input w si alguna secuencia de movimientos conduce a un estado de aceptación.

Simular una MTN por una MTD

- La máquina determinista MTD mantiene en su cinta una cola con los ID's de la MTN.
- Una segunda pista se utiliza para marcar ciertas posiciones:
 - 1. Una marca para el ID en el inicio de la cola.
 - Una marca para copiar el ID del inicio y hacer un movimiento.

Cinta de la MTD



Simular la MTD

- La máquina determinista MTD encuentra el ID en en inicio de la cola.
- Busca el estado en ese ID para poder determinar los movimientos permitidos desde ese ID.
- Si hay m movimientos posibles, crea m nuevos ID, uno para cada movimiento, al final de la cola.

Operación de la MTD

- Los m nuevos ID se crean uno a la vez.
- Una vez creados, el marcador de la parte delantera de la cola se mueve un ID hacia la parte trasera de la cola.
- Sin embargo, si una ID creada tiene un estado de aceptación, I MTD acepta y se detiene.

¿Por qué la construcción MTN --> MTD funciona?

- Hay un límite superior, digamos k, en el número de movimientos posibles de la MTN para cualquier combinación de estado/símbolo.
- □ Por lo tanto, cualquier ID accesible desde el ID inicial mediante n movimientos de la MTN será construida por la MTD después de construir como máximo (kⁿ⁺¹-k)/(k-1) ID's.

Sum of $k+k^2+...+k^n$

¿Por qué?

- □ Si la MTN acepta, lo hace en alguna secuencia de n opciones de movimiento.
- Por lo tanto, el ID con un estado de aceptación será construido por la MTD en un gran número de sus propios movimientos.
- Si la MTN no acepta, no hay forma de que la MTD acepte.

Ventaja de las Extensiones

- Ahora tenemos una muy buena situación:
- Cuando discutimos la construcción de las MT particulares que toman otras MT como entrada, podemos asumir que la MT de entrada es lo más simple posible.
- Por ejemplo, una cinta, cinta semi-infinita, determinista.
- Pero la MT simuladora puede tener muchas cintas, ser no determinista, etc.

Computadores

- □ Recordemos que, dado que una computadora real tiene una memoria finita, en cierto sentido es más "débil" que una Máquina de Turing.
- □ Imaginemos una computadora que almacena (infinitos) pares del tipo (nombre, valor) = (key, value).
 - □ Generaliza un espacio de direcciones.

Simulando un Key-Value Store mediante una MT

- La MT utiliza una de varias cintas para contener una secuencia arbitrariamente grande de pares de (nombre, valor) en el formato #nombre*valor #...
- Marcamos, usando una segunda pista, el extremo izquierdo de la secuencia.
- Una segunda cinta puede contener un nombre cuyo valor queremos buscar.

Búsqueda

- Comenzando en el extremo izquierdo del store, comparamos el nombre de búsqueda (key) con cada nombre en el store.
- □ Cuando encontramos una coincidencia, tomamos lo que sigue entre el * y el siguiente # como valor.

Inserción

- Supongamos que queremos insertar un par key-value (k,v) o reemplazar el valor actual asociado con la etiqueta k por v.
- Realizamos una búsqueda del nombre k. Si no lo encuentra, agregamos k*v# al final del store.

Inserción

- ☐ Si encontramos #n*v'#, necesitamos reemplazar v' por v.
- Si v es más corto que v', podemos dejar espacios en blanco para completar el reemplazo.
- Pero si v es más largo que v', necesitaremos hacer espacio.

Inserción

- □ Usamos una tercera cinta para copiar todo desde la primera cinta a la derecha de v'.
- Marcamos la posición del * a la izquierda de v' antes de hacer esta copia.
- Copiamos de la tercera cinta a la primera, dejando suficiente espacio para v.
- □ Finalmente, escribimos v donde estaba v'.