Modelacién y Simulacién 2025
Lab 07
30.octubre.2025

En las clases anteriores hemos aprendido cémo simular y generar una muestra de una variable aleatoria X, a partir de una variable
uniforme. En este lab, investigaremos como construir un generador de una variable uniforme Y ~ Unif (0, 1).

1. (Generador Pseudoaleatorio Uniforme).
Implementar un generador de nimeros pseudo-aleatorios de tipo LCG (linear congruential generator), para generar

a) una muestra uniforme finita con valores x1, 2o, ..., Zp.

b) una muestra de una distribucién uniforme Unif(0, 1).

Defina usted los pardmetros: el médulo m, las constantes 0 < a,c < m, y el tamano N de la muestra generada, y repita sus
experimentos para 2 conjuntos diferentes de pardmetros.

En ambos casos, muestre estadisticos, histogramas y elabore una prueba de hipdtesis para contrastar la muestra generada
contra la muestra requerida, para determinar el buen funcionamiento del generador pseudo aleatorio. Use como tamaiio de
muestra un valor adecuado de N.

2. (Mersenne Twister).
Investigar e implementar en Python un generador aleatorio de tipo Mersenne Twister para generar una distribucién uniforme
Unif(0,1).

Igual que en el ejercicio anterior, muestre estadisticos, histogramas y elabore una prueba de hipdtesis para contrastar la
muestra generada contra la muestra tedrica, para determinar el buen funcionamiento del generador pseudo aleatorio. Use
como tamano de muestra un valor adecuado de N.

3. (Tests NIST SP 800-22).
Para determinar si un generador pseudo-aleatorio cumple estdndares de calidad, se recomienda aplicarle una bateria de pruebas
estadisticas que evalie uniformidad, independencia y ausencia de patrones deterministas en la secuencia generada.

Por ejemplio, la publicacién A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications describe una serie de 15 pruebas estadisticas que evaliian distintas propiedades de una secuencia binaria: fre-
cuencia, autocorrelacion, bloques, etc.
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software?utm_source=chatgpt!
com

Investigar cémo implementar en Python la bateria de pruebas NIST SP 800-22, y aplicarlas a una lista de 1,000,000 de bits
aleatorios generados con el CLG y el Mersenne Twister de los Ejercicios 1 y 2. En Python se puede llamar a las librerias
sts-pylib, nistrng, sp80022suite u otras que ya incluyen estos tests.

Elabore una tabla en donde se vea el desempeiio de los generadores en cada uno de los test anteriores, junto con el p-value
obtenido y concluya cudl de los dos métodos se desempeiia mejor.


https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software?utm_source=chatgpt.com
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software?utm_source=chatgpt.com

4. (Comparar muestras de una Geométrica).
Para una distribucién geométrica Geom(p), generar una muestra aleatoria de tamafio N usando la libreria scipy.stats,
a la cual llamaremos la muestra tedrica. Luego, generar una muestra del mismo tamaiio, pero usando el algoritmo de la
transformada integral. A esta le llamaremos la muestra empirica.

Comparar ambas muestras usando las prueba de Chi Cuadrado y la prueba de Kolmogorov-Smirnov. ;Qué concluye? ;Se
pueden considerar como muestras de una misma distribucién? Explique sus conclusiones a partir de las pruebas de hipdtesis.
Use un nivel de confianza de a = 0.05.

5. (Comparar muestras de una Normal) Para una distribucién normal N (u,0?), generar una muestra aleatoria de tamafio
N usando la libreria scipy.stats, a la cual llamaremos la muestra tedrica. Luego, generar una segunda muestra del mismo
tamafio (llamada la muestra empirica), pero usando el algoritmo de la transformada integral.

Comparar ambas muestras usando las prueba de Chi Cuadrado y la prueba de Kolmogorov-Smirnov. ;Qué concluye? ;Se
pueden considerar como muestras de una misma distribucién? Explique sus conclusiones a partir de las pruebas de hipdtesis.
Use un nivel de confianza de o = 0.05.



