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Búsqueda en Línea
Estudiamos ahora la convergencia global para el caso del algoritmo de búsqueda en
línea, usando las condiciones de Wolfe o de Goldstein. La propiedad clave es estudiar el
ángulo entre dk y −∇ f (xk):

cosφk = − ∇ f (xk)
Tdk

||∇ f (xk)|| ||dk||
.

El siguiente resultado cuantifica el efecto de elgir apropiadamente el tamaño de paso
αk. También describe qué tan lejos dk puede desviarse de −∇ f (xk), y aún producir
convergencia global.

Teorema (Zoutendijk)
Sea f : Rn → R diferenciable, con ∇ f Lipschitz sobre un abierto U que contiene al
conjunto de subnivel Sf0 = {x ∈ Rn : f (x) ≤ f (x0)}, con constante de Lipschitz γ.
Entonces ∑

k≥0
cos2 φk ||∇ f (xk)||2 < ∞,
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Búsqueda en Línea
si xk se construye con descenso y búsqueda en línea usando Wolfe-Backtracking.
Prueba: De la segunda condición de Wolfe (6),

∇ f (xk + αk dk)
Tdk ≥ c2 ∇ f (xk)

Tdk,

tenemos que(
∇ f (xk + αk dk)−∇ f (xk)

)Tdk ≥ c2 ∇ f (xk)
Tdk −∇ f (xk)

Tdk = (c2 − 1)∇ f (xk)
Tdk.

Por otro lado, la condición de Lipschitz (+ Cauchy-Schwarz) implican(
∇ f (xk + αk dk)−∇ f (xk)

)Tdk ≤ ||∇ f (xk + αk dk)
T −∇ f (xk)|| · ||dk||

≤ γ ||αk dk|| · ||dk|| = γ αk ||dk||2.
Combinando ambos resultados,

αk ≥
(
∇ f (xk + αk dk)−∇ f (xk)

)Tdk

γ ||dk||2
≥ (c2 − 1)∇ f (xk)

Tdk
γ ||dk||2

.

Sustituyendo esta última desigualdad en la primer condición de Wolfe, obtenemos
f (xk + αk dk) ≤ f (xk) + c1 αk ∇ f (xk)

Tdk ≤ f (xk)− c1(1−c2)
γ ||dk||2

(
∇ f (xk)

Tdk
)2
.
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Búsqueda en Línea
Haciendo A = c1(1−c2)

γ , podemos escribir lo anterior como
f (xk+1) ≤ f (xk)− A cos2 φk ||∇ f (xk)||2, k = 0, 1, 2, . . .

Sumando sobre todos los índices ≤ k, resulta

f (xk+1) ≤ f (x0)− A
k∑

j=0
cos2 φj ||∇ f (xj)||2, k = 0, 1, 2, . . .

Como f es limitada inferiormente, si b es una cota inferior para f , entonces
f (x0)− f (xk+1) < f (x0)− b < ∞. Luego,

A
k∑

j=0
cos2 φj ||∇ f (xj)||2 ≤ f (x0)− f (xk+1) < ∞, ∀k ∈ N.

Tomando k → ∞, la serie
∞∑

j=0
cos2 φj ||∇ f (xj)||2 converge.
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Obs! Un resultado similar se obtiene para las condiciones fuertes de Wolfe, y para las
condiciones de Goldstein. En todos los casos, la selección del tamaño de paso implica la
condición de Zoutendijk: ∑

k≥0
cos2 φk||∇ f (xk)||2 < ∞.

La condición de Zoutendijk implica que lim
k→∞

cos2 φk||∇ f (xk)||2 = 0, y portanto

lim
k→∞

cosφk||∇ f (xk)|| = 0.

Si la elección de dk asegura en cada paso que el ángulo φk está lejos de 90°, entonces
existe δ > 0 tal que

cosφk ≥ δ > 0, ∀k ≥ 0.

De ahí, δ lim
k→∞

||∇ f (xk)|| ≤ lim
k→∞

cosφk||∇ f (xk)|| = 0 =⇒ lim
k→∞

||∇ f (xk)|| = 0.
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Búsqueda en Línea
Corolario (Convergencia Global Wolfe/Goldstein-Backtracking)
Si f : Rn → R es diferenciable, con ∇ f Lipschitz en el conjunto de subnivel
Sf0 = {x ∈ Rn : f (x) ≤ f (x0)}, con f limitada inferiormente; y la dirección de descenso dk
se elige de modo que cosφk ≥ δ > 0, para todo k ≥ 0, entonces el algoritmo de
Backtracking con condiciones de Wolfe (o de Goldstein) converge a un punto
estacionario x∗, con ∇ f (x∗) = 0.

Observaciones:
• Para métodos de búsqueda en línea, la convergencia global (i.e. ∇ f (xk) → 0 es el

mejor resultado de convergencia que puede obtenerse.
• No se puede garantizar convergencia a un mínimo de f , sólo a un punto

estacionario. Salvo que se introduzca alguna condición sobre la curvatura sobre dk
(e.g. curvatura positiva o convexidad en la dirección de dk, a partir del Hessiano
D2f (xk), puede fortalecerse el resultado anterior para asegurar convergencia a un
mínimo.

Convergencia Búsqueda en Línea | Alan Reyes-Figueroa Page 5



Búsqueda en Línea
Para los métodos de tipo Newton o quasi-Newton,

xk+1 = xk − B−1
k ∇ f (xk),

suponga que Bk es positiva definida y con número de condición limitado

κ = κ(Bk) = ||Bk|| · ||B−1
k || ≤ M, ∀k ∈ N.

Entonces de las propiedades de norma matricial, ||Ax|| ≤ ||A|| · ||x||, y de Cauchy-Schwarz
|yTx| ≤ ||x|| · ||y||, tenemos

cosφk = − ∇ f (xk)
Tdk

||∇ f (xk)|| · ||dk||
=

|∇ f (xk)
Tdk|

||Bkdk|| · ||B−1
k ∇ f (xk)||

≥ ||∇ f (xk)|| · ||dk||
||Bk|| · ||∇ f (xk)|| · ||B−1

k || · ||dk||

≥ 1
||Bk|| · ||B−1

k ||
=

1
M .

Luego, de la condición de Zoutendijk, tenemos
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Corolario (Convergencia Global de los métodos quasi-Newton)
Sea f : Rn → R diferenciable, con ∇ f Lipschitz en el conjunto de subnivel
Sf0 = {x ∈ Rn : f (x) ≤ f (x0)}, y con f limitada inferiormente. Si para todo k ∈ N, Bk es
positiva definida y tiene número de condición limitado κ(Bk) ≤ M, y αk satisface las
condiciones de Wolfe o de Goldstein, entonces la iteración

xk+1 = xk − αk,B−1
k ∇ f (xk),

satisface limk→∞ ||∇ f (xk)|| = 0, y el método converge a un punto estacionario.
Para otros métodos como el gradiente conjugado, veremos que es posible probar la
condición débil lim infk→∞ ||∇ f (xk)|| = 0, y que sólo una subsecuencia de gradientes
converge a 0.
Usando la condición de Zoutendijk, aún es posible probar algo útil:
Prueba: Suponga que lim infk→∞ ||∇ f (xk)|| = γ > 0. Entonces existe k0 ∈ N tal que
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∇ f (xk) ≥ γ, para k ≥˛0.
Como ∞∑

k=0
cos2 φk||∇ f (xk)||2 < ∞ =⇒ lim

k→∞
cos2 φk||∇ f (xk)||2 = 0,

luego se tiene que cos2 φk → 0, y portanto cosφk → 0.
Para mostrar tal afirmación, basta que una subsecuencia {cosφkj} esté limitada lejos de
0.
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Búsqueda en Línea
Definición
Sea {xk} ⊂ Rn una secuencia de puntos tales que xk → x∗ ∈ Rn, para la cual existen
constantes M > 0, α > 0, tales que

||xk+1 − x∗||
||xk − x∗||α

≤ M, para todo k ∈ N, (1)

o equivalentemente
||xk+1 − x∗|| ≤ M ||xk − x∗||α, para todo k ∈ N. (2)

Decimos que {xk} converge a x∗ con orden α, o que {xk} tiene orden de convergencia α.

• Si α = 1, decimos que {xk} tiene convergencia lineal.
• Si α = 2, decimos que {xk} tiene convergencia cuadrática.
• Si 0 < α < 1, decimos que {xk} tiene convergencia sub-lineal.
• Si 1 < α < 2, decimos que {xk} tiene convergencia super-lineal.
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Búsqueda en Línea
Hemos visto que tomar dk de modo que cosφk sea mayor que cierta constante δ > 0. Sin
embargo estos criterios no son deseables por varias razones:

• impiden una tasa de convergencia rápida,
• mala elección de δ en caso de Hessianos mal condicionados,
• estos test angulares destruyen las propiedades de invarianza en los métodos

quasi-Newton.

Tasa de Convergencia para Descenso Gradiente:
Consideremos el caso ideal donde la función objetivo es cuadrática

f (x) = 1
2x

TQx− bTx,

con Q ∈ Rn×n simétrica y positiva definida. El gradiente es ∇ f (x) = Qx− b, y en el
mínimo global x∗, se satisface Qx∗ = b.
Calculamos el tamaño de paso óptimo αk que minimiza la función

φ(α) = f (xk − α∇ f (xk)).
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Búsqueda en Línea
φ′(α) = Df

(
xk − α∇ f (xk)

)
(−∇ f (x)) =

[
Q
(
xk − α∇ (xk)

)
− b

]
(−∇ f (xk))

= −∇ f (k)
T(Qxk − αQ∇ f (xk)− b

)
= −∇ f (k)

T(∇ f (xk)− αQ∇ f (xk)
)

= 0.
Luego

αk =
∇ f (xk)

T∇ f (xk)

∇ f (xk)TQ∇ f (xk)
.

Usando este tamaño de paso óptimo, la iteración de descenso máximo resulta

xk+1 = xk −
( ∇ f (xk)

T∇ f (xk)

∇ f (xk)TQ∇ f (xk)

)
∇ f (xk). (3)

Como ∇ f (xk) = Qxk − b, la ecuación (3) produce una fórmula cerrada para xk+1.
Para calcular la tasa de convergencia, usamos la norma ||x||2Q = xTQx. De Qx∗ = b,
1
2 ||x− x∗||2Q = 1

2 (x− x∗)TQ(x− x∗) = 1
2x

TQx− xTQx∗ + 1
2 (x

∗)TQx∗

= 1
2x

TQx− xTQx∗ − 1
2 (x

∗)TQx∗ + (x∗)TQx∗ = 1
2x

TQx− bTx− 1
2 (x

∗)TQx∗ + bTx∗

= f (x)− f (x∗).
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Búsqueda en Línea
Esta norma mide la diferencia entre el valor actual de f y el valor óptimo. Ahora, como
∇ f (xk) = Qxk − b = Q(xk − x∗), entonces
||xk+1 − x∗||2Q − ||xk − x∗||2Q = 2

(
f (xk+1 − f (x∗)

)
− 2

(
f (xk)− f (x∗)

)
= 2

(
f (xk+1)− f (xk)

)
= (xT

k+1Qxk+1 − 2bTxk+1)− (xT
kQxk − 2bTxk)

=
(
xk − αk ∇ f (xk)

)TQ
(
xk − αk ∇ f (xk)

)
− 2bT(xk − αk ∇ f (xk)

)
−xT

kQxk + 2bTxk

= xT
kQxk − 2αk ∇ f (xk)

TQxk + α2
k ∇ f (xk)

TQ∇ f (xk)

+2αk bT∇ f (xk)− xT
kQxk

= α2
k ∇ f (xk)

TQ∇ f (xk)− 2αk ∇ f (xk)
T (Qxk − b)︸ ︷︷ ︸

=∇ f (xk)

= −
(
∇ f (xk)

T∇ f (xk)
)2

∇ f (xk)TQ∇ f (xk)
.
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Búsqueda en Línea
y como

||xk − x∗||2Q = (xk − x∗)TQ(xk − x∗) = ∇ f (xk)
TQ−1QQ−1∇ f (xk) = ∇ f (xk)

TQ−1∇ f (xk),

entonces
||xk+1 − x∗||2Q = +||xk − x∗||2Q +

(
||xk+1 − x∗||2Q − ||xk − x∗||2Q

)
= ∇ f (xk)

TQ−1∇ f (xk)−
(
∇ f (xk)

T∇ f (xk)
)2

∇ f (xk)TQ∇ f (xk)

=
(

1 −
(
∇ f (xk)

T∇ f (xk)
)2

(∇ f (xk)TQ∇ f (xk))(∇ f (xk)TQ−1∇ f (xk))

)
(∇ f (xk)

TQ−1∇ f (xk))

=
(

1 −
(
∇ f (xk)

T∇ f (xk)
)2

(∇ f (xk)TQ∇ f (xk))(∇ f (xk)TQ−1∇ f (xk))

)
||xk − x∗||2Q. (4)

Esta ecuación describe la tasa exacta de descenso de f en cada iteración. El término
entre paréntesis es difícil de interpretar, y es más útil acotar éste por una condición más
simple.
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Teorema (Desigualdad de Kantorovich)
Sea Q ∈ Rn×n simétrica y positiva definida, con autovalores λ1 ≥ . . . ≥ λn > 0. Para todo
x ∈ Rn, x ̸= 0, vale

(xTx)2

(xTQx)(xTQ−1x)
≥ 4λ1λn

(λ1 + λn)2 .

Prueba: Por el Teorema Espectral, Q admite una descomposición Q = UΛUT , con
Λ = (λ1, . . . , λn) y U ∈ O(n) ortogonal.
Haciendo el cambio de coordenadas y = UTx, tenemos
yTy = xTUUTx = xTx, xTQx = xTUΛUTx = yTΛy, xTQ−1x = xTUΛ−1UTx = yTΛ−1y. (5)

En este nuevo sistema coordenado, la expresión en el lado izquierdo de (5) es
(xTx)2

(xTQx)(xTQ−1x)
=

(yTy)2

(yTΛy)(yTΛ−1y)
=

(∑
i y2

i
)2(∑

i λiyi
)2
)
(∑

i y2
i /λi

)2 .
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Haciendo zi = y2

i /
∑

j y2
j (normalización en los y2

j ), tenemos
(xTx)2

(xTQx)(xTQ−1x)
=

(
∑

i y2
i )

2

(
∑

i λiyi)2)(
∑

i y2
i /λi)2 =

1/
∑

i λizi∑
i zi/λi

=
u(z)
v(z) .

Así, la expresión de interés es cociente de dos funciones convexas: una combinación de
los λi; la otra, combinación de los 1/λi. Consideramos la función 1

λ . Como
λn ≤

∑
i ziλi ≤ λ1, entonces u(z) = 1/

∑
i ziλi es un punto arriba de esa curva.

Por otro lado, v(z) =
∑

i zi/λi es una combinación conveza de puntos sobre esa curva ⇒
el valor está restricto al área sombreada.
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Para x ∈ Rn fijo, el mínimo de u(z)

Υ(z)
correspode a un valor λ = tλ1 + (1 − t)λn, con

0 ≤ t ≤ 1. Usndo la relación t
λ1

+ 1−t
λn

= tλn+(1−t)λ1
λ1λn

, podemos escribir
u(z)
v(z) ≥ lim inf

λ1≤λ≤λn

1/(tλ1 + (1 − t)λn)

(tλn + (1 − t)λ1)/λ1λn
.

El mínimo de esta relación se alcanza cuando t = 1
2 (basta derivar en t!). Así,

λ =
λ1 + λn

2 =⇒ u(z)
v(z) ≥ 2/(λ1 + λn)

(λ1 + λn)/2λ1λn
=

4λ1λn
(λ1 + λn)2 .

Teorema (Error en Descenso Gradiente, caso cuadrático)
Sea f (x) = 1

2x
TQx− bTx, con Q ≻ 0 y autovalores λ1 ≥ . . . ≥ λn > 0. Para todo x0 ∈ Rn, el

método de descenso gradiente converge a un mínimo x∗ de f . Más aún, si se toma αk el
tamaño de paso óptimo, entonces

||xk+1 − x∗||2Q ≤
(λ1 − λn
λ1 + λn

)2
||xk − x∗||2Q. (6)
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Prueba: De la observación anterior (4), y la desigualdad de Kantorovich (5),

||xk+1 − x∗||2Q ≤
(

1 − (∇ f (xk)
T∇ f (xk))

2

(∇ f (xk)TQ∇ f (xk))(∇ f (xk)TQ−q∇ f (xk))

)
||xk − x∗||2Q

≤
(

1 − 4λ1λn
(λ1 + λn)2

)
||xk − x∗||2Q =

(λ1 − λn
λ1 + λn

)2
||xk − x∗||2Q.

Observaciones:
• La convergencia se sigue del hecho que

(
λ1−λn
λ1+λn

)2
< 1. (Recordar el Teorema de

Punto Fijo de Banach, para contracciones). En consecuencia ||xk − x∗||Q → 0.
• La tasa de convergencia depende sólo de la cantidad r = λn

λ1
, pues(

λ1−λn
λ1+λn

)2
=

( 1−r
1+r

)2
.

• La ecuación (6) indica que el método converge linealmente a convergencia a una
tasa menor que

( 1−r
1+r

)2. Cuando λ1 = λn, el método converge en 1 paso.
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Para funciones no cuadráticas, establecemos estimativas para cuando D2f es limitada
inferiormente y superiormente, es positiva definida y aI ≤ D2f (x) ≤ AI.
Búsqueda en línea exacta:

Para cualquier xk ∈ Rn, α > 0, tenemos
f (xk − αk ∇ f (xk)) ≤ f (xk)− αk ∇ f (xk)

T∇ f (xk) +
Aα2

2 ∇ f (xk)
T∇ f (xk). (7)

Minimizando ambos lados respecto de α, la desigualdad se mantiene. Del lado derecho
∇α = (Aα− 1)∇ f (xk)

T∇ f (xk) = 0 ⇒ α = 1
A . Así,

f (xk+1) ≤ (xk)− 1
2A ||∇ f (xk)||2.

Restando el valor óptimo f ∗ = f (x∗) en ambos lados,
f (xk+1)− f ∗ ≤ f (xk)− f ∗ − 1

2A ||∇ f (xk)||2. (8)
Haciendo lo mismo para f (x) ≥ f (xk)−∇ f (xk)

T(x− xk) +
a
2 (x− xk)

T(x− xk), y
minimizando ambos lados, resulta ∇α = ∇ f (xk)− a(x− xk) = 0 ⇒ x = xk − 1

a∇ f (xk) =.
De ahí que f ∗ ≥ f (xk)− 1

2a ||∇ f (xk)||2. (9)
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Despejando −||∇ f (xk)||2 en (9) y sustituyendo en (8), resulta

f (xk+1)− f ∗ ≤ f (xk)− f ∗ − 1
2A (2a) (f ∗ − f (xk)) ≤

(
1 − a

A
)
(f (xk)− f ∗).

Portanto, obtenemos f (xk+1)− f ∗ ≤
(
1 − a

A
)
(f (xk)− f ∗). (10)

Otros casos:

En el caso de descenso gradiente con la condición de Armijo:
f (xk+1)− f ∗ ≤

(
1 − 2c1aρ

A
)
(f (xk)− f ∗). (11)

En el caso de descenso gradiente con la dirección de Newton:

Teorema (Convergencia del método de Newton)
Sea f : Rn → R clase C2, con D2f Lipschitz de constante L en una vecindad U del mínimo
x∗, con ∇ f (x∗) = 0 y D2f (x∗) ≻ 0. En la iteración de descenso gradiente con la dirección
de Newton, tenemos:
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1. si x0 está suficientemente cerca de x∗ (x0 ∈ U), entonces xk → x∗,
2. la tasa de convergencia de {xk} es cuadrática, con

||xk+1 − x∗|| ≤ L̃||xk − x∗||2, con L̃ = L ||D2f (x∗)−1||. (12)

3. la secuencia {||∇ f (xk)||} converge cuadráticamente a 0.
En el caso de descenso los métodos quasi-Newton:

Teorema (Convergencia de los métodos quasi-Newton)
Sea f : Rn → R clase C2, y considere la iteración xk+1 = xk − B−1

k ∇ f (xk), con tamaño de
paso αk = 1. Suponga que xk → x∗, con ∇ f (x∗) = 0 y D2f (x∗) ≻ 0. Entonces el método
converge super-linealmente si, y sólo si,

lim
k→∞

||Bk − D2f (xk)B−1
k ∇ f (xk)||

||B−1
k ∇ f (xk)||

= 0. (13)
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