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Busqueda en Linea

Condiciones de Goldstein:
Similares a las condiciones de Wolfe, las condiciones de Goldstein aseguran que el
tamano de paso « alcance un descenso suficiente para f. Se definen por

F(Xe) + (1= €) ar V(%) e < F(Xe + arde)™ < F(Xe) + C V F(Xe) T, (1)
para algun c € (0, J).
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La segunda desigualdad en (1) asegura un descenso suficiente, mientras que la primera
controla que «y, esté lejos de o.

Teorema (Existencia de a con Condiciones de Goldstein)

Suponga que f : R" — R es diferenciable, di, es una direccion de descenso en X, f es
limitada inferiormente sobre el rayo {X; 4+ ad, : & > 0}. Si 0 < ¢ < }, entonces existe un
intervalo para o donde se satisfacen las condiciones de Goldstein.

Prueba: Sea /(a) = (Xg) + 3 o V f(x,)"dp la recta con pendiente relativa 1V f(x,)"d.
Como f es limitada inferiormente para o > 0, existe al menos un valor o’ > 0 donde
(') = p(a’), esto es

f(e + o' di) = f(Xe) + 3 &' V f(Xe)  dp.

Comoo < c< 3, entonces1—c> 3 >c>0ycomo Vf(r)"dg < 0, tenemos
(1 - C) o Vf(Xk)Tdk < % o Vf(xk)Tdk <cad Vf(xk)Tdk.
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Sumando f(x,) a esta doble desigualdad, resulta
f(xe) + (1= ¢) &/ V(%) dp < f(Xe) + 2 &/ V(%) dp < f(Xe) + Ca’ V F(X) dp,
o equivalentemente
F(Xe) + (1= €) o’ VF(Xe) d < f(Xe + ' d) < f(Xe) + o’ V () d.
Asi, o' satisface las condiciones de Goldstein. Por la continuidad de f y de V f existe una
vecindad I de o donde se satisfacen ambas desigualdades.

Obs! Las condiciones de Wolfe y las condiciones de Goldstein poseen propiedades
teoricas similares. La desventaja practica de las condiciones de Goldstein respecto de

las de Wolfe es que las primeras pueden excluir algunos (o todos) los minimos locales
de .

Usualmente las condiciones de Goldstein se usan en los métodos de tipo Newton, y
pueden funcionar mal para métodos quasi-Newton o con hessiana modificada.
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Backtracking

La condicion de Armijo (??) por si sola no es suficiente para asegurar que el descenso
sea razonable en la direccion de blsqueda. Si el algoritmo de blisqueda en linea elige o
de forma apropiada, podemos dispensar la condicion de curvatura (??) y basta con usar
la primer condicion como criterio de paro. Este es el algoritmo llamado Backtracking.

Algoritmo: (Backtracking)
Inputs: f : R" — R de clase C, X, € R", d,, direccion de descenso, & > 0, ¢ € (0,1),
p € (0,1) tasa de decaimiento.
Outputs: o tamano de paso satisfaciendo condiciones de Wolfe.
Set a = a.
While not f(x, + ady) < f(Xg) + caVF(Xg) dg:
redefine a = pa.
Return o = a.

® Eltamano de paso inicial es & = 1 en los métodos de Newton y quasi-Newton.
® El factor de contraccion p puede variarse en cada iteracion, por ejemplo, eligiendo
Pr € [pmim Pmax]: para 0 < ppin < pmax < 1fijos.
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Teorema (Finitud del Algoritmo Backtracking)

Suponga que f : R" — R es diferenciable, V f es Lipschitz, c € (0,1), p € (0,1), dr es una
direccion de descenso en X,. Entonces, la condicion de Armijo se satisface para todo

ar € (0,wg), donde _2(c— 1) Vf(x)dg
wp = ’
7 ||del?

para v la constante de Lipschitz de Vf: [V f(x) — Vf(y)| < v|[x —y|].

Prueba: Del Teorema de Taylor,
f(Xe + adg) = f(Xe) + o V f(Xe)di + 202 d], D*f (X, + tardy) d, con t € (0,1).

De la condicion de Lispchitz sobre V f, sabemos que

T _ T
|dLD2f(Xk—|—tadk)dk‘ _ Aim Vf(xk+tadk+hdk) :k Vf(xk+tadk) dk’
—0
— lim ||Vf(xk +tad, + hdk)Tdk — Vf(xk + tOédk)TdkH
h—o h
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. dy|| - ||hd
m ’YH th” k’|| _ 7‘|dk||2~

I
h—o

De ahi que f(x, + adg) = f(Xz) + a Vf(xz)"dg + E, con |E| < %az v ||dg| 2

= |d} D*f(x, +tadg)dy] <

Siap < wp = %, entonces oy ||dg|]2 < 2(c — 1) V(%) d, v

f(Xk + ap dg) F(X) + e VF (%) dp + 207 ||dg|
F(Xe) + e V(%) i + 2ap (€ — 1) V(%) dg
f(Xe) + € V f (%) dp.

Esto muestra que «, satisface la condicion de Armijo.

IN N IA

Corolario
Bajo las hipétesis del teorema anterior, el tamaio de paso en el algoritmo de
Backtracking termina con ay > min{&, pwe}-
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Prueba: El algoritmos de Backtracking acaba si
i) @ inicial satisface la condicién de Armijo,
II) si o= > wy, pero o = all = pall=" < wy,.

Combinando estos resultados, tenemos que ay, > min{&, pwi}.

Para obtener convergencia global, anadimos algunos requerimientos sobre los criterios
de aceptacion del tamano de paso.

Teorema (Convergencia Global del Algoritmo Backtracking)
Suponga que f : R" — R es diferenciable con V f Lipschitz de constante ~, ¢ € (0,1), d,
es una direccion de descenso para X,. Entonces en el algoritmo de Backtracking ocurre:

1. Vf(xx) =0, paraalgink > 0,6

2. limp_oo f(XR) = —00, 6

3. limp oo [V ()" de] - min{1,]del| "} = .
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(1.) Significa que alcanzamos un punto estacionario en un niimero finito de pasos; (2.)
significa que f no es limitada inferiormente = f no tiene minimo global; (3.) no implica
convergencia, pero si V f(x,) y dr no son ortogonales, y ||dx|| 4 O, entonces

IV f(Xe)I| — o.

Prueba: Suponga que (1) y (2) no se satisfacen. Mostramos (3). Considere
k

F(Xea) = F(Xe + o) < F(Xe) + Care VF(Xe) de < f(X0) + Y Coy VF(x,)'dl;.

j=0
Como cada d; es direccion de descenso, y f es limitada inferiormente,
%) R
> 0| VF(x)Tdj| = —1 k'L”;oZCOéj Vo) dj] = 2 lim (£(x0) = f(Xe)) = 2(f(%0) —f(x")).
j=0 j=0
De ahi que klim ar |V f(xg)Tdg| = 0.

Como ay > min{&, pwi}, con , = 2(c — 1) V f(x¢)"dr /7 ||di|[?, consideramos los conjuntos
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Ki={keN: a, = a}, Ky={kReN: o < a}, con K; UK, =N.
De lim oy |Vf(Xx)'dg| =0, resulta  lim  a, |[Vf(Xz)Tdg| =0y
kR— o0 kR— o0, REK,

li V f(x,)'d,| = o.
k—>o!>n;eEK2ak| f(Xe) del

)

)

® Parak € Ki: ap = @ > 0, luego aklim |V f(x¢)di| = 0, lo que implica
— 00
lim |V f(x) dg| = 0.
R— o0

® Para k € Ky: pwr < ap < wg. Entonces

(Vf(x)Tdp)?

ar |V (%) de| > pwr |V f(Xe) dr| > 2p(1 - ) ylldel2

y esto implica que klim IV f(Xe) de| min{1,||dx||~"} = 0.5
—00
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Tenemos una version mas completa del algoritmo de descenso gradiente.

Algoritmo: (Descenso gradiente con Backtracking)
Inputs: f : R" — R funcion de clase C', x, € R", @ > 0 tamano de paso; ¢ € (0,1)
constante en la condicion de Armijo; p € (0,1) parametro de decaimiento.
Outputs: x punto critico de f.
For k = ©,1,2,... hasta que se cumpla un criterio de paro:
Compute d, a descent direction
(for example, anydgsuch that Z(—Vf(xg),dy) < |§|).
Compute step-size ag alongdg, using Backtracking
(Backtraking es descrito en el algoritmo en pagina 14).
Set Xpiq = Xp + ap dp.
Return X 4.

® Aplica para cualquier direccion de descenso dy en x.
® |a convergencia esta garantizada por el Teorema de Convergencia Global, siempre
que f sea limitada inferiormente, y que no alcance un punto estacionario.
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