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Búsqueda en Línea
Condiciones de Goldstein:
Similares a las condiciones de Wolfe, las condiciones de Goldstein aseguran que el
tamaño de paso α alcance un descenso suficiente para f . Se definen por

f (xk) + (1 − c)αk∇ f (xk)Tdk ≤ f (xk + αk dk)T ≤ f (xk) + cαk∇ f (xk)Tdk, (1)
para algún c ∈ (0, 1

2 ).
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La segunda desigualdad en (1) asegura un descenso suficiente, mientras que la primera
controla que αk esté lejos de 0.

Teorema (Existencia de α con Condiciones de Goldstein)
Suponga que f : Rn → R es diferenciable, dk es una dirección de descenso en xk, f es
limitada inferiormente sobre el rayo {xk + αdk : α > 0}. Si 0 < c < 1

2 , entonces existe un
intervalo para α donde se satisfacen las condiciones de Goldstein.

Prueba: Sea ℓ(α) = (xk) + 1
2 α∇ f (xk)Tdk la recta con pendiente relativa 1

2∇ f (xk)Tdk.
Como f es limitada inferiormente para α > 0, existe al menos un valor α′ > 0 donde
ℓ(α′) = φ(α′), esto es

f (xk + α′ dk) = f (xk) + 1
2 α

′ ∇ f (xk)Tdk.

Como 0 < c < 1
2 , entonces 1 − c > 1

2 > c > 0 y como ∇ f (k)Tdk < 0, tenemos
(1 − c)α′ ∇ f (xk)Tdk < 1

2 α
′ ∇ f (xk)Tdk < cα′ ∇ f (xk)Tdk.
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Sumando f (xk) a esta doble desigualdad, resulta

f (xk) + (1 − c)α′ ∇ f (xk)Tdk < f (xk) + 1
2 α

′ ∇ f (xk)Tdk < f (xk) + cα′ ∇ f (xk)Tdk,

o equivalentemente

f (xk) + (1 − c)α′ ∇ f (xk)Tdk < f (xk + α′ dk) < f (xk) + cα′ ∇ f (xk)Tdk.

Así, α′ satisface las condiciones de Goldstein. Por la continuidad de f y de ∇ f existe una
vecindad I de α′′ donde se satisfacen ambas desigualdades.

Obs! Las condiciones de Wolfe y las condiciones de Goldstein poseen propiedades
teóricas similares. La desventaja práctica de las condiciones de Goldstein respecto de
las de Wolfe es que las primeras pueden excluir algunos (o todos) los mínimos locales
de φ.

Usualmente las condiciones de Goldstein se usan en los métodos de tipo Newton, y
pueden funcionar mal para métodos quasi-Newton o con hessiana modificada.
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Backtracking
La condición de Armijo (??) por si sola no es suficiente para asegurar que el descenso
sea razonable en la dirección de búsqueda. Si el algoritmo de búsqueda en línea elige α
de forma apropiada, podemos dispensar la condición de curvatura (??) y basta con usar
la primer condición como criterio de paro. Este es el algoritmo llamado Backtracking.

Algoritmo: (Backtracking)
Inputs: f : Rn → R de clase C1, xk ∈ Rn, dk dirección de descenso, ᾱ > 0, c ∈ (0, 1),
ρ ∈ (0, 1) tasa de decaimiento.
Outputs: α tamaño de paso satisfaciendo condiciones de Wolfe.
Set α = ᾱ.
While not f (xk + αdk) ≤ f (xk) + cα∇ f (xk)Tdk:

redefine α = ρα.
Return αk = α.

• El tamaño de paso inicial es ᾱ = 1 en los métodos de Newton y quasi-Newton.
• El factor de contracción ρ puede variarse en cada iteración, por ejemplo, eligiendo

ρk ∈ [ρmin, ρmax], para 0 < ρmin < ρmax < 1 fijos.
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Teorema (Finitud del Algoritmo Backtracking)
Suponga que f : Rn → R es diferenciable, ∇ f es Lipschitz, c ∈ (0, 1), ρ ∈ (0, 1), dk es una
dirección de descenso en xk. Entonces, la condición de Armijo se satisface para todo
αk ∈ (0, ωk), donde

ωk =
2(c− 1)∇ f (xk)Tdk

γ ||dk||2
,

para γ la constante de Lipschitz de ∇ f : |∇ f (x)−∇ f (y)| ≤ γ||x− y||.

Prueba: Del Teorema de Taylor,
f (xk + αdk) = f (xk) + α∇ f (xk)Tdk + 1

2α
2 dTk D2f (xk + tαdk)dk, con t ∈ (0, 1).

De la condición de Lispchitz sobre ∇ f , sabemos que

|dTk D2f (xk + tαdk)dk| =
∣∣∣ lim
h→0

∇ f (xk + tαdk + hdk)Tdk −∇ f (xk + tαdk)Tdk
h

∣∣∣
= lim

h→0

||∇ f (xk + tαdk + hdk)Tdk −∇ f (xk + tαdk)Tdk||
h
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=⇒ |dTk D2f (xk + tαdk)dk| ≤ lim
h→0

γ ||dk|| · ||hdk||
h = γ ||dk||2.

De ahí que f (xk + αdk) = f (xk) + α∇ f (xk)Tdk + E, con |E| ≤ 1
2α

2 γ ||dk||2.

Si αk ≤ ωk =
2(c−1)∇ f (xk)Tdk

γ ||dk||2
, entonces αk γ ||dk||2 ≤ 2(c− 1)∇ f (xk)Tdk, y

f (xk + αk dk) ≤ f (xk) + αk∇ f (xk)Tdk + 1
2α

2
k γ ||dk||

2

≤ f (xk) + αk∇ f (xk)Tdk + 1
2αk (c− 1)∇ f (xk)Tdk

≤ f (xk) + αk c∇ f (xk)Tdk.

Esto muestra que αk satisface la condición de Armijo.

Corolario
Bajo las hipótesis del teorema anterior, el tamaño de paso en el algoritmo de
Backtracking termina con αk ≥ min{ᾱ, ρωk}.
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Prueba: El algoritmos de Backtracking acaba si

i) ᾱ inicial satisface la condición de Armijo,
ii) si α(l−1) ≥ ωk, pero αk = α(l) = ρα(l−1) ≤ ωk.

Combinando estos resultados, tenemos que αk ≥ min{ᾱ, ρωk}.

Para obtener convergencia global, añadimos algunos requerimientos sobre los criterios
de aceptación del tamaño de paso.

Teorema (Convergencia Global del Algoritmo Backtracking)
Suponga que f : Rn → R es diferenciable con ∇ f Lipschitz de constante γ, c ∈ (0, 1), dk
es una dirección de descenso para xk. Entonces en el algoritmo de Backtracking ocurre:

1. ∇ f (xk) = 0, para algún k ≥ 0, ó
2. limk→∞ f (xk) = −∞, ó
3. limk→∞ |∇ f (xk)Tdk| ·min{1, ||dk||−1} = 0.
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(1.) Significa que alcanzamos un punto estacionario en un número finito de pasos; (2.)
significa que f no es limitada inferiormente ⇒ f no tiene mínimo global; (3.) no implica
convergencia, pero si ∇ f (xk) y dk no son ortogonales, y ||dk|| ̸→ 0, entonces
||∇ f (xk)|| → 0.

Prueba: Suponga que (1) y (2) no se satisfacen. Mostramos (3). Considere

f (xk+1) = f (xk + αkdk) ≤ f (xk) + cαk∇ f (xk)Tdk ≤ f (x0) +
k∑
j=0

cαj∇ f (xj)Tdj.

Como cada dj es dirección de descenso, y f es limitada inferiormente,
∞∑
j=0

αj |∇ f (xj)Tdj| = − 1
c lim
k→∞

k∑
j=0

cαj |∇ f (xj)Tdj| = 1
c lim
k→∞

(
f (x0)− f (xk)

)
= 1

c
(
f (x0)− f (x∗)

)
.

De ahí que lim
k→∞

αk |∇ f (xk)Tdk| = 0.

Como αk ≥ min{ᾱ, ρωk}, con k = 2(c− 1)∇ f (xk)Tdk/γ ||dk||2, consideramos los conjuntos
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K1 = {k ∈ N : αk = ᾱ}, K2 = {k ∈ N : αk < ᾱ}, con K1 ∪ K2 = N.

De lim
k→∞

αk |∇ f (xk)Tdk| = 0, resulta lim
k→∞, k∈K1

αk |∇ f (xk)Tdk| = 0 y

lim
k→∞, k∈K2

αk |∇ f (xk)Tdk| = 0.

• Para k ∈ K1: αk = ᾱ > 0, luego ᾱ lim
k→∞

|∇ f (xk)Tdk| = 0, lo que implica
lim
k→∞

|∇ f (xk)Tdk| = 0.

• Para k ∈ K2: ρωk ≤ αk ≤ ωk. Entonces

αk |∇ f (xk)Tdk| ≥ ρωk |∇ f (xk)Tdk| ≥ 2ρ(1 − c) (∇ f (xk)Tdk)2

γ ||dk||2
,

y esto implica que lim
k→∞

|∇ f (xk)Tdk| min{1, ||dk||−1} = 0.
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Tenemos una versión más completa del algoritmo de descenso gradiente.

Algoritmo: (Descenso gradiente con Backtracking)
Inputs: f : Rn → R función de clase C1, x0 ∈ Rn, ᾱ > 0 tamaño de paso; c ∈ (0, 1)
constante en la condición de Armijo; ρ ∈ (0, 1) parámetro de decaimiento.
Outputs: x punto crítico de f .
For k = 0,1,2,... hasta que se cumpla un criterio de paro:

Compute dk a descent direction
(for example, any dk such that ∠(−∇ f (xk),dk) < |π2 |).
Compute step-size αk along dk, using Backtracking
(Backtraking es descrito en el algoritmo en página 14).
Set xk+1 = xk + αk dk.

Return xk+1.
• Aplica para cualquier dirección de descenso dk en xk.
• La convergencia está garantizada por el Teorema de Convergencia Global, siempre

que f sea limitada inferiormente, y que no alcance un punto estacionario.
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