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Búsqueda en Línea
Desarrollamos estrategias para calcular un tamaño de paso αk en los métodos de
descenso gradiente. Recordemos que estos métodos calculan una dirección de
descenso dk y luego se mueven a lo largo de esa dirección con la iteración

xk+1 = xk + αkdk.

Al calcular αk tenemos un trade-off: queremos que αk haga una reducción sustancial del
valor de f , pero al mismo tiempo no queremos invertir mucho costo en hacer la
búsqueda. La elección ideal sería el mínimo de la función φ(α) = f (xk + αdk), α > 0.
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Búsqueda en Línea
En general, identificar este valor global es costoso (requiere muchas evaluaciones de f y
posiblemente ∇ f .

Existen estrategias más prácticas producen un valor inexacto de α∗, pero que producen
resultados a bajo costo. Típicamente, estos métodos producen una secuencia de
candidatos {αi}i≥0 y paran cuando alguno de éstos satisface ciertas condiciones. Este
proceso se llama búsqueda en línea.

La búsqueda en línea se hace en dos etapas:
• Una primera fase halla intervalos o regiones con valores deseables para α.
• Un método de bisección o interpolación calcula α∗ dentro de estos intervalos.

Una condición de paro simple para la búsqueda en línea sería
f (xk + αkdk) < f (xk).

Esta condición no es suficiente para garantizar la convergencia al óptimo x∗ de f .
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Búsqueda en Línea
Ejemplo: Consideramos la función f : R → R dada por f (x) = x2, xk = 0, dk = 1, y la
secuencia {αi = (−1)i+1

√
1 + 1

i }i≥1. Observe que f (xk + αidk) = 1 + 1
i .

Luego, f (xk + αi+1dk) = 1 + 1
i+1 < 1 + 1

i = f (xk + αidk),

es una secuencia decreciente. Sin embargo, lim
i→∞

f (xkαidk) = lim
i→

(1 + 1
i ) = 1, no converge

al valor del mínimo global x∗ de f .
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Búsqueda en Línea
Para evitar este descenso insuficientes que impide la convergencia, precisamos
condiciones de descenso adecuadas.

Condiciones de Wolfe:
Uno de las condiciones más populares sobre αk es requerir que satisfaga la condición
de Armijo: f (xk + αkdk) ≤ f (xk) + c1 αk∇ f (xk)

Tdk, (1)
para alguna c1 ∈ (0, 1). La reducción es proporcional a αk y a ∂f

∂dk
= ∇ f (xk)

Tdk.
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Búsqueda en Línea
El parámetro c1 controla la pendiente de la recta ℓ(αk) = f (xk) + c1 αk∇ f (xk)

Tdk en (1).
En la práctica, se toman valores muy pequeños (e.g. C1 ≈ 10−4).

Obs! La condición de Armijo por sí sola aún no es suficiente para garantizar la
convergencia. Sin embargo, sabemos que existe un intervalo (0, c0) donde los valores
de α en este intervalo satisfacen (1).

En efecto, si dk es una dirección de descenso y 0 < c1 < 1, entonces ∇ f (xk)
Tdk < 0. Por

Taylor, sabemos que existe δ > 0 tal que si 0 < αk < δ, entonces
f (xk) ≤ f (xk) + αk ∇ f (xk)

Tdk < f (xk) + c1 αk ∇ f (xk)
Tdk.

De ahí que para 0 < αk < δ, se satisface (1), aunque no hagan reducción suficiente de f .

Para evitar esto, se introduce un segundo requisito, conocido como la condición de
curvatura: ∇ f (xk + αkdk)

Tdk ≥ c2 ∇ f (xk)
Tdk, (2)

para algún c2 ∈ (0, 1), c1 < c2 < 1.
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Búsqueda en Línea
El término en el lado izquierdo de (2) es justamente φ′(αk), de modo que la condición de
curvatura segura que la pendiente φ′(αk) ≥ c2 φ

′(0) es al menos c2 veces la pendiente
en el punto inicial φ′(0) = ∇ f (xk)

Tdk.

• Si φ′(αk) es fuertemente negativa, esto es un indicador de que podemos reducir f
significativamente moviéndose en esa dirección, con ese valor de αk.

• Si φ′(αk) es cercano a 0, no debemos esperar mucha reducción de f en esa dir.
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Búsqueda en Línea
Valores típicos para c2 son c2 ≈ 0.9, cuando dk se elige usando métodos de tipo Newton
o quasi-Newton. Ó c2 ≈ 0.1 cuando dk proviene de método de gradiente conjugado.

A las condiciones de Armijo y de curvatura juntas, se les conoce como las condiciones
de Wolfe:

f (xk + αk dk) ≤ f (xk) + c1 αk ∇ f (xk)
Tdk, (3)

c2∇ f (xk)
Tdk ≤ ∇ f (xk + αk dk)

Tdk, (4)
con 0 < c1 < c2 < 1.
La idea es que un valor de αk de tamaño de paso que satisface las condiciones de Wolfe,
produce puntos xk + αk dk que están suficientemente cerca de un mínimo local de φ.
La condición de curvatura (2) puede modificarse para forzar que αk esté cerca de un
mínimo local de f . Así, se definen las condiciones de Wolfe fuertes:

f (xk + αk dk) ≤ f (xk) + c1 αk ∇ f (xk)
Tdk, (5)

c2|∇ f (xk)
Tdk| ≥ |∇ f (xk + αk dk)

Tdk|, (6)
con 0 < c1 < c2 < 1.
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Búsqueda en Línea
Teorema (Existencia de α con Condiciones de Wolfe)
Sea f : Rn → R de clase C1, dk una dirección de descenso en xk, y suponga que f es
limitada inferiormente en el rayo {xk + αdk : α > 0}. Si 0 < c1 < c2 < 1, entonces existe
un intervalo para α donde se satisfacen las condiciones de Wolfe y las condiciones de
fuertes de Wolfe.

Prueba: La función φ(α) = f (xk + αdk) es limitada inferiormente, para α > 0. Como
∇ f (xk)

Tdk < 0, la recta ℓ(α) = f (xk) + α∇ f (xk)
Tdk interseca a φ en al menos un punto

α > 0.
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(Esto es porque ℓ(0) = φ(0), y si b es una cota inferior para φ, entonces ℓ interseca a
y = b. Como 0 < c1 < 1, entonces ℓ interseca también a φ, en algún punto α, (ℓ decrece
menos que φ)).

Sea α′ > 0 el menor valor donde ℓ corta a φ, α′ = inf{α > 0 : ℓ(α) = φ(α)}. Luego,
(xk + α′dk) = f (xk) + c1 α

′∇ f (xk)
Tdk. Como 0 < c1 < 1, por definición de α′ se sabe que

(xk + αdk) < f (xk) + c1 α∇ f (xk)
Tdk, para todo 0 < α < α′, y se satisface la condición de

Armijo (1) en (0, α′).

Por el Teorema del Valor Medio, como φ es diferenciable en (0, α′), existe α′′ ∈ (0, α′) tal
que

f (xk + α′′dk)− f (xk) = φ(α′)− φ(0) = α′ · φ′(α′′) = α′ ∇ f (xk + α′′dk)
Tdk.

Luego, ∇ f (xk + α′′dk) = c1 ∇ f (xk)
Tdk > c2 ∇ f (xk)

Tdk, ya que c1 < c2 y ∇ f (xk)
Tdk < 0.

Así, α′′ ∈ (0, α′) satisface la condición de curvatura (2), y portanto las condiciones de
Wolfe.

Ahora, como ∇ f (xk) es continua, entonces la condición de curvatura también se cumple
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en una vecindad U de α′′, y las condiciones de Wolfe se satisfacen en el intervalo
I = U ∩ (0, α′).

Por otro lado, como ∇ f (xk + α′′dk)
Tdk < 0 y ∇ f (xk)

Tdk < 0, entonces

−∇ f (xk + α′′dk)
Tdk < −c2 ∇ f (xk)

Tdk,

de modo que |∇ f (xk + α′′dk)
Tdk| < c2 |∇ f (xk)

Tdk|.
Esto muestra que α′′ y el intervalo I también satisfacen las condiciones fuertes de Wolfe.
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