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Descenso Gradiente
Otra dirección de búsqueda importante es la dirección de Newton. Ésta se deriva de la
aproximación de Taylor de segundo orden

f (xk + d) = f (xk) +∇ f (xk)T d+ 1
2d

TD2f (xk)d+ o(||d||2).
≈ f (xk) +∇ f (xk)T d+ 1

2d
TD2f (xk)d︸ ︷︷ ︸

mk(d)

. (1)

Observe que mk(d) es una función cuadrática en Rn. Si D2f (xk) es positiva definida,
entonces mk es convexa, y encontramos la dirección de Newton hallando el vector
d ∈ Rn como el mínimo global de esta función cuadrática. Esto es

∇mk(d) = ∇ f (xk) + D2f (xk)d = 0 =⇒ dNewton = −
(
D2f (xk)

)−1∇ f (xk).

• Podemos usar la dirección de Newton en un método de descenso gradiente
siempre que D2f ≻ 0.

• Usamos tamaño de paso α = 1 con la dirección de Newton. Sin embargo, α puede
ajustarse cuando los resultados no son satisfactorios.
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Descenso Gradiente
Algoritmo: (Descenso gradiente, versión Newton)
Inputs: f : Rn → R función de clase C2, con Hessiana D2f positiva definida en cada
punto; x0 ∈ Rn, αk > 0 tamaño de paso (usualmente αk = 1).
Outputs: x punto crítico de f .
For k = 0,1,2,... hasta que se cumpla un criterio de paro:

Define dk = −
(
D2f (xk)

)−1∇ f (xk),
Set xk+1 = xk + αkdk.

Return xk+1.

Obs:
• Cuando D2f (xk) no es positiva definida en alguno de los puntos iterados xk, el

método aún se pude utilizar. En este caso, se reemplaza el hessiano por su
aproximación simétrica A ∈ Rn×n, más cercana, que sea positiva definida.

• Esto puede hacerse hallando la descomposición espectral D2f (xk) = UΛUT , y
reemplazando todos los autovalores negativos de Λ por ε > 0; A = UΛεUT .
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Descenso Gradiente
Algoritmo: (isPSD, is Positive Definite?)
Inputs: A ∈ Rn×n matriz simétrica, ε > 0 un número muy cercano a 0 (e.g. ε = 10−6).
Outputs: True or False, dependiento de si A es positiva definida.
Get all eigenvector λi of A.
If all λi > ε: return True.
Else: return False.

Algoritmo: (nearPSD, Aproximación Positiva Definida)
Inputs: A ∈ Rn×n matriz simétrica, ε > 0 un número muy cercano a 0 (e.g. ε = 10−6).
Outputs: A+, la matriz positiva definida más cercana a A.
If isPSD(A) = True: return A.
Get UΛUT the spectral decomposition of A.
Λ+ = Λ.copy()
Λ+[Λ+ < ε] = ε. (sustituir los valores λi negativos ó 0 por ε)
Reconstruct A+ = UΛ+UT
Return A+.
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Descenso Gradiente
Otra alternativa para aproximar la dirección de búsqueda, es hacer uso de una la
siguiente aproximación de Taylor de primer orden, sobre el gradiente de f :

∇f (xk + αdk) = ∇f (xk) + αD2f (xk)T dk + o(||dk||).
≈ ∇f (xk) + αD2f (xk)T dk. (2)

Queremos hallar el valor de α que minimiza el valor para f (xk +αdk). Para ello, hacemos
∇f (xk + αdk) = 0. (Observe que esto funciona si Df (xk) es positiva definida).

Luego, 0 = ∇f (xk) + αD2f (xk)T dk. Multiplicando esta ecuación por ∇f (xk)T de ambos
lados, obtenemos:

0 = ∇f (xk)T ∇f (xk) + α∇f (xk)T D2f (xk)T dk.

Sustituyendo dk = −∇f (x)k y despejando α de la ecuación resultante, obtenemos

αk =
∇f (xk)T ∇f (xk)

∇f (xk)T D2f (xk)∇f (xk)
. (3)
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Descenso Gradiente
La ecuación (3) usa la información del Hessiano para elegir el tamaño de paso αk que
debemos movernos.

Algoritmo: (Descenso gradiente, versión Hessiano aproximado)
Inputs: f : Rn → R función de clase C2, con Hessiana D2f positiva definida en cada
punto; x0 ∈ Rn.
Outputs: x punto crítico de f .
For k = 0,1,2,... hasta que se cumpla un criterio de paro:

Define dk = −∇ f (xk),
Compute αk using equation (3)

αk =
∇f (xk)T ∇f (xk)

∇f (xk)T D2f (xk)∇f (xk)
.

Set xk+1 = xk + αkdk.
Return xk+1.

Obs: Si D2f (xk) no es positiva definida, sustituimos por la aproximación positiva definida
más cercana.
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Descenso Gradiente
• El cálculo de la hessiana D2f (xk) en cada iteración, consume mucho costo

computacional (sobretodo en altas dimensiones).

Existen otros métodos de tipo gradiente que, en lugar de calcular exactamente el
hessiano D2f (xk), utilizan una aproximación Bk, que se actualiza en cada paso.

De la aproximación de Taylor

∇ f (xk + d) = ∇ f (xk) +
∫ 1

0
D2f (xk + td)ddt

= ∇ f (xk) + D2f (xk)d+

∫ 1

0

[
D2f (xk + td)− D2f (xk)

]
ddt︸ ︷︷ ︸

o(||d||)

.

Haciendo d = xk+1 − xk, ⇒ ∇ f (xk+1) = ∇ f (xk) + D2f (xk) (xk+1 − xk) + o(||d||).
Cuando xk, xk+1 están en una región cercana al mínimo x∗, donde D2f (xk) ≻ 0,
resulta

D2f (xk)d ≈ ∇ f (xk+1)−∇ f (xk). (4)
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Descenso Gradiente
Así, elegimos la aproximación de Bk+1 de modo que imite la propiedad (4) anterior. Así,
requerimos que Bk+1 cumpla la ecuación secante:

Bk+1sk = yk, (5)
donde sk = xk+1 − xk, y yk = ∇ f (xk+1)−∇ f (xk). Además, requerimos que Bk+1 sea
simétrica, y que la diferencia Bk+1 − Bk sea de bajo rango.

Estos son los métodos llamados métodos quasi-Newton. Dos de las fórmulas más
populares para actualizar el hessiano son

• el método simétrico de rango 1 (SR1):

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)T

(yk − Bksk)Tsk
.

• el método BFGS (Broyden-Fletcher-Goldfarb-Shanno):

Bk+1 = Bk −
BksksTkBTk
sTkBksk

+
ykyTk
yTksk

.
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