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Algoritmos para Optimización
Algoritmos para minimización sin restricciones:

Los algoritmos para minimización sin restricciones son métodos iterativos que
encuentran una solución aproximada.
Todos los algoritmos para minimización sin restricciones requieren que el usuario
proporcione un punto de partida x0 ∈ Rn. El usuario con conocimiento sobre la función
o el conjunto de datos input puede estar en una buena posición para elegir x0 como una
estimación razonable de la solución.
De lo contrario, el punto inicial x0 debe ser elegido por el algoritmo, ya sea mediante un
enfoque sistemático o de alguna manera arbitraria (aleatorio dentro de cierto dominio).

• A partir de x0, se genera una secuencia {xk}k≥0 de aproximaciones.
• Para pasar de una iteración xk a la siguiente, los algoritmos usan información sobre

la función f en xk, y posiblemente también información de iteraciones anteriores.
• Con esta información, se espera hallar una nueva iteración xk+1, usualmente con la

propiedad f (xk+1) < f (xk).
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• Sin embargo, existen algoritmos no monótonos en los que f no disminuye en cada

paso, pero f debería disminuir después de algún número m de iteraciones es decir,
f (xk+1) < f (xk−j) para algún j ∈ {0, 1, . . . ,m}.

Por ejemplo, seleccione

xk+1 = xk + αdk, donde dk = − ∇ f (xk)
||∇ f (xk)||

si f (xk + αdk) < max
0≤j≤m

f (xk−j) + γα∇ f (xk)Tdk.

Framework general:
• Elegir x0,
• Hallar o establecer un criterio de paro,
• Definir cómo actualizar xk.
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¿Cómo actualizar xk?:

La idea es elegir una dirección dk y buscar a lo largo del semirrayo en esta dirección,
xk+1 = xk + tdk, para una nueva iteración xk+1 donde la función reduzca su valor.

Definición
Dada f : Rn → R diferenciable, y un punto xk ∈ Rn, una dirección de descenso para f en
xk es cualquier vector d ∈ Rn, tal que

f (xk + td) < f (xk), para todo t ∈ (0, T). (1)

En el contexto de optimización, una dirección de descenso en xk mueve el punto xk un
poco más cerca de un mínimo local.
Muchos de los métodos de optimización basan su estrategia en hallar una dirección de
descenso, por ejemplo: el método de descenso gradiente, el método de gradiente
conjugado, ...
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Ejemplo: La dirección de descenso más común para una función es u = − ∇ f (xk)

||∇ f (xk)|| .
Ya hemos mencionado que − ∇ f (xk)

||∇ f (xk)|| indica la dirección en la cual f decrece lo más
rápido posible en el punto xk. En particular, del Teorema de Taylor, tenemos

f (xk + tu) = f (xk) + t∇ f (xk)Tu+ o(||u||) ≈ f (xk)− t∇ f (xk)T ∇ f (xk)
||∇ f (xk)||

≈ f (xk)− t||∇ f (xk)|| < f (xk). (2)

Luego, f (xk + tu) < f (xk), para t ∈ (0, 1) y u = − ∇ f (xk)
||∇ f (xk)|| es una dirección de descenso.

general, lo anterior vale para cualquier vector d tal que ∇ f (xk)Td < 0.

Proposición
Dada f : Rn → R de clase C1, y xk ∈ Rn. Entonces, d ∈ Rn es una dirección de descenso
para f en xk, si y sólo si, ∇ f (xk)Td < 0.

Prueba: (⇐) Se deduce directamente de la aproximación de Taylor de f (xk + td).
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f (xk + td) = f (xk) + t∇ f (xk)Td+ o(||d||) ≈ f (xk) + t∇ f (xk)Td︸ ︷︷ ︸
<0

< f (xk),

para t ∈ (0, 1), y d es dirección de descenso.

(⇒) Si d es dirección de descenso de f en xk, entonces existe t0 ∈ (0, T), tal que
f (xk + t0d) < f (xk).
Luego, por continuidad de ∇ f y la preservación de signo, se tiene que
∇f (xk + td)Td < 0, para todo t ∈ (0, t0). Usando Taylor, existe h ∈ (0, 1) tal que

f (xk + td) = f (xk) + t∇ f (xk + htd)Td.

Como 0 < ht < t < t0, entonces ∇ f (xk + htd)Td < 0, para todo h ∈ (0, 1) y por lo tanto,
f (xk + htd) < f (xk), ∀ht ∈ (0, t). Esto muestra que d es una dirección de descenso.

La estrategia anterior ya nos da un algoritmo básico de optimización.
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Algoritmo: (Descenso gradiente, versión naïve)
Inputs: f : Rn → R función de clase C1, x0 ∈ Rn, α > 0 tamaño de paso.
Outputs: x punto crítico de f .
For k = 0,1,2,... hasta que se cumpla un criterio de paro:

Compute dk a descent direction
(for example, any dk such that ∠(−∇ f (xk),dk) < |π2 |).
Set xk+1 = xk + αdk.

Return xk+1.

En el caso en que dk = −∇ f (xk), tenemos

Algoritmo: (Steepest descent, versión naïve)
Inputs: f : Rn → R función de clase C1, x0 ∈ Rn, α > 0 tamaño de paso.
Outputs: x punto crítico de f .
For k = 0,1,2,... hasta que se cumpla un criterio de paro:

Set xk+1 = xk − α∇ f (xk).
Return xk+1.
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A la constante αk > 0 se le llama el tamaño de paso. Usualmente este tamaño de paso
αk cambia en cada iteración, y se elige en función de la iteración y del punto, αk. El caso
más simple se da al elegir αk = α constante, como en los algoritmos naïve anteriores.

Elegir el tamaño de paso adecuado es crucial. Si αk es demasiado grande, es posible
que el algoritmos no detecte las regiones donde de encuentra el mínimo local.
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Ejemplo: Considere la función f : R → R, f (x) = x2. f es diferenciable y ∇ f (x) = 2x.

• Tomando α = 1, obtenemos la iteración de descenso máximo
xk+1 = xk −∇ f (x) = xk − 2xk = −xk,

la cual es una secuencia alternante x0,−x0, x0,−x0, . . ., no convergente.
• Tomando α = 1

4 , obtenemos la iteración de descenso máximo
xk+1 = xk − 1

4∇ f (x) = xk − 2
4xk =

1
2xk.

Esta es una secuencia geométrica convergente x0,
1
2x0,

1
4x0,

1
8x0, . . ..

Una estrategia empírica muy simple, pero bastante útil, para elgir α es comenzar con un
valor pequeño (e.g. α = 0.1). Si con este valor de α no se observa convergencia del
método de descenso gradiente, se prueban valores usando una escala potencial:

• α = 0.01, α = 0.001; α = 0.0001, . . .
• α = ρ1α0, α = ρ2α0, α = ρ3α0, . . ., donde 0 < ρ < 1 (por ejemplo: ρ = 1

2 ,
1
4 ó ρ = 1

10 )
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Criterios de paro: Existen muchos criterios de paro que pueden usarse para deterner los
algoritmos de optimización numérica.

• Error absoluto de iteraciones: Se mide el error absoluto entre dos iteraciones
consecutivas

||xk+1 − xk||norm < tol.
• Error relativo de iteraciones: Se compara el error relativo entre dos iteraciones

consecutivas xk y xk+1 ||xk+1 − xk||norm
||xk||norm

< tol.

• Error abs/rel del valor de la función: Se mide el error entre dos valores de f (xk) en
iteraciones consecutivas. Así

|f (xk+1)− f (xk)| < tol.
• Norma del gradiente: En un mínimo local, sabemos que ∇ f (x) = 0. Se busca

entonces que las normas del gradiente sean suficientemente pequeñas
||∇ f (xk)||norm < tol.
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Varios métodos gradiente aplicados a una función cuadrática: (a) Descenso gradiente
con dirección de descenso con ángulo constante φ con ∇ f (xk); (b) Descenso máximo; (c)
Descenso gradiente con dirección de descenso aleatoria.
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Otra estrategia más adecuada para elegir el tamaño de paso es el llamado esquema de
Cauchy.

Este consiste en lo siguiente: Dado xk ∈ Rn, luego de elegir la dirección de búsqueda dk,
buscamos cuál es el valor de αk > 0 que minimiza la función f , restricta a la recta
xk + tdk, t > 0. Esto es, definimos

αk = argmint∈R f (xk + tdk). (3)

Observe que (3) corresponde a un problema de minimización 1-dimensional. Es posible
aplicar aquí las técnicas de optimización que aprendieron en Métodos Numéricos I.

• Método de búsqueda de Fibonacci (Fibonacci search),
• Método de la razon aúrea (golden ration search),
• Interpolación parabólica (quadratic interpolation),
• Método de Newton,
• . . .
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Optimización 1-dimensional: (a) Golden-search, (b) interpolación parabólica.

Ver https://web2.qatar.cmu.edu/~gdicaro/15382/additional/
one-dimensional-search-methods.pdf
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Algoritmo: (Descenso gradiente, versión esquema de Cauchy)
Inputs: f : Rn → R función de clase C1, x0 ∈ Rn.
Outputs: x punto crítico de f .
For k = 0,1,2,... hasta que se cumpla un criterio de paro:

Define dk = −∇ f (xk), or any other descent direction.
Compute αk such that

αk = argmint∈R f (xk + tdk),
by any 1-dimensional optimization method,
Set xk+1 = xk + αkdk.

Return xk+1.
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