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Funciones Convexas
Definición
Un subconjunto Ω ⊆ Rn es convexo si para todo x, y ∈ Ω, el segmento de recta
[x, y] = {(1 − t)x+ ty : t ∈ [0, 1]} está totalmente contenido en Ω.

(a) Conjunto no convexo, (b) Conjunto convexo.

Ejemplos:
• Convexos: esferas, hiperplanos, semiespacios, conos, ...
• No Convexos: conjunto no conexos, uniones de rectas, uniones en general, ...
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Funciones Convexas

Definición
Una función f : Ω ⊆ Rn → R es convexa si Ω = dom f es un conjunto convexo, y para todo
x, y ∈ Ω, y todo t ∈ [0, 1] vale

f
(
(1 − t)x+ ty

)
≤ (1 − t)f (x) + tf (y). (1)

Geométricamente, la desigualdad (1) significa que el
segmento de recta entre (x, f (x)) y (y, f (y)) está por
encima de la gráfica de f .

La función f es estrictamente convexa si en (1) vale
la desigualdad estricta, siempre que x ̸= y y t ̸= 0, 1.
Decimos que f es cóncava (estrictamente cóncava) si
−f es convexa (estrictamente convexa).

A la desigualdad (1) se le llama usualmente
desigualdad de Jensen.
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Funciones Convexas

Propiedad
Sea Ω ⊆ Rn conjunto convexo. La función f : Ω ⊆ Rn → R es convexa ⇐⇒ para todo
x1, . . . , xk ∈ Ω, y cualesquiera t1, . . . , tk ∈ [0, 1], con

∑k
i=1 ti = 1, se tiene que

f
( k∑

i=1

ti xi

)
≤

k∑
i=1

ti f (xi). (2)

Prueba: (⇐) Para k = 2, tome x1 = x, x2 = y ∈ Ω, y sean t1 = 1 − t, t2 = t, con t ∈ [0, 1]. La
desigualdad (2) se reduce a f ((1 − t)x+ ty) ≤ (1 − t)f (x) + tf (y), lo que implica que f es
convexa.

(⇒) Mostramos la desigualdad (2) por inducción sobre k.
Para k = 1, necesariamente t1 = 1 de modo que f (x1) ≤ f (x1) y (2) se cumple de manera
automática. El caso k = 2 se cumple a partir de la definición de convexidad (1).

Suponga que (2) se cumple para cualesquiera k puntos p1, . . . ,pk ∈ Ω, siempre que se
forme una combinación lineal convexa s1p1 + . . .+ skpk, con 0 ≤ si ≤ 1 y

∑k
i=1 si = 1.
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Funciones Convexas
Suponga ahora que x1, . . . , xk, xk+1 ∈ Ω, se combinan para formar un punto

x = t1x1 + t2x2 + . . .+ tk+1xk+1 ∈ Ω,
k+1∑
i=1

ti = 1, 0 ≤ ti ≤ 1.

Definamos t = tk+1, 1 − t =
∑k

j=1 tj = t1 + . . .+ tk. Ambos coeficientes satisfacen
0 ≤ t, 1 − t ≤ 1. En particular, si p =

∑k
j=1 sjxj ∈ Ω, con

∑k
j=1 sj = 1, podemos escribir

x = (1 − t)p+ txk+1 = (1 − t)
k∑

j=1

sjxj + tk+1 =⇒ tj = (1 − t)sj, j = 1, . . . , k;

y
f
(∑k+1

i=1 ti xi
)

= f
(
(1 − t)p+ t xk+1

)
≤ (1 − t) f (p) + t f (xk+1)

≤ (1 − t) f
(∑k

j=1 sj xj
)
+ t f (xk+1) ≤ (1 − t)

∑k
j=1 sj f (xj) + t f (xk+1)

≤
∑k

j=1 tj f (xj) + t f (xk+1) ≤
∑k+1

i=1 ti f (xi).
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Funciones Convexas
Definición
Sea f : Ω ⊆ Rn → R. Definimos el epígrafo de f , como el conjunto

Epi(f ) = {(x, y) ∈ Rn+1 : y ≥ f (x)} ⊆ Rn+1.

Teorema
f es convexa ⇐⇒ su epígrafo Epi(f ) es un conjunto convexo.

Prueba: (⇒). Supongamos que f es convexa, y sean (x1, y1), (x2, y2), . . . , (xk, yk) ∈ Epi(f ).
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Funciones Convexas
Tomemos cualquier juego de coeficientes t1, t2, . . . , tk ∈ [0, 1], tales que

∑k
i=1 ti = 1.

Consideramos el punto

(x, y) =
k∑

i=1

ti (xi, yi) =
( k∑

i=1

ti xi,

k∑
i=1

ti yi

)
∈ Rn+1.

Este punto satisface

y =
k∑

i=1

ti yi ≥
k∑

i=1

ti f (xi) ≥ f
( k∑

i=1

ti xi

)
= f (x),

de modo que (x, y) ∈ Epi(f ), lo que muestra que Epi(f ) es convexo.

(⇐) Tomamos (x1, f (x1)), . . . , (xk, f (xk)) ∈ Epi(f ). Como Epi(f ) es convexo, entonces se
cumple que k∑

i=1

ti (xi, f (xi)) =
( k∑

i=1

ti xi,
k∑

i=1

ti f (xi)
)
∈ Epi(f ).

Esto implica que f
(∑k

i=1 ti xi
)
≤

∑k
i=1 ti f (xi), y portanto f es convexa.
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Funciones Convexas
Observaciones:

• Directamente de la definición, tenemos que f es convexa f
∣∣
[a,b] es convexa, cuando

se restringe a cualquier segmento [a,b], con a,b ∈ Ω.
De ahí que f es convexa para todo x ∈ Ω, y para todo h ∈ Rn, la función
g(t) = (x+ th) es convexa en el dominio {t ∈ R : x+ th ∈ Ω}.

• En ocasiones conviene extender una función convexa f : Ω ⊆ Rn → R a valores en
la recta extendida f̂ : Rn → R ∪ {+∞}, por

f̂ (x) =
{

f (x), si x ∈ Ω;
+∞, si x /∈ Ω.

Claramente f̂
∣∣
Ω
= f , y se tiene que f es convexa ⇐⇒ f̂ es convexa.

• En el caso de f̂ , la convexidad sigue siendo definida por la desigualdad (1), con la
diferencia que se usa aritmética extendida.
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Condiciones de Optimalidad
Teorema (Condición de 1er Orden)
Suponga que f : Ω ⊆ Rn → R es diferenciable y que Ω es convexo. Entonces f es convexa
si, y sólo si, para todo x, x0 ∈ Ω vale

f (x) ≥ f (x0) +∇ f (x0)
T (x− x0).

Si f es convexa, el plano tangente a f en x0 está por debajo del grafo de f .
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Condiciones de Optimalidad
Prueba: (⇒) Como Ω es convexo, para x, x0 ∈ Ω se tiene que (1 − t)x0 + tx ∈ Ω,
∀0 ≤ t ≤ 1. Si f es convexa, de la desigualdad de Jensen (1), tenemos

f
(
x0 + t(x− x0)

)
= f

(
(1 − t)x0 + tx

)
≤ (1 − t)f (x0) + tf (x) = f (x0) + t

(
f (x)− f (x0)

)
,

para todo 0 < t < 1. Luego f
(
x0 + t(x− x0)

)
− f (x0) ≤ t

(
f (x)− f (x0)

)
, y

f
(
x0 + t(x− x0)

)
− f (x0)

t ≤ f (x)− f (x0), para 0 < t < 1.

Como f es diferenciable, tomando el límite cuando t → 0+, obtenemos

∇ f (x0)
T (x− x0) = lim

t→0+

f
(
x0 + t(x− x0)

)
− f (x0)

t ≤ f (x)− f (x0),

lo que produce f (x) ≥ f (x0) +∇ f (x0)
T (x− x0).

(⇐) Tome x, x0 ∈ Ω, y sea z = (1 − t)x0 + tx ∈ Ω, con 0 ≤ t ≤ 1. Por hipótesis
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Condiciones de Optimalidad

f (x0) ≥ f (z) +∇ f (z)T (x0 − z),
f (x) ≥ f (z) +∇ f (z)T (x− z).

Haciendo una combinación convexa de ambas ecuaciones, resulta
(1 − t)f (x0) + tf (x) ≥ (1 − t)

[
f (z) +∇ f (z)T (x0 − z)

]
+ t

[
f (z) +∇ f (z)T (x− z)

]
≥

[
(1 − t) + t

]
f (z) +∇ f (z)T [(1 − t)(x0 − z) + t(x− z)

]
≥ f (z) +∇ f (z)T [ (1 − t)x0 + tx− z︸ ︷︷ ︸

=0

]
= f (z)

≥ f
(
(1 − t)x0 + tx

)
.

Dado que x, x0 son arbitrarios, esto muestra que f es convexa.

Corolario
Sea f : Ω ⊆ Rn → R diferenciable y convexa. Si ∇ f (x∗) = 0, para x∗ ∈ Ω, entonces x∗ es
un mínimo global de f .
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Condiciones de Optimalidad
Prueba: El teorema anterior implica que f (x) ≥ f (x∗) +∇ f (x∗)T (x− x∗) = f (x∗), ∀x ∈ Ω.
Portanto, x∗ es mínimo global de f .

Teorema (Condición de 2do Orden)
Suponga que f : Ω ⊆ Rn → R es dos veces diferenciable y que Ω es abierto y convexo.
Entonces f es convexa si, y sólo si, para todo x ∈ Ω, D2f (x) ⪰ 0.

Prueba: (⇐) Suponga que D2f (x) es positiva semidefinida, para todo x ∈ Ω. Tomemos
x, x0 ∈ Ω y definamos h = x− x0. De la Fórmula de Taylor

f (x) = f (x0 + h) = f (x0) +∇ f (x0)
T h+ 1

2h
T D2f (x0 + th)h,

para algún 0 < t < 1.
Peero x0 + th = x0 + t(x− x0) = (1 − t)x0 + tx ∈ Ω, ya que es una conbinación convexa
de x, x0 ∈ Ω. Esto implica que el término 1

2h
T D2f (x0 + th)h ≥ 0, de modo que

f (x) ≥ f (x0) +∇ f (x0)
T (xx0).

De la Condición de optimalidad de 1er. orden, f es convexa.
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Condiciones de Optimalidad
(⇒) Suponga ahora que f es convexa. Tome x ∈ Ω, p ∈ Rn. Como Ω es abierto, existe
r > 0 tal que Dr(x) ⊆ Ω. Tomamons p̃ = 1

kp un múltiplo suficientemente pequeño de p,
de modo que y = x+ p̃ ∈ Dr(x). Como f es convexa,

f (y) ≥ f (x) +∇ f (x)T(y− x) = f (x) +∇ f (x)T p̃.

Por el Teorema de Taylor,
f (y) = f (x+ p̃) = f (x) +∇ f (x)T p̃+ 1

2 p̃
T D2f (x+ tp̃) p̃, t ∈ (0, 1).

Combinando las dos expresiones anteriores, obtenemos
f (x) +∇ f (x)T p̃+ 1

2 p̃
T D2f (x+ tp̃) p̃,≥ f (x) +∇ f (x)T p̃.

⇒ p̃T D2f (x+ tp̃) p̃ ≥ 0.
Haciendo t → 0, se obtiene que p̃T D2f (x) p̃ ≥ 0. Y como esto vale para todo p̃ ∈ Dr(x), se
tiene que D2f (x) ⪰ 0 es positiva semidefinida.
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Condiciones de Optimalidad

Corolario
Si f : Ω ⊆ R2 → R es convexa y 2-veces diferenciable, cualquier punto estacionario
x∗ ∈ Ω de f , es un mínimo global.

Prueba: Como x∗ es punto estacionario de f , entonces ∇ f (x∗) = 0. Además, como f es
convexa y 2-veces diferenciable, entonces D2f (x∗) ⪰ 0. De las condiciones de
obtimalidad, se obtiene que para todo x ∈ Ω

f (x) ≥ f (x∗) +∇ f (x∗)T (x− x∗) + 1
2 (x− x∗)T D2f (x∗) (x− x∗) ≥ f (x∗), ∀x ∈ Ω.

Portanto, x∗ es mínimo global de f .

Proposición
Sea f : Ω ⊆ Rn → R diferenciable, Ω convexo. Entonces f es convexa ⇐⇒
(∇ f (x)−∇ f (y))T (x− y) ≥ 0, ∀x, y ∈ Ω.
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Condiciones de Optimalidad
Prueba: Como f es convexa, de la condición de primer orden tenemos

f (y) ≥ f (x) +∇ f (x)T (y− x)
f (x) ≥ f (y) +∇ f (y)T (x− y)

}
⇒ 0 ≥

(
∇ f (x)T −∇ f (y)T)(y− x)

Portanto,
(
∇ f (x)T −∇ f (y)T)(x− y) ≥ 0.

(⇒) (pendiente).

Proposición
Si f : Rn → R es diferenciable y convexa, entonces x∗ es un óptimo global de f
⇐⇒ ∇ f (x∗)T (x− x∗) ≥ 0, para todo x ∈ Rn.

Prueba: Haga x = −∇ f (x∗)T + x∗. Entonces, ∇ f (x∗)T (x− x∗) = −||∇ f (x∗)||2 ≤ 0.
De ahí que ∇ f (x∗)T (x− x∗) ≥ 0, ∀x ∈ Rn implica que ∇ f (x∗)T = 0, y x∗ es un punto
crítico. La convexidad de f implica entonces que x∗ es un mínimo global.
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Ejemplos
Ejemplos de funciones convexas en R:

• (Exponencial): f (x) = eax es convexa en todo R, para todo a ∈ R.
Basta ver que f ′(x) = aeax y f ′′(x) = a2eax ≥ 0. Luego f es convexa.
(De hecho, f es estrictamente convexa para a ̸= 0).

• (Potencias): f (x) = xa es estrictamente convexa sobre R+, para a ≥ 1 o a ≤ 0.
Basta ver que f ′(x) = axa−1 y f ′′(x) = a(a − 1)xa−2 > 0, cuando a < 0 ó a > 1.

• (Potencias del valor absoluto): Las funciones f (x) = |x|p son convexas para p ≥ 1.

f ′(x) = p|x|p−1 · d
dx |x| = p|x|p−1 · x

|x| = p x|x|p−2.

f ′′(x) = p|x|p−2 + p(p − 2) x|x|p−3 · d
dx |x| = p|x|p−2 + p(p − 2) x2|x|p−4 · x

|x|

= p |x|p−4(|x|2 + (p − 2)x2) = p |x|p−4(x2 + (p − 2)x2)
= p(p − 1) x2|x|p−4 ≥ 0

cuando p ≥ 1.

Funciones Convexas | Alan Reyes-Figueroa Page 15



Ejemplos
• (Logaritmo negativo): f (x) = − log(x) es convexa en todo R+, para todo a ∈ R.

Basta ver que f ′(x) = − 1
x y f ′′(x) = 1

x2 > 0. Luego f es estrictamente convexa.
• (Entropía): f (x) = x log(x) es estrictamente convexa sobre R+.

Observe que f ′(x) = log(x) + 1 y f ′′(x) = 1
x > 0.

• (Funciones lienales): Las funciones f (x) = ax + b son siempre convexas y cóncavas,
∀a,b ∈ R
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Ejemplos

Ejemplos de funciones convexas en Rn:
• (Normas): Toda norma en Rn es convexa.

De la homogeneidad y la desigualdad triangular, tenemos
||(1 − t)x+ ty|| ≤ ||(1 − t)x||+ ||ty|| = (1 − t)||x||+ t||y||, para t ∈ [0, 1].

• (Máximos): La función f (x) = max 1≤i≤n{xi} es convexa.
Recuerde que maxi{ai + bi} ≤ maxi{ai}+maxi{bi}. (¿Por qué?)
De ahí que

max
i

(
(1 − t)xi + tyi

)
≤ max

i
(1 − t)xi +max

i
tyi = (1 − t)max

i
xi + t max

i
yi.

• (Log-sum-exp): La función f (x) = log
( n∑

i=1

exi
)

es convexa en Rn. (Hay que calcular

la Hessiana y mostrar que es ⪰ 0 + Cauchy-Schwarz).
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Ejemplos

• (Media geométrica): La función f (x) =
( n∏

i=1

xi

)1/n
es convexa en Rn.

(De nuevo, calcular la Hessiana y mostrar que es ⪰ 0 + Cauchy-Schwarz).

• (Log-det): El logaritmo negativo del determinante f : Rn×n → R, dado por
f (X) = − log det X es convexa en el conjunto de matrices positivas definidas en Rn×n.
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