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Funciones Convexas

Definicion
Un subconjunto Q C R" es convexo si para todo X,y € , el segmento de recta
x,y] = {(1—t)x+ ty : t € [0,1]} esta totalmente contenido en Q.

.© %%%%%

(a) Conjunto no convexo, (b) Conjunto convexo.

Ejemplos:
® Convexos: esferas, hiperplanos, semiespacios, conos, ...
* No Convexos: conjunto no conexos, uniones de rectas, uniones en general, ...
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Funciones Convexas

Definicion
Una funcion f : Q CR" — R es convexa si Q = dom f es un conjunto convexo, y para todo
X,y € Q,ytodot e [0,1] vale

F(( = tx+ty) < (1-Of(x) + tf(y). (1)
Geométricamente, la desigualdad (1) significa que el f(x)
segmento de recta entre (X,f(x)) vy (y,f(y)) esta por
encima de la grafica de f. aflip) + (1= ofix)
La funcion f es estrictamente convexa si en (1) vale fx)
la desigualdad estricta, siempre que X #yyt +# 0,1. ——
Decimos que f es concava (estrictamente concava) si ’{11}‘(1_1__
—f es convexa (estrictamente convexa). a |fx)
A la desigualdad (1) se le llama usualmente X X 0 ¥
desigualdad de Jensen. X= o+ (1 - ey
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Funciones Convexas

Propiedad
Sea Q C R" conjunto convexo. La funcion f : Q C R" — R es convexa <= para todo
Xq,...,Xg € Q, y cualesquiera t,,. .., t, € [0,1], con ZL t; =1, se tiene que

f(zk:tixi) < zk:tif(xi)- ()

Prueba: («=) Para k =2, tome X, =X, X, =y € Q,yseant, =1—t,t, =t,cont € [0,1]. La
desigualdad (2) se reduce a f((1 — t)x + ty) < (1 —t)f(x) + tf(y), lo que implica que f es
convexa.

(=) Mostramos la desigualdad (2) por induccion sobre k.
Para k = 1, necesariamente t, = 1 de modo que f(x,) < f(x,) y (2) se cumple de manera
automatica. El caso k = 2 se cumple a partir de la definicion de convexidad (1).

Suponga que (2) se cumple para cualesquiera kR puntos p., ..., px € €, siempre que se
forme una combinacion lineal convexa s;p; + ...+ SgPr, CON O < 5; <1y ZL Si=1.
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Funciones Convexas

Suponga ahora que X,, ..., Xg, X4, € £, Se combinan para formar un punto

R+1

x:t1X1+t2X2+...+tk+1Xk+1EQ, Zt,:1,0St’S1.

i=1

Definamost =ty ,, 1—t = Zf; t; = t; + ... + t,. Ambos coeficientes satisfacen
0<t,1—t<1. Enparticular,sip= Z}L SjX; € Q, con ZL sj = 1, podemos escribir

kR
X=(1=P+Xer =(1-1D SX+tp = G=(1-1t)s,j=1,... .k
j=1

y R
FOZE X))

= f((O =P+ tXer) < (1—t)f(P) + tf(Xptn)
(1= OF(CF, %) + tF(Xea) < (1—8) X5 5 F(X) + tF(Xes)
SE L GFOG) + tf(Rea) < SETGF). o

IN

IN
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Funciones Convexas

Definicion
Seaf: Q C R" — R. Definimos el epigrafo de f, como el conjunto
Epi(f) = {(x,y) e R™™: y > f(x)} CR""".

f(x) f(x)

Epigraph

convex not convex

X X

Teorema
f es convexa <= su epigrafo Epi(f) es un conjunto convexo.

Prueba: (=). Supongamos que f es convexa, y sean (X, 1), (Xa,¥2), - . ., Xk, ¥&) € Epi(f).
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Funciones Convexas

Tomemos cualquier juego de coeficientes t;, t,, ..., t, € [0,1], tales que ZL ti=1.

Consideramos el punto
Zt X,y = (Zt x,,Zt,y,) € RM.

Este punto satisface i . v
y=>_tiyi>> tif(x) Zf(zti)(,) =f(x),
i=1 i=1 i=1

de modo que (x,y) € Epi(f), lo que muestra que Epi(f) es convexo.

(«=) Tomamos (x1,f(x1)) ..., (Xg, f(Xr)) € Epi(f). Como Epi(f) es convexo, entonces se

cumple que
Zt (%5 F(x))) = (Zt x,,zt £(x)) € Epi(f).

Esto implica que f( Zi:1 tix;) < 21:1 tif(x;), y portanto f es convexa.
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Funciones Convexas

Observaciones:
® Directamente de la definicion, tenemos que f es convexa f|[a b €S convexa, cuando

se restringe a cualquier segmento [a,b], con a,b € Q.
De ahi que f es convexa para todo x € €, y para todo h ¢ R", la funcion
g(t) = (x + th) es convexa en el dominio {t e R: x+th € Q}.

® En ocasiones conviene extender una funcion convexa f : Q@ C R" — R a valores en
la recta extendida f : R" — R U {+oc}, por

Fx) = {f(x), six e Q;

+o0, six¢ Q.
Claramente ﬂQ =f,ysetiene que f es convexa < f es convexa.

® Enelcaso de)?, la convexidad sigue siendo definida por la desigualdad (1), con la
diferencia que se usa aritmética extendida.
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Condiciones de Optimalidad

Teorema (Condicion de 1er Orden)
Suponga que f : Q C R" — R es diferenciable y que Q es convexo. Entonces f es convexa

si, y solo si, para todo X, X, € Q vale
F(X) > f(Xo) + VF(X0)™ (X — Xo).

fx)

SO )+ N (x  —x,)

¥
An

Si f es convexa, el plano tangente a f en X, esta por debajo del grafo de f.
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Condiciones de Optimalidad

Prueba: (=) Como Q es convexo, para X, X, € Q se tiene que (1 — t)xo, + tx € Q,
Vo <t < 1.Sif es convexa, de la desigualdad de Jensen (1), tenemos

f (%o + (X —Xo)) = f((1 — )Xo + 1X) < (1= 1)f (Xo) + tf(X) = f(Xo) + t(F(X) — f(Xo)),

paratodo 0 <t < 1. Luego f(Xo + t(X — Xo)) — f(Xo) < t(f(X) — f(Xo0)), ¥

f (%o +t(X —Xo)) — f(Xo)
t

<f(x)—f(Xo), para o<t<n1.

Como f es diferenciable, tomando el limite cuando t — o*, obtenemos

f (%o + t(X = Xo)) — f(%o)
t

V(%) (X —Xo) = t'_igL

< f(%) = f(%),

lo que produce f(X) > f(Xo) + Vf(Xo)" (X — Xo).
(<) Tome X, X, € Q,yseaz = (1—t)X, +tx € Q, con 0 < t < 1. Por hipdtesis
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Condiciones de Optimalidad

fxo) = f(2)+Vf(2) (% —2).
fx) > f(2)+Vf@)' (x-2).
e ambas ecuaciones, resulta

Haciendo una combinacion convexa d

(1= t)f(%o0) + tf(x) (1= 8)[f(@) + Vf(2) (x OfZ)]H[f( )+ Vf(2) (x-2)]
(=) +tf(2) + V@) [(1 - t)(Xo — 2) + t(x - 2)]
f@+ VIR [(1 -tk +tx—2z] = f(2)

=0

AV AVARIY,

> f((1—t)%o + tx).
Dado que X, X, son arbitrarios, esto muestra que f es convexa.
Corolario

Sea f : Q C R" — R diferenciable y convexa. Si V f(x*) = 0, para x* € ), entonces x* es
un minimo global de f.
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Condiciones de Optimalidad

Prueba: El teorema anterior implica que f(x) > f(x*) + Vf(x*)" (x — x*) = f(x*), vx € Q.
Portanto, x* es minimo global de f. 5

Teorema (Condicion de 2do Orden)

Suponga que f : Q C R" — R es dos veces diferenciable y que Q es abierto y convexo.
Entonces f es convexa si, y solo si, para todo x € €, D*f(x) = o.

Prueba: («) Suponga que D?f(x) es positiva semidefinida, para todo x € . Tomemos
X,Xo € Qv definamos h = X — X,. De la Formula de Taylor
f(X) = f(Xo +h) = f(Xo) + Vf(%0)" h+ Ih" D*f(x, + th) h,
paraalgino <t < 1.
Peero X, + th = X0 + t(X — Xo) = (1 — )X, + tx € Q, ya que es una conbinacion convexa
de X, X, € Q. Esto implica que el término 1h' D*f(x, + th) h > o, de modo que
F(%) > f(%0) + V f(Xo)" (Xxo)-

De la Condicion de optimalidad de 1er. orden, f es convexa.
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Condiciones de Optimalidad

(=) Suponga ahora que f es convexa. Tome x € Q, p € R". Como Q es abierto, existe
r > o tal que D(x) C Q. Tomamons p = £p un miltiplo suficientemente pequefio de p,
de modo quey = x + p € D;(x). Como f es convexa,

fly) = f(x) + VF(x)"(y — x) = f(x) + VF(x)"p.
Por el Teorema de Taylor,
fly) =f(x+p) =f(x) + V(x)"p+ ;p D’f(x + tp)p, te(0,1).
Combinando las dos expresiones anteriores, obtenemos
f(x)+ VF(x)"p+ 3p" D’f(x + tp) P, > f(x) + VF(x)"p.
= p'D’f(x+tp)p > o.

Haciendo t — 0, se obtiene que p” D*f(x) p > 0. Y como esto vale para todo p € Dy(x), se
tiene que D*f(x) = O es positiva semidefinida.
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Condiciones de Optimalidad

Corolario
Sif:Q CR? — R es convexa y 2-veces diferenciable, cualquier punto estacionario
x* € Q def, es un minimo global.

Prueba: Como x* es punto estacionario de f, entonces V f(x*) = 0. Ademas, como f es
convexa y 2-veces diferenciable, entonces D?*f(x*) = 0. De las condiciones de
obtimalidad, se obtiene que para todox € Q

FX) > F(x*) + VFx)T (x = x*) + F(x = x*)T Df(x") (x — x*) > f(x*), vxeQ.
Portanto, x* es minimo global de f.
Proposicion

Seaf : Q C R" — R diferenciable, Q convexo. Entonces f es convexa <
(V)= Vf(y)) (x—y) =0, vxyeQ

UNIVERSIDAD
DEL VALLE
DE GUATEMALA

Funciones Convexas | Alan Reyes-Figueroa Page 13 UVG




Condiciones de Optimalidad

Prueba: Como f es convexa, de la condicion de primer orden tenemos

fi0 = 100 oy () = 0= (VT = I0N—0

Portanto, (Vf(x)" — Vf(y)")(x—y) > o.
(=) (pendiente).

Proposicion
Sif :R" — R es diferenciable y convexa, entonces x* es un optimo global de f
= Vf(x*)" (x—x*) > o, para todo x € R".

Prueba: Haga x = —V f(x*)" + x*. Entonces, V f(x*)" (x — x*) = —||[V f(x*)|]? < o.
De ahi que Vf(x*)" (x — x*) > 0, Vx € R" implica que V f(x*)T = 0, y Xx* es un punto
critico. La convexidad de f implica entonces que x* es un minimo global.
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Ejemplos de funciones convexas en R:
* (Exponencial): f(x) = e™ es convexa en todo R, para todo a € R.
Basta ver que f'(x) = ae®™ y f”(x) = a%e™ > 0. Luego f es convexa.
(De hecho, f es estrictamente convexa para a # 0).

* (Potencias): f(x) = x? es estrictamente convexa sobre R*, paraa >10a <o.
Basta ver que f/(x) = ax? 'y f”(x) = a(a —1)x°2 > 0,cuandoa <06 a > 1.

* (Potencias del valor absoluto): Las funciones f(x) = |x|P son convexas para p > 1.
f/(x) = pIxP=t- &ix| = plx|P~" - g = pxix|P~.
f'(x) = pIxP*+p(p - 2)XIXI"*3 Xl = pIXPT2 4 p(p —2) ¥ XIP -

= pXP4(IXP+ (p—2)x*) = px[P4(x* + (p—2)x°)
= p(p—N)XxPP™ > o

cuando p > 1.
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* (Logaritmo negativo): f(x) = — log(x) es convexa en todo R*, para todo a € R.
Basta ver que f'(x) = —2 y f”(x) = 3 > 0. Luego f es estrictamente convexa.

* (Entropia): f(x) = xlog(x) es estrictamente convexa sobre R*.
Observe que f'(x) = log(x) + 1y f"(x) = 4 > 0.

* (Funciones lienales): Las funciones f(x) = ax + b son siempre convexas y concavas,
va,b e R

UNIVERSIDAD
DEL VALLE
DE GUATEMALA

Funciones Convexas | Alan Reyes-Figueroa Page 16 UVG




Ejemplos de funciones convexas en R":
® (Normas): Toda norma en R" es convexa.
De la homogeneidad y la desigualdad triangular, tenemos
10— tyx+ tyl] < 111 = OxI| + [[tyl] = (1 = Ol}xl| + tlyll, parat € [o,1]

* (Maximos): La funcion f(x) = max,<j<,{X;} es convexa.
Recuerde que max;{a; + b;} < max;{a;} + max;{b;}. (;Por qué?)
De ahi que
max ((1— t)x; + ty;) < max(1 — t)x; + maxty; = (1 — t) maxX; + t maxy;.
1 1 ] 1

I

n
® (Log-sum-exp): La funcion f(x) = log (Ze"") es convexa en R". (Hay que calcular
i=1
la Hessiana y mostrar que es = 0 + Cauchy-Schwarz).
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n 1/n
* (Media geométrica): La funcion f(x) = (Hx,-) es convexa en R".
i=1
(De nuevo, calcular la Hessiana y mostrar que es > o0 + Cauchy-Schwarz).

® (Log-det): El logaritmo negativo del determinante f : R"*" — R, dado por
f(X) = —logdet X es convexa en el conjunto de matrices positivas definidas en R"*".
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