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Optimización

Definición
Suponga que f : Ω ⊆ Rn → R es una función con valores reales, definida sobre Ω. Un
punto x∗ ∈ Ω es un mínimo local o minimizador local de f si existe ε > 0 tal que

f (x) ≥ f (x∗), para todo x ∈ Ω− {x∗} con ||x − x∗|| < ε.

Definición
Suponga que f : Ω ⊆ Rn → R es una función con valores reales, definida sobre Ω. Un
punto x∗ ∈ Ω es un mínimo global o minimizador global de f sobre Ω si

f (x) ≥ f (x∗), para todo x ∈ Ω, x ̸= x∗.

Obs! Reemplazando ≥ con > en las definiciones anteriores obtenemos el concepto de
un mínimo local estricto y de un mínimo global estricto, respectivamente.
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Optimización

Ejemplo: La función f : R → R, f (x) = x2 tiene un mínimo global estricto en x = 0.
Claramente, x = 0 también es un mínimo local de f .

Ejemplo: La función f : R → R, dada por f (x) = max{0, |x − 2|} tiene a todos los puntos
de intervalo [−2, 2] como mínimos globales. Estos no son estrictos.

Ejemplo: La función f : R → R, f (x) = 3x4 − 8x3 − 6x2 + 12x tiene mínimos locales
estricto en x = −1 y x = 2. De éstos, sólo x = −1 es un mínimo global.
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Optimización
Definición
Un punto x∗ ∈ Ω es un mínimo local aislado de f : Ω ⊆ Rn → R, si x∗ es mínimo local de f
y existe una vecindad U ⊂ Rn de x∗ tal que x∗ es el único mínimo local de f en U.
Un punto x∗ ∈ Ω es un mínimo local no aislado de f , si para toda vecindad U de x∗, existe
x ∈ U, x ̸= x∗, tal que x también es mínimo local de f .

Ejemplo: La función f : R → R, f (x) = x2 cos 1
x + x2, f (0) = 0, posee un mínimo local no

estricto y no aislado en x = 0.

Ejemplo: La función g : R → R, g(x) = x2 cos 1
x + 2x2, g(0) = 0, posee un mínimo local

estricto y no aislado en x = 0.
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Optimización
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Optimización

Dificultades de la optimización global:
• funciones con muchos mínimos;
• los algoritmos tienden a quedarse atrapados en

mínimos locales,
• en el caso de métodos de búsqueda, puede que

el óptimo global esté en una región no
explorada;

• cuando el mínimo se encuentra dentro de una
región donde la función es muy plana
(curvatura cercana a 0), los métodos de
optimización suelen ser muy lentos;

• no-diferenciabilidad en un punto mínimo.
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Optimización
Fórmula de Taylor:
Si f : Rn → R es de clase Cm+1 sobre Rn, y h = x − x0, entonces

f (x) = f (x0) +
m∑

k=0

1
k! D(k)f (x0) · h(k) +

1
(m + 1)! D(m+1)f (x0 + th) · h(m+1),

donde t ∈ (0, 1) y

D(k)f (x0) · hk =
∑
|I|=k

∂kf
∂xI

(x0)hI =
∑
|I|=k

∂kf
∂xi1

1 · · · ∂xin
n

hi1
1 hi2

2 · · ·hin
n ,

I = (i1, . . . , in), xI = (xi1 , . . . , xin), hI = (hi1 , . . . ,hin).

Casos particulares:
Si f : Rn → R es de clase C2, podemos escribir

f (x) = f (x0) + Df (x0 + th), t ∈ (0, 1).
f (x) = f (x0) + Df (x0) · h + 1

2 hTD2f (x0 + th)h, t ∈ (0, 1).
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Condiciones de Optimalidad

Teorema (Condiciones de Optimalidad de Primer Orden)
Si x∗ es un mínimo local (o un máximo local) de la función f : Ω ⊆ Rn → R, y f es de clase
C1 en una vecindad abierta de x∗, entonces ∇f (x∗) = 0.
Prueba: Hacemos la prueba para x∗ mínimo local. Suponga que ∇f (x∗) ̸= 0. Por lo tanto,
podemos encontrar una dirección h = −α ∇f (x∗)

||∇f (x∗)|| = −αu, tal que
Dhf (x∗) = ∇f (x∗)T h < 0.

Por el Teorema de Taylor, si x = x∗ + h, tenemos f (x) = f (x∗) +∇f (x∗)T h + o(||h||).
Cuando α → 0, entonces h → 0, resulta que ∇f (x∗)T h + o(||h||) < 0, ya que o(||h||) se
acerca a cero, mucho más rápido que ∇f (x∗)T h. De hecho,

lim
α→0

|∇f (x∗)T h|
||h||

=
∇f (x∗)T u

||u||
= ∇f (x∗)T u < 0.

De ahí que, f (x) < f (x∗), y esto contradice el la hipótesis de que x∗ es un mínimo local.
Portanto, ∇f (x∗) = 0.
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Condiciones de Optimalidad

Definición
Un punto x ∈ Ω = dom f que satisface que ∇f (x) = 0 se llama un punto crítico o punto
estacionario de f .

De acuerto a la condición de Optimalizad de Primer Orden, todo mínimo local debe ser
un punto estacionario de f .

Teorema (Condiciones de Optimalidad de Segundo Orden)
Si x∗ ∈ Rn es un mínimo (máximo) localde f : Ω ⊆ Rn → R, y f es de clase C2 es una
vecindad abierta de x∗, entonces ∇f (x∗) = 0, y la hessiana

D2f (x∗) ⪰ 0

es positiva semidefinida (negativa semidefinida).
Prueba: Al igual que antes, hacemos la prueba para el caso de x∗ mínimo local. El caso
del máximo se prueba de forma similar.
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Condiciones de Optimalidad

Suponga que D2f (x∗) no es positiva semidefinida. Entonces, existe h ∈ Rn tal que
hT D2f (x∗)h < 0.
Por continuidad de D2f , y la preservación de signo, existe una bola Dr(x∗) y un intervalo
(0, ε), tal que hT D2f (x∗ + ε̂h)h < 0, para todo ε̂ ∈ (0, ε).

Aplicando el Teorema de Taylor alrededor de x∗, existe t ∈ (0, 1), tal que

f (x + ε̂h) = f (x∗) + ε̂∇f (x∗)Th + 1
2 ε̂

2hT D2f (x∗ + tε̂h)h.

Usando el hecho que ∇f (x∗)Th = 0 (ya que x∗ es mínimo local), y el hecho que
hT D2f (x∗ + tε̂h)h < 0, obtenemos

f (x∗ + ε̂h) < f (x∗),

lo cual contradice la hipótesis de que x∗ es un mínimo local de f . Portanto, D2f (x∗) es
positiva semidefinida.
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Condiciones de Optimalidad
Teorema (Condiciones Suficientes de Optimalidad)
Suponga que D2f existe y es continua en una vecindad de x∗ ∈ Rn, que ∇f (x∗) = 0, y que
la hessiana D2f (x∗) es positiva definida (negativa definida).
Entonces x∗ es un mínimo (máximo) local estricto de f .

Prueba: Existe una bola Dr(x∗) = {x : ||x − x∗|| < r} para la cual
q(t) = hTD2f (x∗ + th)h > 0, para todo x∗ + th ∈ Dr, con t ∈ (0, 1) y h = x − x∗.
(Esto es consecuencia de la preservación de signo, ya que la función q es continua y
q(0) = hT D2f (x∗)h > 0).

Usando el Teorema de Taylor, con ||h|| < r, y como ∇f (x∗) = 0, se tiene que existe
t ∈ (0, 1) tal que f (x) = f (x∗) + 1

2 hT D2f (x∗ + th)h,
Como x∗ + th ∈ Dr(x∗), luego hT D2f (x∗ + th)h > 0 ⇒ f (x) > f (x∗), para todo
x ∈ Dr(x∗). Esto muestra que x∗ es un mínimo local estricto de f .
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Condiciones de Optimalidad

Podemos encontrar y clasificar puntos estacionarios de la siguiente manera:
1. Encontrar los puntos críticos x en los que f (x) = 0.
2. Obtener la Hessiana Hf (x) = D2f (x).
3. Determinar el carácter de Hf (x) para cada punto crítico x.

• Si D2f (x) es positiva (negativa) definida, entonces x es un mínimo (máximo)
local.

• Si D2f (x) es indefinida, x es un punto silla.
• Si D2f (x) es positiva (negativa) semidefinida, x puede ser un mínimo (máximo)

local. En este caso, es necesario seguir trabajando para clasificar el punto
estacionario.
Un posible enfoque sería para deducir las terceras derivadas parciales de f (x)
y luego calcular el término correspondiente en la serie de Taylor. Si este
término es cero, entonces el siguiente término necesita ser calculado y así por
delante.
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Condiciones de Optimalidad
• En el caso especial donde D2f (x) = 0, x puede ser un minimizador o maximizador

ya que las condiciones necesarias se satisfacen tanto en casos.
• Si D2f (x) es semidefinida, se requiere más información para caracterización

completa de un punto estacionario y más el trabajo es necesario en este caso.
• Un posible enfoque podría ser calcular el tercer término de la serie de Taylor de

f (x),

D3f (x) · h(3) =
1
3!

∑
|I|=3

∂3f
∂xI

(x0)hI =
1
3!

3∑
i=1

3∑
j=1

3∑
k=1

∂3f
∂xi1

1 ∂xi2
2 ∂xi3

3
hi1

1 hi2
2 hi3

3 ;

y se debe determinar el signo de este término. Si este término es cero, entonces
debe calcularse el siguiente término D4f (x).

• En general, si los primeros i términos Dif (x) de la serie de Taylor son todos nulos,
debe calcularse el signo de primer término Dkf (x) · h(k) que no se anule.
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Condiciones de Optimalidad
Ejemplo: Considere la función f : R2 → R, dada por f (x) = 1

6 [(x1 − 2)3 + (x2 − 3)3].
En este caso, el gradiente es

∇ f (x) = 1
2
(
(x1 − 2)2 (x2 − 3)2) .

Resolviendo ∇ f (x) = 0, se obtiene que el único punto crítico es x∗ = (2, 3)T . La
Hessiana de f es

D2f (x) =
(

x1 − 2 0
0 x2 − 3

)
.

Así, en el punto crítico, D2(x∗) = 0. Las terceras derivadas de f son todas cero, excepto
∂3f
∂x3

1
(x) = ∂3f

∂x3
2
(x) = 1.

Luego, el término

D3f (x∗) · h(3) =
1
3!

3∑
i=1

3∑
j=1

3∑
k=1

∂3f
∂xi1

1 ∂xi2
2 ∂xi3

3
hi1

1 hi2
2 hi3

3 = 1
6 (h

3
1 + h3

2)

es positivo si h1,h2 > 0, pero es negativo si h1,h2 < 0. Portanto, D3f (x∗) · h(3) toma
ambos signos, y x∗ es un punto silla de f .
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