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Conjuntos de Nivel
Definición
Sea f : Rn → R una función y c ∈ R. El conjunto de nivel c de la función f es el conjunto
de puntos Sc = {x ∈ Rn : f (x) = c}.

Típicamente, Sc o es vacío, o Sc induce una hiperficie de codimensión 1 (esto es de
dimensión n− 1 dentro de Rn), aunque en ocasiones, Sc se degenera en un objeto de
menor dimensión.

Por ejemplo
• Si f : R2 → R, entonces Sc es una curva.
• Si f : R3 → R, entonces Sc es una superficie 2-dimensional.
• En general, Si f : Rn → R, entonces Sc es una hiperficie (n− 1)-dimensional.

Ejemplo: f : R2 → R dada por f (x, y) = 1
2 (x

2 + y2). El conjunto de nivel
S1 = {(x, y) ∈ R2 : f (x, y) = 1} corresponde al círculo x2 + y2 = 2. Una parametrización
de Sc se obtiene al hacer γ(t) = (2 cos t, 2 sin t), t ∈ R.
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Conjuntos de Nivel

Teorema
Sea f : Rn → R diferenciable. Entonces, el vector gradiente ∇x f (p) es ortogonal al vector
tangente a cualquier curva suave que pasa por p, contenida en el conjunto de nivel Sc de
f , donde c = f (p).

Prueba: Sea γ : (a,b) ⊆ R → Rn una parametrización diferenciable de la curva suave, tal
que γ(0) = p, y sea γ′(0) = v el vector tangente a esta curva en p. Consideramos la
función h : (a,b) ⊆ R → R, dada por h = f ◦ γ.

Como γ(t) está contenida dentro del conjunto de nivel Sc, entonces f (γ(t)) = c, para
todo t ∈ (a,b). Luego, h = f ◦ γ es constante.
Aplicando la regla de la cadena a la función h(t) = (f ◦ γ)(t), resulta

0 = dh
dt (0) = Dh(0) = D(f ◦ γ)(0) = Df (γ(0)) · γ′(0) = ∇x f (p) · v,

de modo que ∇x f (p) ⊥ v, como se quería demostrar.
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Gradiente
Recordemos que la derivada direccional de f : Rn → R, en el punto p ∈ Rn, en la
dirección del vector unitario u ∈ Rn es

Duf (p) = Df (p) · u = ∇x f (p)Tu.

Propiedad
Suponga que f : Rn → R es de clase C1 en un disco abierto que contiene al punto p.
Entonces, para cualquier vector unitario u ∈ Rn, Du f (p) existe y

Du f (p) = Df (p) · u = ∇x f (p)Tu.

De la desigualdad de Cauchy-Schwarz, tenemos

||Du f (p)|| = ||∇x f (p)Tu|| ≤ ||∇x f (p)|| · ||u|| = ||∇x f (p)||.

Si ∇x f (p) ̸= 0, tomando u = ∇x f (p)
||∇x f (p)|| , obtenemos

Du f (p) = ||∇x f (p)||, D−u f (p) = −||∇x f (p)||.
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Gradiente

Teorema
Supongamos que f : Rn → R es de clase C1 en una bola abierta que contiene al punto p.
Entonces, Du f (p) alcanza un valor máximo de ||∇x f (p)|| cuando u es la dirección de
∇x f (p) y alcanza un valor mínimo −||∇x f (p)|| cuando u es la dirección de −∇x f (p).

Prueba: Como
Du f (p) = ∇x f (p)Tu = ||∇x f (p)|| · ||u|| cos∠(∇x f (p),u)

= ||∇x f (p)|| cos∠(∇x f (p),u).

El máximo y el mínimo de Du f (p) se alcanzan, respectivamente, cuando
cos∠(∇x f (p),u) = 1 y cos∠(∇x f (p),u) = −1.

Pero esto ocurre precisamente cuando u = ∇x f (p)
||∇x f (p)|| y cuando u = − ∇x f (p)

||∇x f (p)|| ,
respectivamente.
En particular, en tales casos, Du f (p) = ||∇x f (p)|| y Du f (p) = −||∇x f (p)||, resp.
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Gradiente
Propiedades del gradiente:

• El gradiente, ∇xf (p), de una función diferenciable, en el punto p, es ortogonal al
conjunto de nivel de la función f en ese punto.

• El vector de gradiente apunta en la dirección de máxima tasa de aumento de la
función y el negativo del gradiente apunta en la dirección de la tasa máximo
descenso de la función.

• La longitud del vector de gradiente nos dice la tasa de aumento en la dirección de
aumento máximo y su negativo nos dice la tasa de disminución en la dirección de
la disminución máxima.

• Similarmente, la magnitud de la derivada direccional |∇xf (p)T u| indica la tasa de
aumento/reducción de f en la dirección de u.
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Big O y Little o
Definición
Decimos que f (x) = O(g(x)), f es O-grande respecto de g, cuando x→ a, si existe una
constante C tal que

|f (x)| ≤ C|g(x)|, para todo x ∈ Dδ(a).

Decimos que f (x) = O(g(x)) cuando x→ ∞ si existen constantes positivas r y C tales que
|f (x)| ≤ C|g(x)|, para todo x con ||x|| ≥ r.

Equivalentemente, f (x) = O(g(x)) cuando x→ a si lim
x→a

∣∣ f (x)
g(x)

∣∣ = C, para alguna constante
C ̸= 0.

Definición
Decimos que f (x) = o(g(x)), f es o-pequeña respecto de g, cuando x→ a, si

lim
x→a

∣∣ f (x)
g(x)

∣∣ = 0.
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Big O y Little o
Ejemplo: f (x) = 5x3 − 2x + 1 es O(x3), cuando x → ∞.

Basta ver que lim
x→∞

∣∣∣5x3 − 2x + 1
x3

∣∣∣ = 5.

Esto muestra que f (x) = O(x3).

Ejemplo: f (x) = 5x3 − 2x + 1 es o(x4), cuando x → ∞.

Basta ver que lim
x→∞

∣∣∣5x3 − 2x + 1
x4

∣∣∣ = 0.

Esto muestra que f (x) = o(x4).

Ejemplo: f (x) = x − sin x es o(x), cuando x → 0.

Basta ver que lim
x→0

∣∣∣x − sin x
x

∣∣∣ = lim
x→0

∣∣∣x − (x − 1
3!x

3 + 1
5!x

5 − . . .)

x

∣∣∣ = 0.
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Big O y Little o
Ejemplos de Big O:

• x = O(x), cuando x → ∞,
• x = O(x2), cuando x → ∞,
• axn = O(xm), para m ≥ n, cuando x → ∞,
• axn ̸= O(xm), para m < n, cuando x → ∞,

Ejemplos de little o:
• x2 = o(x), cuando x → 0,
• x ̸= o(x2), cuando x → 0,
• x − sin x = o(x), cuando x → 0,
• x − sin x = o(x2), cuando x → 0,

Obs! Importante!, la notaciones O y o dependen del punto donde se toma el límite.
Ejemplo: x2 = o(x3) cuando x → ∞, pero x2 ̸= o(x3) cuando x → 0.
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Teorema de Taylor
Propiedades:

• f (x) = O(f (x)).
• Si f (x) = O(g(x)), entonces cf (x) = O(g(x)), para toda c ∈ R, c ̸= 0.
• Si f1(x), f2(x) son O(g(x)), entonces f1(x) + f2(x) = O(g(x)).
• Si f (x) = o(g(x)), entonces f (x) = O(g(x)).
• Si f (x) = O(g(x)), entonces O(f (x)) + O(g(x)) = O(g(x)).
• Si f (x) = O(g(x)), entonces o(f (x)) + o(g(x)) = o(g(x)).
• Si f1(x) = O(g(x)), pero f2(x) = o(g(x)), entonces f1(x) + f2(x) = O(g(x)).
• Si f (x) = O(g(x)) y g(x) = o(h(x)), entonces f (x) = o(h(x)).
• Para c ∈ R, c ̸= 0, cO(g(x)) = O(g(x)) y co(g(x)) = o(g(x)).
• O(f (x))O(g(x)) = O(f (x)g(x)).
• o(f (x))O(g(x)) = o(f (x)g(x)).
• o(f (x))o(g(x)) = o(f (x)g(x)).
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Teorema de Taylor
Teorema (Fórmula de Taylor en R)
Suponga que f : R → R es de clase Cm+1 sobre R, y sea x0 ∈ R. Denotemos, h = x − x0.
Entonces

f (x) = f (x0) + h f ′(x0) +
h2

2 f ′′(x0) + . . .+
hm
m!
f (m)(x0) + Rm+1,

donde
Rm+1 =

hm+1

(m+ 1)! f
(m+1)(x0 + th), para algún t ∈ (0, 1).

Usando la notación Big O, observe que Rm+1 = O(hm+1), si h→ 0. Así, la Fórmula de
Taylor resulta

f (x) = f (x0) + h f ′(x0) +
h2

2 f ′′(x0) + . . .+
hm
m!
f (m)(x0) + O(hm+1).

Usando la notación o pequeña, observe que Rm+1 = o(hm), si h→ 0. Así, la fórmula es

f (x) = f (x0) + h f ′(x0) +
h2

2 f ′′(x0) + . . .+
hm
m!
f (m)(x0) + o(hm).
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Teorema de Taylor
Teorema (Fórmula de Taylor en Rn)
Suponga que f : Rn → R es de clase Cm+1 sobre Rn, y sea x0 ∈ R. Denotemos, h = x− x0.
Entonces

f (x) = f (x0) +
n∑
j=1

∂f
∂xj

(x0)hj +
1
2

n∑
i,j=1

∂2f
∂xi∂xj

(x0)hihj + . . .+
1
m!

∑
|I|=m

∂mf
∂xI

(x0)hI + Rm+1,

donde
Rm+1 =

1
(m+ 1)!

∑
|I|=m+1

∂m+1f
∂xI

(x0 + th)hI, para algún t ∈ (0, 1).

Aquí, h = (h1, . . . ,hn), y si I = (i1, . . . , in) ∈ Nn es tal que |I| =
∑

j ij = m, entonces
denotamos xI = (xi11 , . . . , xinn ), hI = (hi11 , . . . ,hinn ) y ∂mf

∂xI = ∂mf
∂xi11 ···∂x

in
n
.

Al igual que en el caso unidimensional, podemos escribir Rm+1 = O(||h||m+1) y
Rm+1 = o(||h||m), cuando h→ 0.
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Teorema de Taylor
Dos casos particulares:

Teorema (Aproximación de Taylor de primer orden)
Suponga que f : Rn → R es de clase C2 sobre Rn, y sea x0 ∈ R, h = x− x0. Entonces

f (x) = f (x0) + Df (x0) · h+ R2 = f (x0) + Df (x0) · h+ O(||h||2),

donde R2 =
1
2
∑
|I|=2

∂2f
∂xI

(x0 + th)hI, para algún t ∈ (0, 1).

Teorema (Aproximación de Taylor de segundo orden)
Suponga que f : Rn → R es de clase C3 sobre Rn, y sea x0 ∈ R, h = x− x0. Entonces

f (x) = f (x0) + Df (x0) · h+ 1
2 h

TD2f (x0)h+ R3,

donde R3 =
1
3!

∑
|I|=3

∂3f
∂xI

(x0 + th)hI, para algún t ∈ (0, 1).
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Teorema de Taylor
En resumen, Si f : Rn → R es de clase C2, podemos escribir

f (x) = f (x0) + Df (x0 + th), t ∈ (0, 1).
f (x) = f (x0) + Df (x0) · h+ 1

2 h
TD2f (x0 + th)h, t ∈ (0, 1).
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