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Conjuntos de Nivel

Definicion
Seaf : R" — R una funcion y ¢ € R. El conjunto de nivel c de la funcion f es el conjunto
de puntos Sc={XER": f(x) =c}.

Tipicamente, S. 0 es vacio, o S; induce una hiperficie de codimension 1 (esto es de
dimension n — 1 dentro de R"), aunque en ocasiones, S, se degenera en un objeto de
menor dimension.

Por ejemplo
® Sif:R? — R, entonces S, es una curva.
* Sif:R3 — R, entonces S, es una superficie 2-dimensional.
® En general, Sif : R" — R, entonces S. es una hiperficie (n — 1)-dimensional.

Ejemplo: f : R? — R dada por f(x,y) = 2(x> + y?). El conjunto de nivel

Si={(x,y) € R?: f(x,y) =1} corresponde al circulo x> + y? = 2. Una parametrizacion
de S. se obtiene al hacer v(t) = (2cost,2sint), t € R.
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Conjuntos de Nivel
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Conjuntos de Nivel
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Conjuntos de Nivel

Teorema
Seaf : R" — R diferenciable. Entonces, el vector gradiente Vx f(p) es ortogonal al vector
tangente a cualquier curva suave que pasa por p, contenida en el conjunto de nivel S; de

f, donde c = f(p).

Prueba: Sea v : (a,b) C R — R" una parametrizacion diferenciable de la curva suave, tal
que v(0) = p, y sea 7/(0) = v el vector tangente a esta curva en p. Consideramos la
funcion h : (a,b) CR — R, dada por h =fo~.

Como ~(t) esta contenida dentro del conjunto de nivel S, entonces f(v(t)) = ¢, para
todo t € (a,b). Luego, h = f o v es constante.
Aplicando la regla de la cadena a la funcion h(t) = (f o v)(t), resulta

0 = §#(0) = Dh(0) = D(f o 7)(0) = Df(7(0)) - 7'(0) = Vxf(p) - V,

de modo que Vyf(p) L v, como se queria demostrar.
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Recordemos que la derivada direccional de f : R" — R, en el puntop € R", en la
direccion del vector unitariou € R" es

Duf(p) = Df (p) - u = Vxf(p)'u.

Propiedad

Suponga que f : R" — R es de clase C" en un disco abierto que contiene al punto p.
Entonces, para cualquier vector unitario u € R", D, f(p) existe y

Duf(p) = Df(P) - u = Vxf(p)'u.

De la desigualdad de Cauchy-Schwarz, tenemos

IDuf(P)Il = [IVxf(P) ull < [[Vxf(P)Il-Ilull = [IVxf(P)Il-
Si Vxf(p) # 0, tomando u = H&iﬁg;”, obtenemos

Duf(p) = IVxf(P)ll,  D_uf(P) = —lIVxf(P)I|-
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Teorema

Supongamos que f : R" — R es de clase C' en una bola abierta que contiene al punto p.
Entonces, Dy f(p) alcanza un valor maximo de ||Vxf(p)|| cuando u es la direccion de
Vxf(p) y alcanza un valor minimo —||Vxf(p)|| cuando u es la direccion de —Vx f(p).

Prueba: Como

Duf(p) = Vxf(P)'u = [[Vxf(p)Il- |lull cos Z(Vxf(p).u)
IVxf(p)I] cos Z(Vxf(p), u).

El maximo y el minimo de D, f(p) se alcanzan, respectivamente, cuando
cos Z(Vxf(p),u) =1y cos Z(Vxf(p),u) = —1.

Pero esto ocurre precisamente cuando u = ngiﬁggll y cuandou = — ‘g"i(:g”,
respectivamente.
En particular, en tales casos, Duf(p) = [|Vxf(P)I| Y Duf(p) = —[[Vxf(P)Il, resp.
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Propiedades del gradiente:
* El gradiente, Vif(p), de una funcion diferenciable, en el punto p, es ortogonal al
conjunto de nivel de la funcion f en ese punto.

® El vector de gradiente apunta en la direccion de maxima tasa de aumento de la
funcion y el negativo del gradiente apunta en la direccion de la tasa maximo
descenso de la funcion.

* |a longitud del vector de gradiente nos dice la tasa de aumento en la direccion de
aumento maximo y su negativo nos dice la tasa de disminucion en la direccion de
la disminucion maxima.

* Similarmente, la magnitud de la derivada direccional |Vyf(p)" u| indica la tasa de
aumento/reduccion de f en la direccion de u.
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Big Oy Little o

Definicion
Decimos que f(x) = 0(g(x)), f es O-grande respecto de g, cuando x — a, si existe una
constante C tal que

If(x)] < Clg(x)|, para todo x € Ds(a).

Decimos que f(x) = O(g(x)) cuando x — cc si existen constantes positivas r y C tales que
If(x)] < C|g(x)|, para todo x con ||X|| > r.

Equivalentemente, f(x) = O(g(x)) cuando x — a si )Lma |%| = C, para alguna constante

C+#o.
Definicion
Decimos que f(x) = o(g(x)), f es o-pequena respecto de g, cuando x — a, si
co [ S0
Jim [569] =©-
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Big Oy Little o

Ejemplo: f(x) = 5x3 — 2x + 1 es O(x3), cuando x — cc.

5x3 —2X + 1
X3 )
Esto muestra que f(x) = O(x3).

Basta ver que lim
X—0o0

Ejemplo: f(x) = 5x° — 2x + 1 es 0o(x*), cuando x — cc.

)5x3—2x+1)
X

Basta ver que lim
X—00 4

Esto muestra que f(x) = o(x*).

Ejemplo: f(x) = x — sinx es o(x), cuando x — 0.

. |X—sinXx .
Basta ver que lim ‘7 = lim
X—0 X X—0

x—(x—%x%—éx-"—...)‘
X

= 0.
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Big Oy Little o

Ejemplos de Big O:
® x = 0(x), cuando x — oo,
® x = 0(x?), cuando x — oo,
® ax" = O(x™), param > n, cuando x — oo,
® ax" #£ O(x™M), param < n, cuando x — oo,

Ejemplos de little o:
® x? = 0(x), cuando x — O,
® x # o(x?), cuando x — O,
® X —sinx = 0o(x), cuando x — O,
® x —sinx = o(x?), cuando x — O,

Obs! Importante!, la notaciones O y o dependen del punto donde se toma el limite.
Ejemplo: x> = o(x®) cuando x — oo, pero x? # o(x3) cuando x — 0.
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Teorema de Taylor

Propiedades:
* f(x) = O(f (x)).
® Sif(x) = 0(g(x)), entonces cf(x) = O(g(x)), paratoda c € R, ¢ # 0.
® Sifi(x), f2(x) son 0(g(x)), entonces f;(x) + f>(x) = 0(g(x))-
® Sif(x) = o(g(x)), entonces f(x) = 0(g(x)).
* Sif(x) = 0(g(x)), entonces O(f(x)) + O(g(x)) = O(g(x
* Sif(x) = 0(g(x)), entonces o(f(x)) + o(g(x)) = o(g(x)
* Sifi(x) = 0(g(x)), pero f(x) = o(g(x)), entonces fy(x) + f(x) = O(g(x)).
* Sif(x) =0(g(x)) y g(x) = o(h(x)), entonces f(x) = o(h(x)).
*® ParaceR,c#0,c0(g(x)) = 0(g(x)) y co(g(x)) = o(g(x)).

0(f(x)) 0(g(x)) = O(f(x)g(x))-

o(f(x)) 0(g(x)) = o(f(x)g(x)).

o(f(x)) o(g(x)) = o(f(x)g(x)).
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Teorema de Taylor

Teorema (Formula de Taylor en R)

Suponga que f : R — R es de clase C™*" sobre R, y sea x, € R. Denotemos, h = x — Xo.
Entonces m

f(X) =f(xo) + hf'(xo) + h;f”(xo) +.o o+ h"

m|f(m)(X0) + Rm+17

donde pm+1
Rm+1 =

m+ 1),f("””)(xo +th), paraalgint e (0,1).

Usando la notacion Big O, observe que Rp, = O(h™*"), si h — 0. Asi, la Formula de
Taylor resulta

h? hm
FO) =f(%0) +hf'(Xo) + o f"(X0) + ... + Hf(m)(x") + o(hm).
Usando la notacion o pequena, observe que Ry, = o(h™), si h — 0. Asi, la formula es

£ = F(60) + D/ (66) + 2 " (0k0) + .. + £ x) 1 o(h™).
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Teorema de Taylor

Teorema (Formula de Taylor en R")
Suponga que f : R" — R es de clase C™*" sobre R", y sea X, € R. Denotemos, h = x — Xo.

Entonces
n n
of 1 Pf
=f(Xo) + Z 87)9'()(0) h; + (9 0x; (%0) hih; + . mi “z;n (Xo) hy + Ry,
donde 1 mi1f .
Rmis = CEDI Z " (o +th)h;, paraalgint e (0,1).
[l|l=m+1

Aqui,h = (hy,... hn), ysil=(ir,...,in) € N" es tal que |I| = 3, i; = m, entonces

] i i i am om
denotamos x; = (x!......x), by = (hi.....hp)y 9 = "
1 n

Al igual que en el caso unidimensional, podemos escribir Ry, = O(||h]|™") y
Rm+1 = 0o(|[h|]™), cuando h — o.
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Teorema de Taylor

Dos casos particulares:

Teorema (Aproximacion de Taylor de primer orden)

Suponga que f : R" — R es de clase C*> sobre R", y sea X, € R, h = x — Xo. Entonces
f(x) :f(xo) + Df (Xo) - h + Ry = f(Xo) + Df (%o) - h + O([h|[*),

donde R, = E gf(xO +th)h,, paraalgint e (0,1).
X
\ll 2

Teorema (Aproximacion de Taylor de segundo orden)

Suponga que f : R" — R es de clase C3 sobre R", y sea X, € R, h = x — Xo. Entonces
f(X) = f(Xo) + Df(Xo) - h+  h'D*f(xo) h + Rs,

donde Ry = 3 Z 8]: (Xo +th)h,, paraalgint c (0,1).

=3
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Teorema de Taylor

En resumen, Si f : R" — R es de clase C?, podemos escribir

f(x) = f(%o)+ Df(xo + th), te(0,1).
f(%o) + Df(Xo) - h + 2 hTD*f (%o + thy h, t € (0,1).

=
X
[
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