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Comenzamos ahora el tema de optimizacion numérica. Mas precisamente, vamos a
trabajar, optimizacion continua no restricta.

Problema de Optimizacion:
Resolvemos el problema min F(x), (1)
xXeN

donde f : R" — R es la funcion objetivo.

Ademas, X = (x4,...,%,)T € R" es un vector de variables independientes. Estas variables
usualmente se llaman las variables de decision.

EL conjunto Q C R" se llama conjunto factible o conjunto de restricciones. En el caso de
optimizacion no restricta, Q es el dominio de la funcion f, (por lo general Q = R").

Casi siempre, requerimos que f posea alguna propiedad de interés. Por ejemplo, f es
diferenciable, f es convexa, etc. Por lo general, en la optimizacion continua se disefian
métodos y algoritmos para optimizar funciones diferenciables f diferenciables (aunque
esto no es un requisito indispensable).
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Ejemplos:
mxin ):(T::(x, donde A € R"*" es simétrica.
(cociente de Rayleigh)
n n—1
min > (X = ¥i)* +A D (K —Xi).

i=1 i=1
(minimos cuadrados con regularizacion de Tychonoff)

n—1

min ) [(Xipr = X2)? + (1= X)%].
i=1

(funcién de ROSENBROCK).
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Tipos de Extremos

Definicion
Suponga que f : Q C R" — R es una funcion con valaores reales, definida sobre Q. Un
punto x* € Q es un minimo local o minimizador local de f si existe ¢ > o tal que

f(x) > f(x*), para todo x € Q — {X*} con ||x —X*|| < e.

Definicion
Suponga que f : 2 C R" — R es una funcion con valaores reales, definida sobre Q. Un
punto x* € Q es un minimo global o minimizador global de f sobre Q si

f(x) > f(x*), para todo x € Q — {x*}.

Obs! Reemplazando > con > en las definiciones anteriores obtenemos el concepto de
un minimo local estricto y de un minimo global estricto, respectivamente.
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Notacion

A lo largo de este tema, vamos a utilizar algunas notaciones comunes:

* Todos los vectores se consideran vectores columna. Esto es
X4
T . . X2
X = (X1,X2,...,Xp)" € R" significa x=

Xn
;
;
*1=(1,1,..., 1) €R",0=(0,0,...,0)  €R", I = ( . > € RN,

) 1
® Una funcion f : R" — R™ se representara como f = (fi,f>,...,fm) € R™. Asi
f1(x)
f2(x)
f =",

Fn(X)
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Algunos resultados

Lema (Preservacion del signo)

Seaf : R" — R continua en a, y tal que f(a) # 0. Entonces, existe un § > o tal que para
todo punto x € D;(a), f(x) tiene el mismo signo que f(a).

Prueba: Sin pérdida, suponga que f(a) > 0. Tome € > 0. Usando la continuidad de f,
existe § > o tal que

Ix—al|<é = |f(x)—f(a)l <e
= —e<f(x)—f(a)<e
=  f(@)—e<f(x)<f(a)+e.

Tomando, 0 < ¢ < f(a), por ejemplo € = @, se obtiene que
Ix-al|<d = f(x)>f(@)-ec>o0,

de modo que f(x) > o tiene el mismo signo que f(a) en el disco Ds(a).
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Derivadas Vectoriales

En muchos métodos de optimizacion, se requiere informacion sobre la primera o
segunda derivada de f.

Recordemos que si f : R" — R, es de clase C', entonces f tiene primeras derivadas
continuas. La derivada o Jacobiana de f en el punto p € R", es el mapa lineal
Df : R" — R dado por

Df(p) =If(P) = (L) LP) - Lp))

Si f es de clase C?, f tiene segundas derivadas parciales continuas. El Hessiano de f es

SHE) 5l ) . o)

_of of - _of
D*f(p) = Hf(p) = axzax.1(p) axz.(p) . axza,fn(p)

8)(2.2£x1 (p) a)f,jjafx2 (P) S %(P)

Obs! Si f € C?, vale la igualdad de las segundas parciales mixtas, y D*f(p) es simétrica.
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Derivadas Vectoriales

En el caso general de f : R" — R™, con f = (fy,...,fm)” € R™, la derivada de f es

2 (p) 2L(p)
%L (p) ZL(p)

In(p) Iz(p)

L (p)
2% (p)

I (p)

Valen las propiedades ya conocidas del calculo. En particular, vale la pena recordar la

Regla de la Cadena:

Sif:R™ - RFyg:R" - R™, osn funciones diferenciables en g(p) € R™y p € R™,
respectivamente, entonces f o g : R” — RF es diferenciable enpy

D(f o g)(p) = Df (g(p)) - Dg(p).
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Derivadas Vectoriales

Revisamos algunas propiedades Utiles de derivadas vectoriales y matriciales.

SeaX = (X,...,%,)" € R". Sif : R" — R es diferenciable, recordemos que su gradiente

es el vector
VeI ®) = () e (P). s e (P)) € R

En ocasiones, representaremos Vy f(p) como la aplicacion lineal Df (p) : R" — R.

La derivada direccional de f en la direccion del vector unitario u € R" es

I(p) = Vxf(p) - u.
Sif:R" — R™ es diferenciable, recordemos que su derivada o gradiente es la aplicacion
lineal Vi f : R" — R™

%;(p) %;(p) ‘3;;(p)
Yy f(p) = (%:(P) axz:(P) 8x,,.(p) c RM*.
Un(p) In(p) ... giz(p)

UNIVERSIDAD
DEL VALLE
DE GUATEMALA

Fundamentos de Optimizacién | Alan Reyes-Figueroa Page 8 UVG




Derivadas Vectoriales

Observe que, en este caso, la matriz derivada de f puede verse como
Vx f2(p)!

Ve fa(p)T
Vuf(p) = .

Vx fm(P)"
o bien

Vi f(P)=| Vx f(P) Vi f(P) ... Vx, f(P)

En particular, si Vx = (Vx,,..-,Vx,) V= (fi,f>,...,fm)T € R™, tenemos que
VX1

Vxf(p) = () (ip) - fm(p))-
Vi,
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Derivadas Vectoriales

Ejemplo: f : R" — R™ dada por f(x) = Ax, con A = (a;) € R™*".

Tenemos
AnXq + ApXa + ... + QipXp G Qi ... Qi
031Xq + A2Xz + ... + A2pXp axy 0 ... 0o
AmiX1 + QmaXo + ... + GmnXn Om1 Am2 ... Qmn

En consecuencia, Vy (AX) = A.
Ejemplo: f : R" — R™ dada por f(x) = x"A, con A = (aj) € R™M,

Tenemos
AnXq + A Xy + ... + ApaXp G Qxn ... 0m
A12X7 + A0Xo + ... + QpaXp Qi dx»n ... 0dm
AimX1 + QomXo + ... + AQnmXn Gm G0dom ... Qnm

En consecuencia, Vy (xTA) = AT,
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Derivadas Vectoriales

En general,
Vx (Ax+b) = A,
Vs ((A+b) = AT = (Vx (ATx+b)") = (Vx (ATx+b))".
Otra forma de verlo. Recordemos que el producto matriz-vector, puede verse como el
producto punto Ax = (AT x).

Tenemos la siguientes propiedades:

Vx (AT X) = A, Vx (AX) = AT,
Vx (X, AT) = A, Vx (X,A) = AT
Otras propiedades:
Vxb = o, VxV'x =y,
Vxx = 1, Vx X = cl.
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Derivadas Vectoriales

Ejemplo: Sea f : R" — R dada por f(x) = x"Ax, con A € R"™",
El gradiente es

Vxf(X) = Vx XAX) = (VxX,AX) + (X, VxAX) = ([,AX) + (X,A) = (,AX) + (A, X)
Ax +ATx = (A+ AT)x.

En el caso en que A es simétrica, obtenemos

Vx (XTAX) = 2Ax.

Otras propiedades similares:

V[X[* = 2x

xTAx [[X|[2(A + AT)x — 2(xTAx)x
Vx o = -

x'x 1]
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Derivadas Matriciales

Ahora mencionamos algunas derivadas matriciales. Sea X € R"*P una matriz con
entradas X = (x;), y f : R"*P — R es una funcion diferenciable. Entonces definimos

of  of

OXn OX2

of of

of nr K
fo(X)Z(ax,,)z .
I : .

of of

OXn1 OXnz

of
%,
of

OXzp

of

OXnp

Ejemplo: Sea f : R"™*" — R, dada por f(X) = trX. En este caso

1

FX)=>"x; = Vxf(X)=
j=1
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Derivadas Matriciales

Ejemplo: Sea f : R™" — R, dada por f(X) = tr(AX), A € R™".

En este caso, las entradas de AX son de la forma (AX); = >4, QjeX;.

Calculando la traza, obtenemos

f(X) = tr(AX) Z Z (AX);; =

n n
Z Z G}'kaj.

j=1 k=1 j=1 k=1
De ahi que
G Qx Qnq
G2 Qx Qn2
_ AT
Vx f(X) (Vx,, Z Z a}kxkl) : L A
j=1 k=1 : .
Gin  Q2n QAnn
Portanto Vy tr(AX) = AT.
Similarmente, Vy tr(XA) = AT.
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Derivadas Matriciales

Otras propiedades (tiles:
* Vxa'Xb =ab'.
Vy tr(AXB) = Vy tr(BAX) = ATBT.
Vyx tr(XTAX) = (A + AT)X.
Vx tr(X™") = —(X~T)2
Vyx tr(AX™") = Vx tr(X'A) = —(XT)'AT(X~")T.

Vy det(X) = [X|(X~")T.

Ver una lista mas completa de propiedades de derivadas vectoriales y matriciales en
https://en.wikipedia.org/wiki/Matrix_calculus
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