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Optimización
Comenzamos ahora el tema de optimización numérica. Más precisamente, vamos a
trabajar, optimización continua no restricta.

Problema de Optimización:
Resolvemos el problema

min
x∈Ω

f (x), (1)

donde f : Rn → R es la función objetivo.
Además, x = (x1, . . . , xn)

T ∈ Rn es un vector de variables independientes. Estas variables
usualmente se llaman las variables de decisión.
EL conjunto Ω ⊆ Rn se llama conjunto factible o conjunto de restricciones. En el caso de
optimización no restricta, Ω es el dominio de la función f , (por lo general Ω = Rn).

Casi siempre, requerimos que f posea alguna propiedad de interés. Por ejemplo, f es
diferenciable, f es convexa, etc. Por lo general, en la optimización continua se diseñan
métodos y algoritmos para optimizar funciones diferenciables f diferenciables (aunque
esto no es un requisito indispensable).
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Optimización

Ejemplos:

min
x

xTAx
xTx

, donde A ∈ Rn×n es simétrica.

(cociente de Rayleigh)

min
x∈Rn

n∑
i=1

(xi − yi)
2 + λ

n−1∑
i=1

(xi+1 − xi)
2.

(mínimos cuadrados con regularización de Tychonoff)

min
x∈Rn

n−1∑
i=1

[
(xi+1 − x2

i )
2 + (1 − xi)

2].
(función de Rosenbrock).
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Tipos de Extremos

Definición
Suponga que f : Ω ⊆ Rn → R es una función con valaores reales, definida sobre Ω. Un
punto x∗ ∈ Ω es un mínimo local o minimizador local de f si existe ε > 0 tal que

f (x) ≥ f (x∗), para todo x ∈ Ω− {x∗} con ||x− x∗|| < ε.

Definición
Suponga que f : Ω ⊆ Rn → R es una función con valaores reales, definida sobre Ω. Un
punto x∗ ∈ Ω es un mínimo global o minimizador global de f sobre Ω si

f (x) ≥ f (x∗), para todo x ∈ Ω− {x∗}.

Obs! Reemplazando ≥ con > en las definiciones anteriores obtenemos el concepto de
un mínimo local estricto y de un mínimo global estricto, respectivamente.
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Notación
A lo largo de este tema, vamos a utilizar algunas notaciones comunes:

• Todos los vectores se consideran vectores columna. Esto es

x = (x1, x2, . . . , xn)
T ∈ Rn significa x =


x1
x2
...

xn

 .

• 1 = (1, 1, . . . , 1)T ∈ Rn, 0 = (0,0, . . . ,0)T ∈ Rn, I =
( 1

1
. . .

1

)
∈ Rn×n.

• Una función f : Rn → Rm se representará como f = (f1, f2, . . . , fm)
T ∈ Rm. Así

f (x) =


f1(x)
f2(x)

...
fm(x)

 .
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Algunos resultados

Lema (Preservación del signo)
Sea f : Rn → R continua en a, y tal que f (a) ̸= 0. Entonces, existe un δ > 0 tal que para
todo punto x ∈ Dδ(a), f (x) tiene el mismo signo que f (a).

Prueba: Sin pérdida, suponga que f (a) > 0. Tome ε > 0. Usando la continuidad de f ,
existe δ > 0 tal que

||x− a|| < δ =⇒ |f (x)− f (a)| < ε

=⇒ −ε < f (x)− f (a) < ε

=⇒ f (a)− ε < f (x) < f (a) + ε.

Tomando, 0 < ε < f (a), por ejemplo ε = f (a)
2 , se obtiene que

||x− a|| < δ =⇒ f (x) > f (a)− ε > 0,

de modo que f (x) > 0 tiene el mismo signo que f (a) en el disco Dδ(a).
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Derivadas Vectoriales
En muchos métodos de optimización, se requiere información sobre la primera o
segunda derivada de f .

Recordemos que si f : Rn → R, es de clase C1, entonces f tiene primeras derivadas
continuas. La derivada o Jacobiana de f en el punto p ∈ Rn, es el mapa lineal
Df : Rn → R dado por

Df (p) = Jf (p) =
(

∂f
∂x1

(p) ∂f
∂x2

(p) . . . ∂f
∂xn

(p)
)
.

Si f es de clase C2, f tiene segundas derivadas parciales continuas. El Hessiano de f es

D2f (p) = Hf (p) =


∂2f
∂x2

1
(p) ∂2f

∂x1∂x2
(p) . . . ∂2f

∂x1∂xn
(p)

∂2f
∂x2∂x1

(p) ∂2f
∂x2

2
(p) . . . ∂2f

∂x2∂xn
(p)

...
...

. . .
...

∂2f
∂xn∂x1

(p) ∂2f
∂xn∂x2

(p) . . . ∂2f
∂x2

n
(p)

 .

Obs! Si f ∈ C2, vale la igualdad de las segundas parciales mixtas, y D2f (p) es simétrica.
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Derivadas Vectoriales

En el caso general de f : Rn → Rm, con f = (f1, . . . , fm)
T ∈ Rm, la derivada de f es

Df (p) = Jf (p) =


∂f1
∂x1

(p) ∂f1
∂x2

(p) . . . ∂f1
∂xn

(p)
∂f2
∂x1

(p) ∂f2
∂x2

(p) . . . ∂f2
∂xn

(p)
...

...
. . .

...
∂fm
∂x1

(p) ∂fm
∂x2

(p) . . . ∂fm
∂xn

(p)

 .

Valen las propiedades ya conocidas del cálculo. En particular, vale la pena recordar la

Regla de la Cadena:
Si f : Rm → Rk y g : Rn → Rm, osn funciones diferenciables en g(p) ∈ Rm y p ∈ Rm,
respectivamente, entonces f ◦ g : Rn → Rk es diferenciable en p y

D(f ◦ g)(p) = Df
(
g(p)

)
· Dg(p).
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Derivadas Vectoriales
Revisamos algunas propiedades útiles de derivadas vectoriales y matriciales.

Sea x = (x1, . . . , xn)
T ∈ Rn. Si f : Rn → R es diferenciable, recordemos que su gradiente

es el vector
∇x f (p) =

( ∂f
∂x1

(p), ∂f
∂x2

(p), . . . , ∂f
∂xn

(p)
)T

∈ Rn.

En ocasiones, representaremos ∇x f (p) como la aplicación lineal Df (p) : Rn → R.

La derivada direccional de f en la dirección del vector unitario u ∈ Rn es
∂f
∂u (p) = ∇x f (p) · u.

Si f : Rn → Rm es diferenciable, recordemos que su derivada o gradiente es la aplicación
lineal ∇x f : Rn → Rm

∇x f (p) =


∂f1
∂x1

(p) ∂f1
∂x2

(p) . . . ∂f1
∂xn

(p)
∂f2
∂x1

(p) ∂f2
∂x2

(p) . . . ∂f2
∂xn

(p)
...

...
. . .

...
∂fm
∂x1

(p) ∂fm
∂x2

(p) . . . ∂fm
∂xn

(p)

 ∈ Rm×n.
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Derivadas Vectoriales
Observe que, en este caso, la matriz derivada de f puede verse como

∇x f (p) =


∇x f1(p)T

∇x f2(p)T

...
∇x fm(p)T

 ,

o bien

∇x f (p) =

∇x1 f (p) ∇x2 f (p) . . . ∇xn f (p)

 .

En particular, si ∇x = (∇x1 , . . . ,∇xn)
T y f = (f1, f2, . . . , fm)

T ∈ Rm, tenemos que

∇x f (p) =

∇x1

. . .
∇xn

(f1(p) . . . fm(p)
)
.
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Derivadas Vectoriales
Ejemplo: f : Rn → Rm dada por f (x) = Ax, con A = (aij) ∈ Rm×n.
Tenemos

f (x) =


a11x1 + a12x2 + . . .+ a1nxn
a21x1 + a22x2 + . . .+ a2nxn

...
am1x1 + am2x2 + . . .+ amnxn

 =⇒ ∇x f (x) =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn

 .

En consecuencia, ∇x (Ax) = A.

Ejemplo: f : Rn → Rm dada por f (x) = xTA, con A = (aij) ∈ Rn×m.
Tenemos

f (x) =


a11x1 + a21x2 + . . .+ an1xn
a12x1 + a22x2 + . . .+ an2xn

...
a1mx1 + a2mx2 + . . .+ anmxn

 =⇒ ∇x f (x) =


a11 a21 . . . an1
a12 a22 . . . an2
...

... . . .
...

a1m a2m . . . anm

 .

En consecuencia, ∇x (xTA) = AT .
Fundamentos de Optimización | Alan Reyes-Figueroa Page 10



Derivadas Vectoriales
En general,

∇x (Ax+ b) = A,
∇x (xTA + bT) = AT =

(
∇x (ATx+ b)T) =

(
∇x (ATx+ b)

)T
.

Otra forma de verlo. Recordemos que el producto matriz-vector, puede verse como el
producto punto Ax = ⟨AT , x⟩.

Tenemos la siguientes propiedades:
∇x ⟨AT , x⟩ = A, ∇x ⟨A, x⟩ = AT ,

∇x ⟨x,AT⟩ = A, ∇x ⟨x,A⟩ = AT .

Otras propiedades:
∇x b = 0, ∇x yTx = yT ,

∇x x = I, ∇x cx = cI.
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Derivadas Vectoriales
Ejemplo: Sea f : Rn → R dada por f (x) = xTAx, con A ∈ Rn×n.
El gradiente es

∇x f (x) = ∇x ⟨x,Ax⟩ = ⟨∇x x,Ax⟩+ ⟨x,∇x Ax⟩ = ⟨I,Ax⟩+ ⟨x,A⟩ = ⟨I,Ax⟩+ ⟨A, x⟩
= Ax+ ATx = (A + AT)x.

En el caso en que A es simétrica, obtenemos

∇x (xTAx) = 2Ax.

Otras propiedades similares:
∇x ||x||2 = 2x,

∇x
xTAx
xTx

=
||x||2(A + AT)x− 2(xTAx)x

||x||4
.
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Derivadas Matriciales
Ahora mencionamos algunas derivadas matriciales. Sea X ∈ Rn×p una matriz con
entradas X = (xij), y f : Rn×p → R es una función diferenciable. Entonces definimos

∇X f (X) =
(

∂f
∂xij

)
=


∂f
∂x11

∂f
∂x12

. . . ∂f
∂x1p

∂f
∂x21

∂f
∂x22

. . . ∂f
∂x2p

...
... . . .

...
∂f
∂xn1

∂f
∂xn2

. . . ∂f
∂xnp

 .

Ejemplo: Sea f : Rn×n → R, dada por f (X) = tr X. En este caso

f (X) =
n∑

j=1

xjj =⇒ ∇X f (X) =


1

1
. . .

1

 = I.
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Derivadas Matriciales
Ejemplo: Sea f : Rn×n → R, dada por f (X) = tr(AX), A ∈ Rn×n.

En este caso, las entradas de AX son de la forma (AX)ij =
∑n

k=1 aikxkj.

Calculando la traza, obtenemos

f (X) = tr(AX) =
n∑

j=1

n∑
k=1

(AX)jj =
n∑

j=1

n∑
k=1

ajkxkj.

De ahí que

∇X f (X) =
(
∇xij

n∑
j=1

n∑
k=1

ajkxkj

)
=


a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...
a1n a2n . . . ann

 = AT .

Portanto ∇X tr(AX) = AT .
Similarmente, ∇X tr(XA) = AT .
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Derivadas Matriciales
Otras propiedades útiles:

• ∇X aTXb = abT .
• ∇X tr(AXB) = ∇X tr(BAX) = ATBT .
• ∇X tr(XTAX) = (A + AT)X.
• ∇X tr(X−1) = −(X−T)2.
• ∇X tr(AX−1) = ∇X tr(X−1A) = −(XT)−1AT(X−1)T .
• ∇X det(X) = |X|(X−1)T .

Ver una lista más completa de propiedades de derivadas vectoriales y matriciales en
https://en.wikipedia.org/wiki/Matrix_calculus
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