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Least Square

Least-square Problem

x∗ = arg min
x∈Rn

f(x)

f(x) =
1

2

m∑
j=1

rj(x)2

where rj(x) : Rn → R, j = 1, 2, · · · ,m are smooth functions.

• rj(x), j = 1, 2, · · · ,m are referred as residuals, ie
rj(x) = yj − φ(x; tj); φ(x; tj) is a model

• It is assumed that m ≥ n
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Least-square Problem: Example

Linear Least-square

• rj(β) = yj − φ(β; tj); j = 1, 2, · · · ,m
• φ(β; t) = β0 + β1t; β = [β0, β1]

T .

• f(β) = 1
2

∑m
j=1 rj(β)2 = 1

2

∑m
j=1(yj − β0 − β1tj)2
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Least-square Problem: Example

Linear Least-square

• φ(β; t) = β0 + β1t; β = [β0, β1]
T .

• y = 2 ∗ t− 1 + η; η ∼ N (0, 2), with t = 0, 1, · · · , 20
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Non Least-square Problem: Example

Non Linear Least-square

• φ(β; t) = β0 + β1t+ β2t
2 + β3e

−β4t

• rj(β) = tj − φ(β; tj); j = 1, 2, · · · ,m; β = [β0, β1, · · · , β4]T .
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Least Square

Least-square Problem

Defining r(x) = [r1(x), r2(x), · · · , rm(x)]T

f(x) =
1

2

m∑
j=1

rj(x)2 =
1

2
‖r(x)‖22 =

1

2
r(x)Tr(x)
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Least Square: Gradient

Then

Df(x) =
1

2

(
r(x)TDr(x) + r(x)TDr(x)

)
= r(x)TDr(x)

∇f(x) = Dr(x)Tr(x) = J(x)Tr(x)

where J is the Jacobian of r : Rn → Rm and

J(x) = [Jij ]i=1,..,m
j=1,..,n

= [
∂ri(x)

∂xj
]i=1,..,m
j=1,..,n
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Least Square: Jacobian

J(x) = [Jij ]i=1,..,m
j=1,..,n

= [
∂ri(x)

∂xj
]i=1,..,m
j=1,..,n

=


∇r1(x)T

∇r2(x)T

...
∇rm(x)T


J(x)T = [∇r1(x),∇r2(x), · · · ,∇rm(x)]
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Least Square: Gradient

∇f(x) = J(x)Tr(x)

= [∇r1(x),∇r2(x), · · · ,∇rm(x)]


r1(x)
r2(x)

...
rm(x)


=

m∑
i=1

ri(x)∇ri(x)
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Least Square: Hessian

Gradient

∇f(x) =

m∑
i=1

ri(x)∇ri(x)

Hessian

∇2f(x) =

m∑
i=1

∇ri(x)∇ri(x)T + ri(x)∇2ri(x)

= J(x)TJ(x) +

m∑
i=1

ri(x)∇2ri(x)

= J(x)TJ(x) + S(x)
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Linear Least Square

Least-square Problem

r(x) = Jx− b

f(x) =
1

2
‖Jx− b‖22

J(x) = Dr(x) = J

∇f(x) = J(x)Tr(x) = JT (Jx− b) = JTJx− JTb

∇2f(x) = JTJ = J(x)TJ(x) + 0

Note:

• J(x) = J is a constant matrix

•
∑m

k=1 rk(x)∇2rk(x) = 0 due to ∇2rk(x) = 0, ie, rk(x) is
affine.
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Linear Least Square

Least-square Problem

As

∇f(x) = JTJx− JTb

the optimum x∗ satisfies

JTJx = JTb

known as normal equations.
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The Gauss Newton Method is used to solve the problem

x∗ = arg min
x∈Rn

f(x)

f(x) =
1

2

m∑
j=1

rj(x)2

It exploits the structure of the Hessian ∇2f(x)
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Instead of the standard direction

∇2f(xk)d
N
k = −∇f(xk)

one solves the following system of equation with respect to dGNk

J(xk)
TJ(xk)d

GN
k = −J(xk)

Tr(xk)
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Gauss Newton Method

1 If rk(x) ≈ 0 or ∇2rk(x) ≈ 0, ∀k then

∇2f(x) ≈ J(x)TJ(x)

then, we do not require to compute the individual residual
Hessians ∇2rk(x).

2 There are many situation where J(x)TJ(x) dominates the
second term. Therefore, J(xk)

TJ(xk) is a close
approximation to ∇2f(xk) and the convergence rate of
Gauss-Newton is similar to that of Newton’s method.
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Gauss Newton Method

1 If Jk has full rank and the gradient ∇fk is nonzero, the
direction dGN is a descent direction, and therefore a suitable
direction for a line search.

dGN
T∇f(x) = dGN

T
J(xk)

Tr(xk)

= −dGNTJ(xk)
TJ(xk)d

GN
k

= −‖J(xk)d
GN
k ‖22 ≤ 0

What happens when J(xk)d
GN
k = 0?
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Gauss Newton Method

1 The final inequality is strict unless J(xk)d
GN
k = 0, in which

case we have by the full rank of Jk

J(xk)
TJ(xk)d

GN
k = −J(xk)

Tr(xk)

J(xk)
T0 = −∇f(xk)

∇f(xk) = 0

then xk is a stationary point.
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Gauss Newton Method

1 The Gauss-Newton arises from the similarity between the
equations

J(xk)
TJ(xk)d

GN
k = −J(xk)

Tr(xk)

and the normal equations for the linear least-squares problem.

2 The previous connection tells us that dGNk is in fact the
solution of the linear least-squares problem

arg min
d
‖J(xk)d+ r(xk)‖2
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Gauss Newton Method

1 If the QR (with column pivoting) or SVD-based algorithms are
used to solve the corresponding linear system

J(xk)
TJ(xk)d

GN
k = −J(xk)

Tr(xk)

there is no need to calculate the Hessian approximation
J(xk)

TJ(xk) explicitly; we can work directly with the
Jacobian J(xk) .
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Gauss Newton Method

1 The linear least-squares problem

arg min
d
‖J(xk)d+ r(xk)‖2

can be viewed as the linear model for the the vector function
r(xk + d) ≈ r(xk) + J(xk)d therefore

f(xk + d) =
1

2
‖r(xk + d)‖2 ≈ 1

2
‖J(xk)d+ r(xk)‖2

2 Implementations of the Gauss-Newton method usually
perform a line search in the direction dGN .
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Theorem 2.1

Suppose each residual function rj is Lipschitz continuously
differentiable in a neighborhood N of the bounded level set

L = {x|f(x) ≤ f(x0)}

where x0 is the starting point for the algorithm, and that the
Jacobians J(x) satisfy (the uniform full-rank condition) that there
is a constant γ > 0 such that

‖J(x)z‖ ≥ γ‖z‖

for all x in a neighborhood N of the level set L. Then if the
iterates xk are generated by the Gauss-Newton method with step
lengths αk that satisfy the Wolfe conditions, we have

lim
k→∞

JTk rk = 0.
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Theorem 2.2

Let r : Rn → Rm, and let f(x) = 1
2‖r(x)‖2 be twice continuously

differentiate in an open convex set Ω. Assume that
J(x) ∈ Lipγ(Ω) with ‖J(x)‖ ≥ α for all x ∈ Ω and there exists
x∗ ∈ Ω and λ, σ ≥ 0 such that J(x∗)Tr(x∗) = 0, λ is the smallest
eigenvalue of J(x∗)TJ(x∗), and

‖(J(x)− J(x∗))Tr(x∗)‖ ≤ σ‖x− x∗‖

for all x ∈ Ω. If σ < λ for any c ∈ (1, λ/σ) there exists ε > 0 such
that for all x0 ∈ N (x∗, ε) the sequence generated by the
Gauss-Newton method is well defined, converges to x∗, and obeys

‖xk+1 − x∗‖ ≤
cσ

λ
‖xk − x∗‖+

cαγ

2λ
‖xk − x∗‖2

and ‖xk+1 − x∗‖ ≤ cσ+λ
2λ ‖xk − x

∗‖ < ‖xk − x∗‖
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Corollary

Let the assumptions of the previous theorem be satisfied. If
r(x∗) = 0, then there exists ε > 0 such that for all x0 ∈ N (x∗, ε),
the sequence {xk} generated by the Gauss-Newton method is well
defined and converges quadratically to x∗.
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Gauss Newton Method:Advantages

1 Locally quadratically convergent on zero-residual problems.

2 Quickly locally q-linearly convergent on problems that aren’t
too nonlinear and have reasonably small residuals.

3 Solves linear least-squares problems in one iteration.
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Gauss Newton Method: Disadvantages

1 Slowly locally linearly convergent on problems that are
sufficiently nonlinear or have reasonably large residuals.

2 Not locally convergent on problems that are very nonlinear or
have very large residuals.

3 Not well defined if J(xk) doesn’t have full column rank.

4 Not necessarily globally convergent.
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Implementation using QR

Let us use QR Factorization with Column Pivoting, ie

JP = QR =
[
Q1 Q2

] [ R1

0

]
where J ∈ Rm×n, P ∈ Rn×n is a permutation matrix, Q ∈ Rm×m
and R ∈ Rm×n, Q1 ∈ Rm×n Q2 ∈ Rm×m−n with

QQT = QTQ = I

and R1 ∈ Rn×n is an upper triangular matrix with elements of the
diagonal satisfying

|r11| ≥ |r22| ≥ · · · ≥ |rnn|
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Implementation using QR

Considering ‖Qx‖2 = ‖x‖2 if Q is orthogonal, then

‖Jkdk + rk‖2 = ‖JkPPTdk + rk‖2

= ‖QRPTdk + rk‖2

= ‖RPTdk + QTrk‖2

=

∥∥∥∥[ R1

0

]
PTdk +

[
QT

1

QT
2

]
rk

∥∥∥∥2
= ‖R1P

Tdk + QT
1 rk‖2 + ‖QT

2 rk‖2
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Implementation using QR

From the last equation, ie,

‖Jkdk + rk‖2 = ‖R1P
Tdk + QT

1 rk‖2 + ‖QT
2 rk‖2

Computing the gradient w.r.t dk and due to P,R1 have inverse,..
then

PRT
1 (R1P

Tdk + QT
1 rk) = 0

R1P
Tdk = −QT

1 rk

the previous system can be solved in two steps
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Implementation using QR

Defining

b = −QT
1 rk

z = PTdk

ie, dk = Pz. From

R1P
Tdk = −QT

1 rk

we solve the following systems, first for z and then for dk

R1z = b

dk = Pz
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