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Least Square

Least-square Problem

@* = arg min f(z)

f@) = 3> i)

where rj(x) : R® = R, j =1,2,--- ,m are smooth functions.
e rj(x), j=1,2,--- ,m are referred as residuals, ie
ri(@) =y; — d(x;t)); ¢(x;t;) is a model
e |t is assumed that m > n
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Least-square Problem: Example

Linear Least-square

e r;(B)=y; —d(Bit;); i =1,2,---,m
o #(B;t) = Bo+ Bit; B = [Bo, B1]".
o f(B) =31 ri(B)? =5 X1 (y5 — Bo — Baty)?
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Least-square Problem: Example

Linear Least-square

o #(Bit) = Bo+ Bit; B = [Bo, Bi]".

e y=2xt—1+mn,7~N(0,2), witht=0,1,---

,20

40

linear least square

/30



Least Square Problems
Gauss Newton Method

Non Least-square Problem: Exa

Non Linear Least-square

o &(B;t) = Bo + But + Bat® + Bze P4t
e r](IB) :tj _¢(167tj)1 .7 = 1727"‘ , T, IBZ [607/817"' 7/84]T-

non linear least square
T T T
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Least Square: Gradient

Then

Df(x) = % (r(:c)TDr(az) + r(:z:)TDr(a:)) = r(z)T Dr(x)
Vfx) = Dr(z)lr(x)=Jx)r(zx)

where J is the Jacobian of » : R™ — R™ and

J) = [Jijli=1,.m
7j=1,..,n
_ [ari(m) ‘

]z:l,..,m
Oxj "j—1{n
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Least Square: Jacobian
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Least Square: Gradient

r1(z)
= [Vri(z),Vra(z), -, V()] 7“2@)

r'm ()
= in;ri(m)Vn(x)
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Least Square: Hessian

Gradient
Vi®) = iri(z)vn(.@)
Hessian _
Vif(z) = i Vri(x)Vri(z)" + ri(2)Viri(2)
= J(@)TI(@) + f;ri(x)v%(:g)

= J(x)TJI(x)+ S(x)
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Least-square Problem

rx) = Jr—>b

f@) = 39z bl3

Jx) = Dr(x)=1J
Vi) = J@) r(x)=3"Jze—-b)=I"Jx - ITb
Vif(x) = JTT=J(x)'J(x)+0

Note:
e J(x) = J is a constant matrix
o St ri(z)V2ri(z) = 0 due to V2ri(x) = 0, ie, rp(x) is
affine.
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Linear Least Square

Least-square Problem
As

Vix) = JTJz—JTb
the optimum x* satisfies

JT3z = J%b

known as normal equations.
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The Gauss Newton Method is used to solve the problem

@* = arg min f()

fl@) = 5> n)?

It exploits the structure of the Hessian V2 f(x)
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Instead of the standard direction
Vif(z)dy = V()
one solves the following system of equation with respect to deN

Iae) I(@p)dg™ = —I(xp) r(zr)
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Gauss Newton Method

©® If rp(x) ~ 0 or V2ri(x) ~ 0, Vk then
V(@) ~ J(z)"I(x)
then, we do not require to compute the individual residual

Hessians V2r(x).

@® There are many situation where J(x)”J(x) dominates the
second term. Therefore, J(xx)?7J(x}) is a close
approximation to V2 f(x;) and the convergence rate of
Gauss-Newton is similar to that of Newton’s method.

16 /30



Least Square Problems
Gauss Newton Method

Gauss Newton Method

@ If J; has full rank and the gradient V fi is nonzero, the

direction d°" is a descent direction, and therefore a suitable
direction for a line search.

ANV @) = AN I (@) ()
= —dN" 3(2) T I (2y)dSN

= [ I(@p)dN]3 <0

What happens when J(z;,)d$Y = 0?
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Gauss Newton Method

@ The final inequality is strict unless J(x;)d$™ = 0, in which
case we have by the full rank of Jg

(@) I(xp)di™ = —I(x) r(zy)
J(@p)"0 = —Vf(x)
Vf(azk) =0

then xy is a stationary point.
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Gauss Newton Method

@ The Gauss-Newton arises from the similarity between the
equations

J(@y) J(@)dgy = —I(xy) v (zy)

and the normal equations for the linear least-squares problem.

® The previous connection tells us that d{' is in fact the
solution of the linear least-squares problem

arg mdin | I (x)d + 7 () ||
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Gauss Newton Method

@ If the QR (with column pivoting) or SVD-based algorithms are
used to solve the corresponding linear system

(@) I(ap)di™ = —I(xp) r(zy)

there is no need to calculate the Hessian approximation
J(x1)T I (xy) explicitly; we can work directly with the
Jacobian J(xy) .

20/30
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Gauss Newton Method

@ The linear least-squares problem

arg min 1J (@) d + 7 () |2

can be viewed as the linear model for the the vector function
r(zy + d) = r(xy) + J(x)d therefore

fantd) = Slrtes+d)? = 3 |3@)d+ (@)

® Implementations of the Gauss-Newton method usually
perform a line search in the direction dN.

21/30



Gauss Newton Method

Theorem 2.1

Suppose each residual function r; is Lipschitz continuously
differentiable in a neighborhood N of the bounded level set

L={x|f(x) < f(zo)}

where x( is the starting point for the algorithm, and that the
Jacobians J(x) satisfy (the uniform full-rank condition) that there
is a constant v > 0 such that

1T (z)z]| = ~[|=]

for all x in a neighborhood N of the level set L. Then if the
iterates xj, are generated by the Gauss-Newton method with step
lengths «, that satisfy the Wolfe conditions, we have

lim Jir, = O.
k—00

P2 /30



Gauss Newton Method

Theorem 2.2

Let 7 : R" — R™, and let f(x) = 3| v(z)||*> be twice continuously
differentiate in an open convex set §). Assume that

J(x) € Lip,(Q) with ||J(x)|| > o for all x € 2 and there exists
x* € Q and \,0 > 0 such that J(z*)"r(x*) = 0, \ is the smallest
eigenvalue of J(x*)TJ(x*), and

13 (@) = I(*) r(z")|| < ol — 2|
for all x € Q. If o < X for any ¢ € (1, \/o) there exists € > 0 such
that for all xy € N'(x*,€) the sequence generated by the
Gauss-Newton method is well defined, converges to x*, and obeys

co
ey — 27| < =l — 27 + 0 ch —|?

and ||zpi1 — a*|| < G2l — || < [y — ]|

23 /30



Gauss NEWton MEthOd _

Let the assumptions of the previous theorem be satisfied. If
r(x*) = 0, then there exists € > 0 such that for all g € N (z*,¢),
the sequence {xj} generated by the Gauss-Newton method is well
defined and converges quadratically to x*.

24 /30
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Gauss Newton Method:Advantag

@ Locally quadratically convergent on zero-residual problems.

® Quickly locally g-linearly convergent on problems that aren’t
too nonlinear and have reasonably small residuals.

© Solves linear least-squares problems in one iteration.
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Gauss Newton Method: Disadva

@ Slowly locally linearly convergent on problems that are
sufficiently nonlinear or have reasonably large residuals.

® Not locally convergent on problems that are very nonlinear or
have very large residuals.

© Not well defined if J(xy) doesn't have full column rank.

O Not necessarily globally convergent.
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Implementation using QR

Let us use QR Factorization with Column Pivoting, ie

JP = QrR=[Q QQ][IH

where J € R™*™ P € R" " is a permutation matrix, Q € R™*™
and R € R™*", Q; € R™*™ Qg € R™*™ ™™ with

QQ" = Q'Q=1

and Ry € R™ " is an upper triangular matrix with elements of the
diagonal satisfying

[T11] > |rag] > -+ > |ron]
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Implementation using QR

Considering || Qx||2 = ||z||2 if Q is orthogonal, then

|3, PPLdy + v
= |QRPTd;, + 7|
IRPTd;, + QTry |
Ri | 57 [ QY ]
P d. + r
H[ 0 ] Frlal )t
= |RPTdp + Qri|* + |Q5 7kl

||Jkdk + 'PkHQ

2
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Implementation using QR

From the last equation, ie,
[ Jrdy, + rill> = [IRPTdy + QU ril|” + Q3 rill®

Computing the gradient w.r.t d; and due to P, R4 have inverse,..
then

PRY(R,PTd, +Qlr,) = 0
R, PTd, = —-Qfr,

the previous system can be solved in two steps
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Implementation using QR

Defining
b = —Qirg
z = P4,
ie, d, = Pz. From
R,PTd, = —Qins

we solve the following systems, first for z and then for dj,

R1Z:b
dePz
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