

Punto de Cauchy. Método Dogleg.

ALAN REYES-FIGUEROA MÉTODOS NUMÉRICOS II

(AULA 23) 29.SEPTIEMBRE.2021

Teorema (Caracterización de soluciones para Región de Confianza)

El vector $\mathbf{d}^* \in \mathbb{R}^n$ es una solución global del problema

$$\mathbf{d}_{k} = \operatorname{argmin}_{\mathbf{d}} f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} B_{k} \mathbf{d}, \quad \text{sujeto } a \ ||\mathbf{d}|| \leq \Delta_{k}, \tag{1}$$

 \iff **d*** es factible y existe $\lambda \geq$ 0 tal que

$$(B + \lambda I) \mathbf{d}^* = -\mathbf{g}, \ (\nabla_{\mathbf{d}} \mathcal{L} = \mathbf{0})$$

 $\lambda(\Delta^2 - ||\mathbf{d}^*||^2) = 0, \ \ (condición de complementariedad)$ (2)
 $B + \lambda I \succeq 0.$

<u>Prueba</u>: (\Leftarrow) Suponga que existe $\lambda \ge$ o que satisface las condiciones (2). El lema anterior implica que \mathbf{d}^* es un mínimo global de la función

$$\widetilde{m}(\mathbf{d}) = \mathbf{g}^{\mathsf{T}}\mathbf{d} + \frac{1}{2}\mathbf{d}^{\mathsf{T}}(B + \lambda I)\mathbf{d} = m(\mathbf{d}) + \frac{1}{2}\lambda\mathbf{d}^{\mathsf{T}}\mathbf{d}.$$

Como $\widetilde{m}(\mathbf{d}) \geq \widetilde{m}(\mathbf{d}^*)$, tenemos que $m(\mathbf{d}) \geq m(\mathbf{d}^*) + \frac{1}{2}\lambda \left((\mathbf{d}^*)^T \mathbf{d}^* - \mathbf{d}^T \mathbf{d} \right)$. Además, de $\lambda(\Delta^2 - ||\mathbf{d}^*||^2) = \lambda(\Delta^2 - ||(\mathbf{d}^*)^T \mathbf{d}^*||^2) = 0$, obtenemos $m(\mathbf{d}) \geq m(\mathbf{d}^*) + \frac{1}{2}\lambda(\Delta^2 - \mathbf{d}^T \mathbf{d})$. (3)

Y como $\lambda \geq$ o, resulta $m(\mathbf{d}) \geq m(\mathbf{d}^*)$ para todo $\mathbf{d} \in \mathbb{R}^n$, con $||\mathbf{d}|| \leq \Delta$. Portanto, \mathbf{d}^* es un mínimo global de (1).

(⇒) Suponga ahora que $\mathbf{d}^* \in \mathbb{R}^n$ es una solución global de (1). En el caso que $||\mathbf{d}^*|| \leq \Delta$, tendríamos $\nabla m(\mathbf{d}^*) = \mathbf{g} + B\mathbf{d}^* = \mathbf{o}$, $D^2m(\mathbf{d}^*) = B \succeq \mathbf{o}$, y las condiciones (2) se satisfacen para $\lambda = \mathbf{o}$.

Si $||\mathbf{d}^*|| = \Delta$, entonces \mathbf{d}^* también es solución del problema $\min_{\mathbf{d}} m(\mathbf{d})$, sujeto a $||\mathbf{d}|| = \Delta$.

Aplicando las condiciones de optimalidad, existe $\lambda \in \mathbb{R}$ tal que el Lagrangiano

$$\mathcal{L}(\mathbf{p},\lambda) = \mathbf{g}^{\mathsf{T}}\mathbf{d} + \frac{1}{2}\mathbf{d}^{\mathsf{T}}B\mathbf{d} + \frac{1}{2}\lambda(\mathbf{d}^{\mathsf{T}}\mathbf{d} - \Delta^{2}), \tag{4}$$

tiene un punto estacionario en d*.

Luego, $\nabla_{\mathbf{d}}\mathcal{L}(\mathbf{d}^*,\lambda) = \mathbf{g} + B\mathbf{d}^* + \lambda\mathbf{d}^* = \mathbf{o}$. De ahí que $(B + \lambda I)\mathbf{d}^* = -\mathbf{g}$.

Como $m(\mathbf{d}) \geq m(\mathbf{d}^*)$ para todo $\mathbf{d} \in \mathbb{R}^n$, con $(\mathbf{d}^*)^{\mathbf{d}^*} = \Delta^2$, entonces para tales vectores vale

$$\widetilde{m}(\mathbf{d}) \geq m(\mathbf{d}^*) + \frac{1}{2}\lambda ((\mathbf{d}^*)^\mathsf{T}\mathbf{d}^* - \mathbf{d}^\mathsf{T}\mathbf{d}),$$

$$\textbf{y}~\textbf{g}^{T}\textbf{d} + \tfrac{1}{2}\textbf{d}^{T}\textbf{B}\textbf{d} \geq \textbf{g}^{T}\textbf{d}^{*} + \tfrac{1}{2}(\textbf{d}^{*})^{T}\textbf{B}\textbf{d}^{*} + \tfrac{1}{2}\lambda\big((\textbf{d}^{*})^{T}\textbf{d}^{*} - \textbf{d}^{T}\textbf{d}\big) - (\textbf{d}^{*})^{T}(\textbf{B} + \lambda\textbf{I})\textbf{d} + \tfrac{1}{2}\textbf{d}^{T}\textbf{B}\textbf{d}$$

$$\Rightarrow \frac{1}{2}\mathbf{d}^{T}B\mathbf{d} - \frac{1}{2}(\mathbf{d}^{*})^{T}B\mathbf{d}^{*} - (\mathbf{d}^{*})^{T}B\mathbf{d} - \lambda(\mathbf{d}^{*})^{T}\mathbf{d} + (\mathbf{d}^{*})^{T}B\mathbf{d}^{*} + \lambda(\mathbf{d}^{*})^{T}\mathbf{d}^{*} - \frac{1}{2}\lambda(\mathbf{d}^{*})^{T}\mathbf{d}^{*} + \frac{1}{2}\lambda\mathbf{d}^{T}\mathbf{d} \ge 0$$

$$\implies \quad \left(\tfrac{1}{2}\boldsymbol{d}^T\boldsymbol{B}\boldsymbol{d} - (\boldsymbol{d}^*)^T\boldsymbol{B}\boldsymbol{d} + \tfrac{1}{2}(\boldsymbol{d}^*)^T\boldsymbol{B}\boldsymbol{d}^*\right) + \lambda \left(\tfrac{1}{2}\boldsymbol{d}^T\boldsymbol{d} - (\boldsymbol{d}^*)^T\boldsymbol{d} + \tfrac{1}{2}(\boldsymbol{d}^*)^T\boldsymbol{d}^*\right) \geq O$$

$$\implies \frac{1}{2}(\mathbf{d}^T - \mathbf{d}^*)^T (B + \lambda I)(\mathbf{d} - \mathbf{d}^*) \geq 0.$$

Como el conjunto de direcciones $\{\pm \frac{\mathbf{d} - \mathbf{d}^*}{||\mathbf{d} - \mathbf{d}^*||}: ||\mathbf{d}|| = \Delta\}$ es denso en S^n , esto muestra que $B + \lambda I \succeq \mathbf{o}$.

Por último, falta mostrar que $\lambda \geq 0$.

Suponga que $\lambda <$ o, son los únicos valores que satisfacen la primera y tercera ecuación de (2). Como \mathbf{d}^* satisface $(B + \lambda I)\mathbf{d}^* = -\mathbf{g}$ y $B + \lambda I \succeq$ o, del lema anterior sabemos que \mathbf{d}^* es un mínimo global de

$$\widetilde{m}(\mathbf{d}) = {}^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} (B + \lambda I) \mathbf{d}.$$

Luego, de (3), sabemos que $m(\mathbf{d}) \geq m(\mathbf{d}^*) + \frac{1}{2}\lambda(\Delta^2 - \mathbf{d}^T\mathbf{d})$, para todo $\mathbf{d} \in \mathbb{R}^m$, siempre que $||\mathbf{d}|| \geq ||\mathbf{d}^*|| = \Delta$.

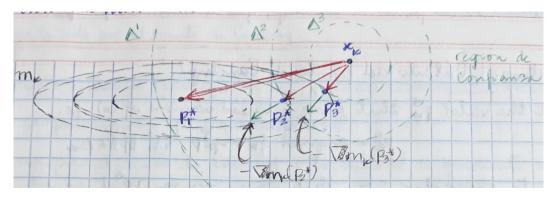
Como ya vimos que \mathbf{d}^* minimiza m en la región $||\mathbf{d}|| \geq \Delta$, se sigue que \mathbf{d}^* es un mínimo global (no restricto) para m, y las condiciones $(B + \lambda I)\mathbf{d}^* = -\mathbf{g}$ y $B + \lambda I \succeq \mathbf{o}$ se satisfacen también para $\lambda = \mathbf{o}$, un absurdo.

Portanto, $\lambda \geq$ 0. \square

Comentarios:

- Si $\lambda = 0$ entonces $B\mathbf{d}^* = -\mathbf{g}$. En particular, si $B \succ 0$ entonces $\mathbf{d}^* = -B^{-1}\mathbf{g}$ (i.e., es el paso de Newton o Newton aproximado).
- Si $\lambda >$ 0 entonces $B\mathbf{d}^* + \lambda \mathbf{d}^* = -\mathbf{g}$, por lo que $\lambda \mathbf{d}^* = -(B\mathbf{d}^+\mathbf{g})$, es decir, $\mathbf{d}^* = -\frac{1}{\lambda} \nabla m_k(\mathbf{d}^*)$ y por tanto \mathbf{d}^* y $\nabla m_k(\mathbf{d}^*)$ son paralelos, *i.e.*, \mathbf{d}^* es la dirección de máximo descenso del modelo.
- Por otro lado, por la condición, $\lambda(||\mathbf{d}^*|| \Delta) = 0$ se tiene que cumplir $||\mathbf{d}^*|| = \Delta$, es decir, la solución esta en la frontera (se activa la restricción).

Cuando $\lambda >$ o, la solución \mathbf{d}^* es paralela con el negativo del gradiente $-\nabla m_k(\mathbf{x}_k)$, de modo que es ortogonal a las curvas de nivel de m_k :



Vamos a describir una solución que aproxima el subproblema anterior, el cual obtiene una reducción del modelo m_k .

Discutiremos dos estrategias para hallar soluciones aproximadas de (1)

$$\mathbf{d}_k = \operatorname{argmin}_{\mathbf{d}} f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^\mathsf{T} \mathbf{d} + \frac{1}{2} \mathbf{d}^\mathsf{T} B_k \mathbf{d}, \quad \text{sujeto a } ||\mathbf{d}|| \leq \Delta_k,$$

- · Punto de Cauchy,
- Método Dogleg.

El **punto de Cauchy** de sefine como el minimizador de m_k a lo largo de la dirección de máximo descenso $-\mathbf{g}_k = -\nabla m_k(\mathbf{o}) = -\nabla f(\mathbf{x}_k)$, sujeto a la restricción de la región de confianza.

