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1. a) Sea α(t) una curva parametrizada en Rn, que no pasa por el origen O. Probar que si α(t0) es un punto del trazo de α
que está más próximo a O, y α′(t0) ̸= 0, entonces α(t0) es ortogonal a α′(t0)

b) Sea α : I → R3 una curva parametrizada, con α′(t) ̸= 0, ∀t ∈ I. Mostrar que |α(t)| es una constante > 0 si, y sólo si,
α(t) es ortogonal a α′(t), para todo t ∈ I.

2. Considere la parametrización de la cicloide de radio r vista en aula.

a) Calcular la longitud de arco de la cicloide en el primero de sus arcos, esto es correspondiente a una rotación completa
del ćırculo.

b) Calcular el área bajo la curva (entre la curva y el eje x) para este arco de cicloide.

3. Sea α : (0, π) → R2 la curva dada por (
sin t, cos t+ log tan t

2

)
,

donde t es el ángulo que el eje Oy hace con el vector α′(t). Esta curva se llama la tractriz (Figura en pág. 8 de Do Carmo).
Mostrar que

� α es una curva parametrizada diferenciable, regular excepto en t = π
2 .

� La longitud del segmento de la tangente a la tractriz, entre el punto de tangencia y el eje Oy es constante e igual a 1.

4. Probar que la curvatura y la torsión de una curva de Frenet α(t) en R3, parametrizada de forma arbitraria, están dadas por

κ(t) =
|α′ × α′′|
|α′|3

, τ(t) =
det(α′, α′′, α′′′)

|α′ × α′′|2
.

En particular, en el caso de curvas planas,

κ(t) =
det(α′, α′′)

|α′|3
.

(Sugerencia: ver las ideas en el Ejercicio 12, pág 26 de Do Carmo.)

5. Sea α una curva plana regular en coordenadas polares (r, φ), dada por r = r(φ). Usando la notación r′ = ∂r
∂φ , verificar que

la longitud de arco en el intervalo [φ1, φ2] es

s =

∫ φ2

φ1

√
r′2 + r2 dφ,

y que la curvatura está dada por

κ(φ) =
2r′2 − rr′′ + r2

(r′2 + r2)3/2
.

6. Calcular la curvatura de la espiral de Arqúımedes, la cual está dada por r(φ) = aφ, a constante.

7. Para la espiral logaŕıtmica, dada en coordenadas polares por por r(t) = aet, φ(t) = bt, a, b constantes (Figura 1(b)), probar
lo siguiente:



Figure 1: (a) espiral de Arqúımedes, (b) espiral logaŕıtmica.

a) La longitud de la curva en el intervalo (−∞, t] es proporcional al radio r(t)

b) α(t) → 0, cuando t → ∞ y α tiene longitud de arco finita en el intervalo [t0,∞).

c) El vector α(t) tiene ángulo constante con el vector tangente α′(t).

8. Mostrar que la curva de menor longitud entre dos puntos p,q ∈ Rn es el segmento de recta que los une.
(Sugerencia: ver las ideas en el Ejercicio 10, pág 11 de Do Carmo.)

9. Sea α la hélice en R3, dada por
α(t) = (a cos t, a sin t, bt), a, b ∈ R+.

Muestre que la curvatura y la torsión de α son constantes.

10. Construir una curva plana, parametrizada por longitud de arco, cuya curvatura esté dada exactamente por κ(s) = s−1/2.


