Geometría Diferencial 2025

Lista 04

25.marzo.2025

1. Mostrar que la ecuación del plano tangente en $\mathbf{p}=(x_0,y_0,z_0)$ a una superficie regular S:f(x,y,z)=0, con 0 un valor regular de f es

$$f_x(\mathbf{p})(x-x_0) + f_y(\mathbf{p})(y-y_0) + f_z(\mathbf{p})(z-z_0) = 0.$$

¿Cómo queda la ecuación del plano tangente en el caso de una superfície regular de la forma z = f(x,y)?

2. Pruebe que las normales a una superficie parametrizada de la forma

$$\mathbf{x}(u,v) = (f(u)\cos v, f(u)\sin v, g(u)), \quad f(u) \neq 0, \ g'(u) \neq 0,$$

pasan todas por el eje Oz.

- 3. Un punto crítico de una función diferenciable $f: S \to \mathbb{R}$ definida sobre una superficie regular S es un punto $\mathbf{p} \in S$ tal que $Df(\mathbf{p}) = 0$.
 - a) Si $f: S \to \mathbb{R}$ es dada por $f(\mathbf{p}) = |\mathbf{p} \mathbf{p}_0|$, con $\mathbf{p}_0 \notin S$, mostrar que \mathbf{p} es punto crítico de f si, y sólo si, la recta de \mathbf{p} a \mathbf{p}_0 es normal a S.
 - b) Si $h: S \to \mathbb{R}$ es dada por $h(\mathbf{p}) = \mathbf{p} \cdot \mathbf{v}$, $\mathbf{v} \in \mathbb{R}^3$ vector unitario, mostrar que \mathbf{p} es punto crítico de f si, y sólo si, \mathbf{v} es un vector normal a S en \mathbf{p} .
- 4. La orientación puede no ser preservada por difeomorfismos.

Sea $\varphi: S_1 \to S_2$ un difeomorfismo entre superficies.

- a) Muestre que S_1 es orientable si, y sólo si, S_2 es orientable.
- b) Considere la aplicación antípoda $\varphi: S^2 \to S^2$ dada por $\varphi(\mathbf{p}) = -\mathbf{p}$. Utilizar esta aplicación para mostrar que en (a), la orientación inducida por φ puede ser distinta de la original.

$$\mathbb{K} = [0,1] \times [0,1] / \sim$$
, donde $(u,0) \sim (u,1)$, y $(0,v) \sim (1,1-v)$,

u otro modelo similar, como se ilustra en la Figura 1.

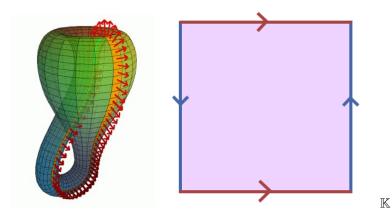


Figure 1: Botella de Klein. (a) como superficien en \mathbb{R}^3 , (b) como espacio cociente.