

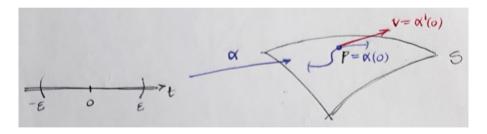
EL PLANO TANGENTE

Alan Reyes-Figueroa Geometría Diferencial

(Aula 18) 13.MARZO.2025

Definición

Sea $S \subseteq \mathbb{R}^3$ una superficie regular. Diremos que el vector $\mathbf{v} \in \mathbb{R}^3$ es **tangente** a S en el punto $\mathbf{p} \in S$ si existe una curva parametrizada $\alpha: (-\varepsilon, \varepsilon) \to S$ tal que $\alpha(\mathbf{o}) = \mathbf{p}$ y $\alpha'(\mathbf{o}) = \mathbf{v}$.



Propiedad

Sea $\mathbf{x}: U \subseteq \mathbb{R}^2 \to V \subseteq S$ una parametrización de la superficie regular S, en el punto $\mathbf{p} \in V \cap S$, con $\mathbf{x}(\mathbf{q}) = \mathbf{p}$. Entonces, el conjunto $D\mathbf{x}(\mathbf{q}) \cdot \mathbb{R}^2$ coincide con el conjunto de los vectores tangentes a S en \mathbf{p} .

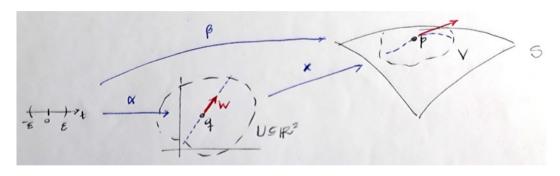
<u>Prueba</u>:

Considere $T_pS=\{\mathbf{v}\in\mathbb{R}^3:\mathbf{v}\text{ es tangente a }S\text{ en }\mathbf{p}\}$. Mostramos que $D\mathbf{x}(\mathbf{q})\cdot\mathbb{R}^2=T_pS$.

[\subseteq] Sea $\mathbf{w} \in \mathbb{R}^2$ y sea $\alpha(t) = \mathbf{q} + t\mathbf{w}$ la recta en dirección de \mathbf{w} pasando por \mathbf{q} , dentro del dominio U. Luego, $\alpha(\mathbf{o}) = \mathbf{q}$ y $\alpha'(\mathbf{o}) = \mathbf{w}$. Definamos la curva $\beta = \mathbf{x} \circ \alpha$ sobre S

Entonces, $\beta(\mathbf{0})=\mathbf{x}\circ\alpha(\mathbf{0})=\mathbf{x}(\mathbf{q})=\mathbf{p}$, y por la regla de la cadena tenemos

$$\beta'(0) = \frac{d}{dt}(\mathbf{x} \circ \alpha)(0) = D\mathbf{x}(\alpha(0)) \cdot \alpha'(0) = D\mathbf{x}(\mathbf{q}) \cdot \mathbf{w},$$



de modo que $D\mathbf{x}(q) \cdot \mathbf{w} \in T_{\mathbf{p}}S$.

Como **w** es arbitrario, esto muestra que $D\mathbf{x}(q) \cdot \mathbb{R}^2 \subseteq T_{\mathbf{p}}S$.

[⊇] Sea $\mathbf{v} \in T_{\mathbf{p}}S$.

Entonces, existe una curva $\beta: (-\varepsilon, \varepsilon) \to V \subseteq S$ tal que $\beta(O) = \mathbf{p}$ y $\beta'(O) = \mathbf{v}$. Definamos $\alpha = \mathbf{x}^{-1} \circ \beta: (-\varepsilon, \varepsilon) \to U \subseteq \mathbb{R}^2$. Observe que siendo \mathbf{x} y β diferenciables, entonces α es también diferenciable. Luego, $\alpha(O) = \mathbf{x}^{-1} \circ \beta(O) = \mathbf{x}^{-1}(\mathbf{p}) = \mathbf{q}$ y $\alpha'(O) = \mathbf{w} \in \mathbb{R}^2$.

Como $\mathbf{x} \circ \alpha = \beta$, entonces de la regla de la cadena

$$\mathbf{v} = \beta'(\mathbf{o}) = D\mathbf{x}(\alpha(\mathbf{o})) \cdot \alpha'(\mathbf{o}) = D\mathbf{x}(\mathbf{q}) \cdot \mathbf{w} \in D\mathbf{x}(\mathbf{q}) \cdot \mathbb{R}^2.$$

Siendo ${\bf v}$ arbitrario en $T_{\bf p}S$, esto muestra que $T_{\bf p}S\subseteq D{\bf x}({\bf q})\cdot \mathbb{R}^2$, lo que concluye la igualdad. \Box

Corolario

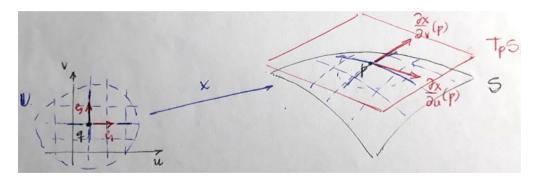
Para todo punto **p** de una superficie regular S, el plano tangente T_pS es un espacio vectorial de dimensión 2. Una base para este espacio es $\{\frac{\partial \mathbf{x}}{\partial u}(\mathbf{p}), \frac{\partial \mathbf{x}}{\partial v}(\mathbf{p})\}$, donde

$$\frac{\partial \mathbf{x}}{\partial u}(\mathbf{p}) = D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_1, \quad \frac{\partial \mathbf{x}}{\partial v}(\mathbf{p}) = D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_2.$$

Prueba:

- Como S es superficie regular y $\mathbf{x}:U\subseteq\mathbb{R}^2\to V\cap S$ es una parametrización, la derivada $D\mathbf{x}(\mathbf{q})$ es un mapa lineal inyectivo $\Rightarrow T_{\mathbf{p}}S=\operatorname{Im}D\mathbf{x}(\mathbf{q})$ es un espacio vectorial y $\dim T_{\mathbf{p}}S\geq \dim \mathbb{R}^2=2$.
- Por el Teorema de la Dimensión, dim $T_pS = \dim \mathbb{R}^2 = 2$. Portanto, dim $T_pS = 2$.

• Como $\{\mathbf{e}_1,\mathbf{e}_2\}$ es una base de \mathbb{R}^2 y $D\mathbf{x}(\mathbf{q}): \mathbb{R}^2 \to T_\mathbf{p}S$ es un isomorfismo lineal, entonces $\{\frac{\partial \mathbf{x}}{\partial u}(\mathbf{p}), \frac{\partial \mathbf{x}}{\partial v}(\mathbf{p})\}$ es una base para $T_\mathbf{p}S$.



Definición

A T_pS se le llama el **plano tangente** a la superficie S en p.

Observaciones:

- La base $\{\frac{\partial \mathbf{x}}{\partial u}(\mathbf{p}), \frac{\partial \mathbf{x}}{\partial v}(\mathbf{p})\}$ se llama la **base canónica** o la base de $T_{\mathbf{p}}S$ asociada a la parametrización \mathbf{x} .
- Usualmente escribiremos

$$\frac{\partial \mathbf{x}}{\partial u}(\mathbf{p}) = \mathbf{x}_u(\mathbf{q}), \quad \frac{\partial \mathbf{x}}{\partial v}(\mathbf{p}) = \mathbf{x}_v(\mathbf{q}).$$

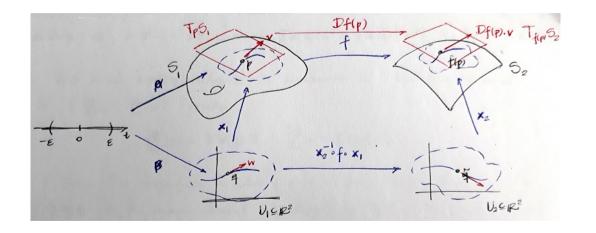
• El plano tangente T_pS no depende de la elección de la parametrización **x**, ni de la curva α .

Definición

Sean S_1 , S_2 superficies regulares, y sea $f: S_1 \to S_2$ una aplicación diferenciable. Dados, $\mathbf{p} \in S_1$, $\mathbf{v} \in T_\mathbf{p}S_1$, entonces existe una curva parametrizada $\alpha: (-\varepsilon, \varepsilon) \to V \subseteq S_1$, con $\alpha(\mathbf{0}) = \mathbf{p}$ y $\alpha'(\mathbf{0}) = \mathbf{v}$.

La **derivada** de f en ${\bf p}$ es la aplicación lineal $Df({\bf p}): T_{\bf p}S_1 \to T_{f({\bf p})}S_2$ dada por

$$Df(\mathbf{p}) \cdot \mathbf{v} = (f \circ \alpha)'(0).$$



Observaciones:

- La regla de la cadena implica que $(f \circ \alpha)'(o) = Df(\alpha(o)) \cdot \alpha'(o) = Df(\mathbf{p}) \cdot \mathbf{v}$.
- La derivada $Df(\mathbf{p})$ no depende de la curva α .
- Si $\mathbf{x}: U_1 \subseteq \mathbb{R}^2 \to S_1$ es una parametrización , y $\mathbf{p} \in \mathbf{x}(U_1)$, definamos $\alpha = \mathbf{x} \circ \beta: (-\varepsilon, \varepsilon) \to S_1$ es una curva diferenciable. Suponga que $\beta(t) = (u(t), v(t))$. Entonces,

$$\mathbf{v} = \alpha'(0) = (\mathbf{x} \circ \beta)'(0) = D\mathbf{x}(\beta(0)) \cdot \beta'(0) = D\mathbf{x}(\mathbf{q}) \cdot (u'(0), v'(0))$$

$$= u'(0)D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_1 + v'(0)D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_2 = u'(0)\frac{\partial \mathbf{x}}{\partial u}(\mathbf{q}) + v'(0)\frac{\partial \mathbf{x}}{\partial v}(\mathbf{q})$$

$$= u'(0)\mathbf{x}_{u}(\mathbf{q}) + v'(0)\mathbf{x}_{v}(\mathbf{q}).$$

El fibrado tangente

Sea $S \subseteq \mathbb{R}^3$ una superficie regular sea $\mathbf{x}: U \subseteq \mathbb{R}^2 \to S$, con U abierto, una carta local de S. Sea $\mathbf{p} \in S$, y sea $T_{\mathbf{p}}S$ el plano tangente a S en \mathbf{p} .

Definición

El **fibrado tangente** TS de la superficie S es la unión disjunta de los espacios tangentes T_pS sobre los diferentes puntos p de la superficie:

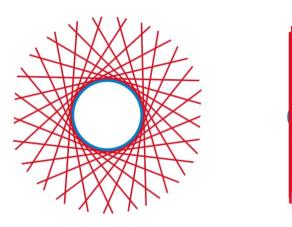
$$TS = \bigsqcup_{\mathbf{p} \in S} T_{\mathbf{p}}S = \bigcup_{\mathbf{p} \in S} {\{\mathbf{p}\} \times T_{\mathbf{p}}S}.$$

Así, un elemento de TS se puede pensar como un par ordenado (\mathbf{p}, \mathbf{v}) , donde \mathbf{p} es un punto de S y \mathbf{v} es un vector tangente a S en el punto \mathbf{p} . Existe una proyección

$$\pi: TS \rightarrow S,$$

definida por $\pi(\mathbf{p}, \mathbf{v}) = \mathbf{p}$. Esta proyección colapsa cada espacio tangente $T_{\mathbf{p}}S$ en un único punto \mathbf{p} .

El fibrado tangente



El fibrado tangente TS^1 al círculo S^1 .

El fibrado tangente

Observaciones:

- Para una curva *C* (variedad 1-dimensional), el fibrado tangente *TC* tiene dimensión 2.
- Mientras que un espacio tangente T_pS tiene dimensión 2, el fibrado tangente TS tiene dimensión 4.
- En general, para una variedad n-dimensional M, su espacio tangente $T_{\mathbf{p}}M$ tiene dimensión n, y su figrado tangente TM tiene dimensión 2n.