
Outline of a history of differential 
geometry (*) 

I 

I The Time before Leibniz. 

It is difficult to talk of differential geometry before LEIBNIZ. 

There were many applications of infinitesimals to geometry before, 
but almost without exception they were quadratures and rectific- 
ations of curves, cubatures and quadratures of surfaces or solids, 
and studies of special curves, subjects we now exclude from 
differential geometry proper, except as occasional illustrations. 
Only a few topics have an immediate bearing of our subject. 

Among them we have to mention the investigation of the nature 
of tangency found in EUCLID'S " Elements " (last part of 
4th century, B.C.), discussed only in the case of a circle. EUCLID 

explains, in Book III, as a " definition " that a straight line is 
tangent to a circle if it meets the circle and does not intersect 
it after being continued. Also in Proposition i6 of the same 
book a property of tangency is explained. The tangent to a circle, 
it is said here, will fall outside the circle and no other line will fall 
in the space between this straight line and the circumference. 
This property of the tangent was taken up again later and general- 
ized by LAGRANGE, when he developed his theory of contact 
(Theorie des fonctions analytiques, Seconde partie I, 5). EUCLID 

himself tries to describe the nature of contact more in detail 
in the same proposition, in which he states that " the angle of the 
semicircle is larger than any rectilinear acute angle, the remain- 
ing angle smaller." This suggestion of extending the notion of 

(*) This outline was given in a series of ten' lectures at the Massachusetts Institute 
of Technology during fall and winter of 1931-32. 
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OUTLINE OF A HISTORY OF DIFFERENTIAL GEOMETRY 93 

angle to so-called horned angles, though having been the sub- 
ject of long discussions, has not been carried far in differential 
geometry. (i) 

Similar ideas can be found in the works of ARCHIMEDES and 
APOLLONIUS. APOLLONIUS (3d century B.C.) makes full use of 
the normal to a plane curve in his theory of conic sections. He 
goes further; he finds that the normals to a conic section have 
an envelope, and he determines this envelope in the three cases 
of an ellipse, parabola and hyperbola. (2) He comes so closely 
to the conception of curvature that KEPLER, in a book on optics, 
could talk of the circle of curvature at a point of a parabola, as 
if it were well-known to all his readers. (3) 

In the same treatise on conic sections (in book II) we find 
the asymptotes to a hyperbola. The technical name for these 
lines is also due to APOLLONIUS (Jcrvju7TTc-6-). 

ARCHIMEDES (287-212 B.C.) occasionally discusses subject matter 
relevant to differential geometry, as in the beginning of his books 
on the sphere and the cylinder, where he defines the straight 
line as the shortest distance between two points in the plane. 
He states in this work the definition of curves " concave in the 
same direction " and arrives at the statement that if two plane 
curve segments with the same endpoints are concave in the same 
direction, the curve lying between the straight line connecting 
the two points and the other curve is shorter than this other 
curve. He establishes similar theorems for surfaces. This paper 
includes, for instance, the theorem that when a convex plane 
curve lies inside another convex plane curve, its circumference 
is the shorter. The curves also may be partly or entirely com- 
posed of line segments, or may partly coincide. (4) 

The problem of isoperimetrical figures belongs also to antiquity, 
and is now included in that part of differential geometry which 
utilizes calculus of variations. POLYBIUS, historiograph of the Punic 

(I) Comp. F. KLEIN, Elementarmathematik vom hoheren Standpunkt aus. 
(Berlin, SPRINGER) 1925, P. 222 sequ. See E. KASNER, Bulletin Amet. Math. 
,Soc. (2) 17 (1910-I I) P 393. 

(2) APOLLONIUS OF PERGA, ed. TH. HEATH (Cambridge, I892), P. I60-179. 
(3) J. KEPLER, " Paralipomena in Vitellionem, " III,Theor. XIX, Werke II, 

P. 175. (Ostwald's Klass. 198, P. 54). 
(4) See e. g. ARCHIMEDES, French translation of VER EECKE, P. 4-6. 
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wars, remarks that most people measure the size of towns or camps 
by their perimeter, and that they can hardly believe that Sparta, 
with a circumference of 48 stadia, is twice as large as Megalopolis 
with a circumference of 50 stadia. (5) The mathematics of this 
problem seems to go back to the time before ARISTOTLE. A series 
of theorems is found in a paper by ZENODORUS (about I50 B.C.), 
who stated that the circle is larger than all plane figures of the 
same circumference, and the sphere larger than all solid figures 
of the same area. Exact proofs, as a matter of fact, date back 
only to the igth century. 

Then there is the problem of mapping the earth on a plane, 
a problem which offered itself to those geographers of Antiquity 
who recognized the earth as a sphere. The principal contribution 
is due to PTOLEMY (I50 A.D.), though we may readily believe that 
his ideas were those of HIPPARCH, who lived three centuries earlier. 
In PTOLEMY'S Geography, Chapter 24, we find what we now call 
the stereographic projection. He takes the equator as plane of 
mapping, and he not only explains the projection, but also shows 
its conformal character. He also modifies the projection by 
mapping the figure on a cone tangent to the sphere. This allows 
a good representation of that part of the earth known to PTOLEMY. 

The " map of the world according to PTOLEMY," reproduced in 
many textbooks, is drawn in this projection. (6) 

We cannot deal here with the reasons for the slow progress 
of differential geometry in Antiquity, as it is only one aspect of 
the much more general problem why antiquity did not advance 
beyond ARCHIMEDES in the calculus of infinitesimals. We remark 
that it has to do only, in a general way, with the fact that the 
economic system on which the Mediterranean culture was based 
already began to decay in the last centuries of the Roman republic. 

Many new methods of mapping a sphere on a plane were 
invented in the sixteenth century, when the great discoveries gra- 

(S) POLYBIUS lived from 201-lI9 B.C. The place is from his Books IX, 21. 

Our information on isoperimetry is taken from W. SCHMIDT, " Geschichte der 
Isoperimetrie im Altertume," Bibliotheca mathematica (3)2 (1901), P. 5-8. See 
also M. CANTOR, Vorlesungen I, 3( ed., p. 357. 

(6) Map projections also in PTOLEMY'S " Planisphaerum " and " Analemma." 
The name "stereographic projection " is due to F. D'AIGUILLON (1566-I6I7), 

a Belgian Jesuit, who has Monge, central, and stereographic projection in his 
" Optics " (16I3). (He calls the first two orthographic and scenographic). 
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dually widened the knowledge of the terrestrial sphere. In I540, 

GEMMA FRISIUS, professor at Louvain, again used the stereogra- 
phic projection. Of greater importance is the work of GERHARD 
KRAMER, Latin MERCATOR (1512-1594), a Flemish cartographer 
who lived a good part of his life at Duisburg. He used many 
map projections, of which one carries his name, because he used 
it for the first time in the famous map of the world of I569. This 
method, the only one invented by the great cartographer, projects 
meridians and parallels into straight lines. MERCATOR knew the 
properties of his map very well, for instance its conformity, 
and the meaning of the straight lines. He discriminates between 
" plaga " and " directio," the " plaga " being the shortest con- 
nection between two points on the earth, the " directio " the 
shortest distance on the map. This " directio," in the words 
of MERCATOR, is not straight, but " oblique curvatur." For large 
distance and high latitude there is considerable difference between 
" plaga " and " directio". (7) 

There was a considerable literature on MERCATOR projection 
in the next decades, and connected with it we find a discussion 
of the " directio." NUNES (as early as 1544, in print I573), 

STEVIN, SNELLIUS, WALLIS, LEIBNIZ contributed. The name 
loxodrome " is due to SNELLIUS' Typhys Batavus (I624). 
Earlier than FRIsIUs and MERCATOR, J. WERNER suggested, 

after JOH. STABER, a projection (I5I4), which conserves areas. 
It was used in I53I by 0. FINAEUS for a map of the world, and in 
I538 by MERCATOR. This map, with its curious heart-like shape, 
is seldom used. (8) 

The many new investigations on curves and on infinitesimals 
connected with the names of KEPLER, DESCARTES, FERMAT, CAVA- 
LIERI and others are mostly of too special, or too general a nature to 
find discussion here. A point of inflexion was first discussed by 
DE SLUSE (I668) and FERMAT (I679). (9) But to the early history 

(7) See H. v. AVERDUNK, GERHARD MERCATOR (1914), P. iz8 sequ. The 
properties of the MERCATOR projection in the Legenda to the map of I569. In 
v. AVERDUNK also discussion of the other literature. 

(8) Annotationes JOANNIS VERNERIS, Nuremberg I5I4; 0. FINAEUS, De linea- 
rum, superficierum et corporum dimensionibus (I 53 I). See H. v. AVERDUNK, 
1. c. (7) 

(g) See M. CANTOR, Vorlesungen 11 (i892), p. 840; III, P. I94, see however 
G. ENESTRO)M, Bibliotheca mathematica 12 (I9I2-13), P. 156; 13 (0913-14), P. i68. 
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of differential geometry belongs certainly the Horologium oscilla- 
torium Of-CHRISTIAEN HUYGENS (I629-I695), his book on pendulum 
clocks (I673) (io). The problem of measuring time in an exact 
way suggested here a new mathematical theory. One of the 
chapters of the book gives a complete theory of evolutes and 
involutes in the plane. HUYGENS wanted a pendulum so con- 
structed that the period of vibration would be independent of 
the altitude. This is the problem of the tautochrone. The 
solution is that the mass of the pendulum moves, not on a circle, 
but on a cycloid. But the evolute of the cycloid is another cycloid. 
We can therefore get a tautochronic pendulum by forcing the 
thread of the pendulum to move along the circumrference of two 
small parts of a cycloid with cusp at the point of suspension and 
cusp tangent in the direction of equilibrium. To find this form 
of the " cheeks" HUYGENS develops the general theory of evolutes 
and involutes (" evolutae " and " evolventes", as he calls them), 
in the plane and he gets an expression, in geometrical form, for 
the radius of curvature. Here we also find the theorems that the 
involute intersects orthogonally the tangents of the evolute and the 
relation between arc-length of involute and length of the tangent 
to the evolute. 

2. - The First Systematic Contributions 

When LEIBNIZ started his work, analytical geometry of the 
plane was well under way, as was the application of infinitesi- 
mals to quadratures. His main contributions to differential geo- 
metry can be found in papers of I684, i686 and I692. 

In the Nova methodus pro maximis and minimis, the first paper 
in which LEIBNIZ published his new method (Acta Eruditorum 
I684), we already find the interpretation of the equation d2y = o. 
It indicates a point of inflexion, a conception, as we saw, introduced 
by DESLUSE and FERMAT. In a paper of i686 (ii), we find the 
circle of osculation, but not the expression for its radius in analytical 
form. LEIBNIZ thought in his paper that the circle of osculation 
passes through four consecutive points of the curve, because 

(iO) German translation in Ostwald's Klassiker, I92. 

(ii) LEIBNIZ, Meditatio nova de natura anguli contactus et osculi. Math. 
Schriften, ed. GERHARDT II 3, P. 326-329. 
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it has two contacts with it. After a remark by JACOB BERNOULLI 

(I692, Acta Eruditorum) he readily recognised that only three 
consecutive points come into consideration. The word " oscula- 
tion " is taken from this paper of i686. 

In I692, LEIBNIZ published (I2) his theory of envelopes of a 
family of plane curves f (x, y, a) - O. It is necessary for this 

to eliminate between f o 
O and , o. This early result is 

the more remarkable, as only in recent times some essential 
advance is made on this statement. In another paper of I692 (13) 

we find a discussion of evolutes and involutes, mainly a statemnent 
of HUYGENS' results, with the additional remark that the different 
involutes are " parallel," the first place where this word is used 
for plane curves. 

To what extent differential calculus was applied to geometry in 
those early days of the new method can be estimated by the recent- 
ly published lectures of JOHANN BERNOULLI at Basle in the winter 
of I69I-92. (I4) There we find computation of tangents to plane 
curves, with cycloid, cissoid, quadratrix, as examples. Maxima 
and minima are found by taking dy - o. The condition ddy o 
leads to points of inflexion, as shown for the case of conchoid 
and versiera. Even polar coordinates in the plane are introduced. 
In the Integral calculus, written at the same time, the radius of 
curvature appears (I4). L'HOSPITAL wrote his Analyse des infiniments 
petits (I696), the first published textbook on the calculus, under 
the influence of these lectures of BERNOULLI; L'HOSPITAL did not 
add much of interest to us. 

With the entrance of the BERNOULLI brothers into the field a 
highly competitive race for new results begins. The principal 
figures become engaged in bitter quarrels, LEIBNIz against NEWTON, 
JOHANN against JACOB BERNOULLI. The net result for science 
was a development of such rapidity that even modern times can 

(I2) LEIBNIZ, De linea ex lineis numero infinitis ordinatim ductis inter se con- 
currentenbus formata easque omnes tangente. Acta Eruditorum I692. LEIBNIZ 
Math. Schriften, ed. GERHARDT, II I, p. 266-269. 

(I3) LEIBNIZ. Genetalia de natura linearum, anguiloque contactus et osculi. 
Math. Schriften 2e Abh. III, P. 331-337. 

(I4) Differential calculus: Ostwald's Klassiker 2II, Integral Calculus (Opera III, 
P. 386): Ostzvald's Klassiker I94. 

7 
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98 D. J. STRUIK 

scarcely break the record. Before 1700 many new curves are 
discovered, many ordinary differential equations are solved, the 
first elliptic integral is introduced, and the calculus of variations is 
set up. In I697 and I698, the BERNOULLIS study geodesic lines 
on a surface; JOHANN discovers that osculating plane and tangent 
plane are perpendicular: " quod planum transiens per tria quaelibet 
puncta proxima lineae quaesitae debeat esse rectum ad planum 
tangens superficiem curvam in aliquo istorum punctorum." (I5) 

The equation of the geodesic lines does not appear either in print 
or in private letters, though JOHANN claims that he has found 
it. (i6) JACOB also outlines an inquiry into the so-called isoperi- 
metrical problems. Both brothers investigate orthogonal and 
more general trajectories in the plane. The name " trajectory " 

occurs in a letter of JOHANN to LEIBNIZ of I698. (17) An applic- 
ation of this theory was found in the theory of light in a medium 
of varying density, under HUYGENS' assumption that a ray of 
light intersects the wave front orthogonally. An application of 
JACOB lies in the finding of the orthogonal trajectories of logarithmic 
curves. 

The problem was taken up again in I716, when LEIBNIZ, in 
the priority quarrel, tried to induce NEWTON to show the power 
of his methods. He asked NEWTON (via CONTI) to find the 
orthogonal trajectory to a given set of curves, for instance, all 
hyperbolas of equal center and vertex. NEWTON answered, but 
only in a general way and his answer does not suggest the best 
method of attack. He seems to indicate that the finding of 
orthogonal trajectories depends on the determination of their 
center of curvatures as intersections of consecutive normals to 
the given curves; this suggests a differential equation of the second 
order instead of the first. (i8) 

This brings us to the question of the contributions of NEWTON 
to the application of analysis to geometry. Here we are unable 
to find much worth mentioning except his general method. If 

(I 5) For the literature see M. CANTOR, Vorlesungen III (I908), p. 229, 232, 

23 5. The quoted passage in a letter to LEIBNIZ of August I698. 
(i6) In letters to LEIBNIZ, see G. ENESTR6M, Sur la decouverte de l'equation 

gen6rale des lignes geod6siques, Bibliotheca mathematica 13 (I899), p. 19-24. 
(17) JOH. BERNOULLI, Opera I, p. 266, see CANTOR III, P. 222, 233, 443-445. 
(i8) See CANTOR III, P. 444, 445. 
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OUTLINE OF A HISTORY OF DIFFERENTIAL GEOMETRY 99 

he really wrote his Theory of Fluxions, published in 1736, as early 
as I671, he was the first to find an analytical expression for the 
radius of curvature of a plane curve. But this is doubtful. (I9) 

This dearth of investigations on differential geometry, which 
continued in England long after NEWTON'S death and even now 
has not disappeared, is the more remarkable as the method of 
fluxions was geometrical. NEWTON'S reasoning was always 
geometrical, the algorithms belonging to LEIBNIZ. But even later, 
in MACLAURIN's Theory of Fluxions (1742), in which hardly any 
formulae are used, we do not get more differential geometry than 
the old theory of curvature for plane curves. The justifying 
claim was that the book established more exact foundations of the 
Newtonian way of reasoning. 

We have already reported on certain publications in the early 
i8th century, but they are isolated and contain no new results. The 
same may be said of a series of papers by PIERRE VARIGNON (I654- 

1722) (20) on evolutes and related subjects. Of more importance 
is a paper by R. A. F. DE REAUMUR (I683-1757), which generalized 
evolutes by considering lines intersecting a plane curve under 
arbitrary angle. Then he obtains evolutes which he calls " im- 
parfaites." (2I) It was a youthful production of the later thermo- 
metrist and investigator of the social life of insects. But this 
is almost all we can find. After 1700 the interest in differential 
geometry declines sharply. The young instrument of analysis 
is used for other purposes. Geometrical. problems remain almost 
untouched for several decades. But the fertile days of LEIBNIZ 

and the BERNOULLIS achieved a considerable result. We have 
nearly the whole scheme of elementary differential geometry of 
plane curves. 

3.- The Eighteenth Century 

For many years we have practically the work of two men, 
but they were great geniuses: CLAIRAUT and EULER. 

(i9) L. c., p. 171, 172. 
(20) VARIGNON, Memoires pres. par div. sav. 1700-I713. 

(zi) REAUMUR, Methode generale pour determiner le point d'intersection 
de deux lignes droites infiniment proches qui rencontrent une courbe. Me'm. 
pres. par div. sav. 1709, P. 149-I6I. 
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ALEXIS CLAUDE CLAIRAUT (1713-1765), when still a boy of 
sixteen, wrote his Recherches sur les courbes a double courbure (I 73 I), 

which brought him, at eighteen, into the Academie des Sciences. 
The book is mainly analytic geometry of space, a subject new 
in those days. Space curves enter as intersection of surfaces, 
not as independent entities. CLAIRAUT uses algebra, differential 
and integral calculus in a study of these curves. In differential 
calculus he considers tangents, subtangents and subnormals. Only 
those normal lines to space curves are considered that are normal 
to the surface on which the space curve lies, which implies 
the knowledge of the existence of the tangent plane to a surface. 
CLAIRAUT also finds the locus of the points of intersection of the 
tangents to the space curve with the plane of projection, and the 
same for the normals. 

The integral calculus gives the possibility of rectification and 
cubature. Here we find at the same time the development 
of a curve on its projecting cylinder, " si l'on imagine que la surface 
cylindrique... s'etende le long du plan RAP et se developpe pour 
ainsi dire." 

CLAIRAUT's examples are algebraical curves, as the intersection 
of y2 ax and z2 by, or x2 + y2 a2 ana y2 + z2 a2; some- 
times he considers a transcendent curve, as the cycloid. 

In the last part of the book he asks for the curve on a surface, 
de'crite en faisant tourner dessus un compas dont une pointe 

est attachee 'a un point fixe C," but he does not think so much 
of geodesic circles as of the intersection of a simple algebraic 
surface (as the sphere) with a cone. Another set of problems is 
created by having a curve roll on another (congruent) curve in 
a plane perpendicular to the plane of this curve, which he specifies 
for parabola on parabola and circle on circle. 

Of importance is the name of the book, through which " courbe 
a double courbure " became the recognized technical term. 
CLAIRAUT got the name from HENRI PITOT (I695-177I), in his 
time a famous hydraulical engineer, who used it in a paper of 
1724 dealing with the helix. (22) Neither PITOT nor CLAIRAUT, 

however, expressed by their choice of the name any knowledge 

(22) H. PITOT, Quadrature de la moitie d'une courbe des arcs, appellee la com- 
pagne de la cycloide. Histoire de I'Academie de Sciences, 1724, publ. 1726, 

P. 107-113. 
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of first and second curvature. " J'ai cruf devoir appeller ces sortes 
de courbes, courbes 'a double courbure, parce qu'en les conside6rant 
de la fagon qu'on vient de dire elles participent pour ainsi dire 
toujours de la courbure de deux courbes, et c'est m'eme le nom 
qu'on leur donne dans un memoire de l'Academie Royale des 
Sciences ou on les propose comme un objet digne des recherches 
des geometres ", are CLAIRAUT 'S words. 

CLAIRAUT soon became interested in geodetic work, and in 
a paper of 1733 on this subject he came to the theorem on surfaces 
of revolution bearing his name; this theorem states that along 
a geodesic line C 

p sin a const, 
where p is the radius of the parallel circle and a the angle of C 
with that circle (23). Later he came to integrability conditions 
of differential equations in studies on hydrostatics. It deserves 
mention as a first step in what we now call PFAFF'S problem. (24) 

He found that 
MUdx + Ndy + Pdz o 

is exact, when and only when, 

/8 
+P N 

8 
+M P8 - -N i 

M ( 3N Jr N (P- Mz (My AxN 

He actually proves that the condition is not only necessary, but 
sufficient. 

LEONARD EULER'S (1707-1783) work is so varied that it is hard, 
in this outline, to do him justice. From early youth he con- 
stantly turned to the application of the calculus to geometry, from 
work done in 1727 on parallel curves in the plane, (25) inter- 
secting under constant angle to his paper of 1782, on the 
differential geometry of space curves. In a series of papers 
between I728 and 1732 he takes up the problem of the geodesics 

(23) A. C. CLAIRAUT, Determination geometrique de la perpendiculaire a la 
meridienne tracee par M. CASSINI, lb. 1733, publ. 1735, p. 406. 

(24) The work dates from I739 and 1740, see CANTOR III, p. 856, 86i. See 
also CLAIRAUT'S " Theorie de la figure de la terre, tiree des principes de l'Hydro- 
statique. Paris, 1743. German translation in Ostwald's Klassiker, no. I89. 

(25) See for the literature F. MOLLER, tber bahnbrechende Arbeiten L. EULERS 

aus der reinen Mathematik. Abh. zzur Geschichte d. Math. Wiss. 25 (1907), 

p. 63-1I6, esp. Io8-II3, or CANTOR III and IV. 
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on a surface. JOHANN BERNOULLI had attracted his attention 
to it, probably through the aid of his nephew DANIEL, who was 
at St. Petersburg with EULER. A result was the equation of the 
geodesics, in the form 

Qddx + Pddy dx ddx + dy ddy, 

Qdx + Pdy dt2 +dx2 + dy2 
where Pdx -Qdy + Rdt connects the variables of the surface. (26) 
He made applications to several types of surfaces, for instance 
cones. In I732 he uses the coordinates (x, s) in a discussion 
of the cycloid as a tautochrone. In the same number of the 
Commentarii this is also done by G. W. KRAFT. In I736, in a 
paper on the tractrix, he introduces among other new coordinates 
arc length s and radius of curvature p as coordinates of a plane 
curves, and so opens the series of papers on intrinsic geometry. 
He shows how x and y can be found when p and s are given. 
In the Mechanics of I736 he proves that mass points on a surface 
without a force field move along geodesics. In I740 he studies 
evolutes and involutes, a study leading him, in I764, to the curious 
result already announced by JOHANN BERNOULLI, that the nth 

involute of a curve for increasing n tends to become a cycloid. 
With all these results it is rather astonishing that the Introductio 
in analysin infinitorum, the standard textbook EULER published in 
I748, contains so little differential geometry. It may have been 
the intention of EULER to write a special book on this subject; (27) 

if so, it was never accomplished. The Introductio contains 
only some remarks on singular points and asymptotes of plane 
curves, and some osculation properties. EULER, writing the 
equation of plane curves in the form 

o At + B u + Ct2 + Dtu + Eu2 + F t3 +. 

A, B, C, D, ... constants 
is first led to introduce an osculating conic section at the origin, 
which he approximates by a parabola, but then changes to the 
osculating circle. There are also some remarks on concavity 
and convexity in relation to the ambiguity of the sign of the 
radius of curvature. (z8) 

(26) JOHANN BERNOULLI had the equation also in I728, printed in his Opera IV 
(I744) P. io8. Here the word " planum osculans " for the first time. 

(27) See CANTOR III, P. 784. 
(28) L. EULER, Introductio in analysin infinitorum, II, ch. XIV. 
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It is a remarkable fact that only in I760 EULER opens an entire 
new field in differential geometry. All his previous work has 
been more in the way of elaboration of old results of LEIBNIZ 

and the BERNOULLIS, with the possible exception of the intro- 
duction of natural coordinates. Even CLAIRAUT'S work has merit 
for differential geometry only as a statement of the problems. 
We must, however, make reservation for EULER'S fundamental 
work on the calculus of variations, culminating in his Methodus 
inveniendi lineas curvas maximi minimive proprietate gaudentes of 
I744, in which he not only states and gives methods of solutions 
to isoperimetrical problems, but finds interesting geometrical 
properties of curves. The best known perhaps is the theorem 
that the catenoid is a minimal surface. (29) 

EULER'S paper of I76o, Recherches sur la courbure des surfaces, (30) 
written during his Berlin residence, contains the first important 
contribution to surface theory, and also to three-dimensional 
differential geometry in general. So far only the existence of 
the tangent plane at a point of a surface had been established, 
and that in not a very satisfactory way (for instance, by CLAIRAUT). 

EULER here takes a definite step forward, and arrives at the so-called 
EULER theorem on curvature of surfaces. It states, in EULER'S 

terms) 
2 f g 

- r= 
f + g + (f-g) cos 2a 

where f and g are the extreme values of r, the radius of curvature 
of a normal section, and a is the angle of this normal section 
with one of the normal sections of extreme curvature. The 
form under which we know the theorem is due to DUPIN, but 
the name " section principale " is due to EULER, as well as the 
theorem that the two sections of extreme curvature are normal 
to each other. His demonstration starts with an arbitrary plane 
section through a point of the surface, then proceeds to an expres- 
sion of the radius of curvature for this section, the expression 
being gradually simplified. 

Shortly afterwards (I762) LAGRANGE (I736-I8I3), then a young 

(29) L. EULER, Methodus inveniendi V, Ex. VII 47, German translation in 
Ostwald's Klassiker, 46, p. i iI. 

(30) Histoire de l'Acad6mie royale des Sciences (Berlin), I760, p. II9-I4I. 
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professor at Turin, published his famous paper on the calculus 
of variations, the main results of which he had already shown 
to EULER in 1755. In an appendix, he found the differential 
equations of the minimal surfaces in the form that p and q must 
be found under the condition that 

p dx + q dy, pdy - qdx 

are exact differentials. (3 I) 

In I770 EULER continued his study of surfaces, and began 
to investigate developables. He represents the x, y, z of a point 
on a surface as functions of two variables t and u (the first time 
the so-called Gaussian variables are introduced), and writes down 
the conditions that 

dx2 + dy2 + dz2 dt2 + du2; 
12 +m2 +n2== I, A2+p2 +V2 =I lA +mH ?nv=o 

ex ay bz A x ay az I- -- m - -, n~ --; A~ -- -) v =---> 

or, as he states, that 
" Une consideration tout 'a fait singuliere m'a conduit 'a la solu- 

tion de ce probleme," he writes to LAGRANGE. EULER is able to 
integrate the equations and to show that the tangents to an arbi- 
trary space curve form such a developable surface. (32) From 
his integral he does not seem, however, to draw the conclusion 
that such surfaces are the only real solution. 

Differential geometry had advanced thus far when an entirely 
new development started. With the exception of EULER'S papers 
and occasional work of LAGRANGE, very little had been done 

(3 I) J. L. LAGRANGE, Essai d'une nouvelle m6thode pour determiner les maxima 
et les minima des formules int6grales ind6finies. Miscellanea Taurinensia I760-6I, 

publ., I762, p. I73-I95. Giuvres I, p. 335-362. German translation in Ostwald's 
Klassiker, 47, p. 23. 

(32) L. EULER, De solidis quorum superficiem in planum explicare licet. Nova 
Comm. Petrop. i6, I77I, p. 3-34. See EULER'S letters to LAGRANGE of Jan. i6 
and March 9, I770, CEuvres de Lagrange XIV, p. 2I7, 2i8, 22I-223, 224. 

There is another paper of EULER'S hand on surface theory, written in this time, 
between I766 and I775, but only published in i862, Opera posthuma I, p. 494-496: 

" Problema invenire duas superficies quarum alteram in alteram transformare 
licet, ita, ut in utraque singula puncta analoga easdem inter se teneant distantias." 
Here we find that surfaces are applicable if, in modern notation, E, F, G are equal, 
and the remark that a closed surface cannot be bent. 
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OUTLINE OF A HISTORY OF DIFFERENTIAL GEOMETRY 105 

for a long time. Feudalism, in decay, could not send auxiliary 
forces to the aid of the lone genius. EULER, in many respects, 
represented this last period of the feudal system, which disappeared 
intellectually with such undeniable elegance. EULER'S creations 
perhaps may find a counterpart in those of MOZART. 

LAGRANGE felt it, " Ne vous semble-t-il pas " he wrote to D'ALEM- 

BERT in I772, " que la haute geometrie va un peu en decadence ? " 

He expresses the same view at other places and D'ALEMBERT's 

answers are sceptical. (33) 
We can interpret the new life, which was developing at the 

military academy of Mezieres, as the beginning of the influence 
of the French revolution on geometry. Here GASPARD MONGE 

(I746-I8I8) was professor since I768, and began in that early 
time to show that fecundity in geometrical invention which 
made him the real creator of differential geometry, of descriptive 
geometry, and directly and indirectly, of modern geometry in 
general. His starting point was a series of questions on fortification, 
which led him to descriptive geometry, but he also knew how 
to use analysis. His first publication, in I77I, already showed 
the master. It deals with space curves, the first paper on this 
subject since CLAIRAUT treating this subject for its own sake. (34) 
It contains a broad exposition of the whole differential geometry 
of space curves. It is shown how such curves admit an infinity 
of evolutes, that they all lie on a developable surface, the polar 
developable, and that they are geodesics of this surface. He also 
introduces what we would call the rectifying developable and shows 
that the original curve is a geodesic on this surface. Here appears 
the normal plane, the. radius of first curvature, the osculating 
sphere. Two types of inflexion exist: inflexion caused by (what 
we call) torsion zero, and inflexion caused by (what we call) 
curvature zero. In the first case, the " points de simple inflexion," 
four consecutive points of the curve lie in one plane, in the second, 
the " points de double inflexion," three consecutive points lie 
on a straight line. Several terms, since adopted, appear here 

(33) CEuvres de LAGRANGE XIII, P. 229, 232, 237. 

(34) G. MONGE, Memoire sur les developpees, les rayons de courbures et les 
differents genres d'inflexion des courbes 'a double courbure. Mem. div. savans 
1785, p. 5I I-550 (written I77I), also last chapter of the " Applications de l'Analyse 
h la Geometrie," where only a part is reprinted. 
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for the first time, as " ligne des pales," " arete de rebroussement," 
" developpee." Many applications to plane and space curves 
illustrate the general theorems. 

In 1780 MONGE published a second paper, written in I775 (35), 
in which he took up EULER'S theory of developables. MONGE 

intends to simplify EULER'S results. But in his hands the whole 
theory takes another shape. The geometrical part is treated 
in such a way as to make the great author of the Recherches 
sur la courbure des surfaces and of many more contributions to 
geometry more analyst than geometer. Nevertheless there is a 
good deal of the analyst in MONGE. But the formulas always 
follow the dynamics of geometrical development, so that the 
integration of a partial differential equation becomes the gradual 
building up of a geometrical system in space. Nobody except 
LIE ever equalled MONGE in this direction. 

MONGE points out the essential difference between general 
ruled surfaces and developables, sets up the differential relation 
rt -S2 = o and finds as first integral that there is an arbitrary 
relation between p and q, which means that a developable is always 
tangent surface to a space curve. It is also the envelope of a two 
parameter family of planes. Application is made to the tangent 
developable of two surfaces, which was already partly elucidated 
in EULER'S work, but which as a problem of " ombres et pe- 
nombres " had a great attraction for the inventor of descriptive 
geometry. We also find here the differential equation of the 
third order for the ruled surfaces, with the solution of the problem 
of finding the ruled surface passing through three space curves. 

The volume of the Memoires des savans etrangers, of 1785, 
which contains MONGE'S first paper, contains another classic of 
differential geometry, MEUSNIER'S Memoire sur la courbure des 
surfaces, written in I776. (36) The title already shows the 
indebtedness of the author to EULER. MONGE had, indeed, 

(35) G. MONGE, Sur les propri6t6s de plusieurs genres de surfaces courbes, 
particulierement sur celles des surfaces developpables, avec une application 'a 
la theorie des ombres et des penombres. Mem. div. savans IX, I780, p. 593-624 

(written 1775). 
(36) Mem. sav. etrangers 1785, P. 477-5IO. An exposition of MEUSNIER'S 

paper not only in CANTOR IV, P. 547-550, but also in DARBOUX, Theorie generale 
des surfaces I (i887), P. 260-27I. 
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recommended the paper of EULER to one of his pupils, JEAN 

BAPTISTE MEUSNIER DE LA PLACE (1754-1793), and, working under 
the direction of his teacher, the young officer not only found 
EULER'S results in a new way, but added the results which for ever 
carry his name. In one of the principal sections of the surface 
at a point he draws a circle, tangent to the surface, with radius 
equal to the " rayon de courbure " at that point in that direction. 
This circle is rotated about an axis in its plane parallel to the 
tangent plane and at a distance equal to the second principal 
radius of curvature. In this way MEUSNIER gets a torus which 
has the first and second derivatives in common with the surface 
at the point. Then he takes this torus as representative of the 
surface and gets not only EULER'S theorem, but also " MEUSNIER'S 

theorem," which he interprets with the aid of a sphere tangent 
to the surface and with radius equal to the normal radius of cur- 
vature of the section in the arbitrary direction on the surface. 

MEUSNIER uses his torus in finding the condition under which 
a surface be a minimal surface. LAGRANGE had already found 
the differential equation. MEUSNIER interprets it by showing 
that it means that the sum of the radii of principal curvature 
is constant. Then he interprets this equation by simple geo- 
metrical methods in two cases, and finds the twisted helicoid 
and the catenoid, which for many years were the only minimal 
surfaces known. EULER already had found the catenoid, but 
MEUSNIER, it seems, found his solution independently. 

This paper remained the only contribution of MEUSNIER to 
mathematics. He published it under the best auspices; D'ALEM- 

BERT, feeling the new spirit, said " MEUSNIER commence comme 
je finis." But MEUSNIER went to other spheres of activity, where 
he also did excellent work. He collaborated with LAVOISIER 

to separate water in its constituents (paper of 1784) and wrote 
important papers on the new subject of aeronautics. " Apres 
avoir consacre sa trop courte vie aux recherches les plus neuves, 
les plus difficiles, les plus f6condes, il a trouve devant l'ennemi, 
au siege de Mayence, la mort la plus heroique." (37) 

(37) G. DARBOUX, Notice historique sur le g6neral MEUSNIER, I909. In " Eloges 
academiques et discours, Paris", HERMANN, I9I2, p. 2i8-262. GOETHE describes 
how he watched the French soldiers, defeated, leaving Mayence. They carried 
the body of MEUSNIER away with them. 
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CHARLES TINSEAU (1749-I822) was also a graduate of the Me- 
zieres academy, class of 1771. He presented a paper to the 
Academy in I774, which contains, among several fundamental 
contributions to the analytic geometry of space, the equation 
of the osculating plane to a space curve, the surface of the tangents 
to a curve (already introduced by CLAIRAUT), and the theorem 
that the orthogonal projection of a space curve on a plane has 
a point of inflexion if its plane is perpendicular to the osculating 
plane. (38) 

In this period falls a charming paper by EULER, in which he 
investigates what we now call curves of constant breadth, in EULER'S 

terms: " orbiformes." He gets them as involutes of " triangular 
curves," that are closed curves with three cusps. (39) 

In the meantime MONGE had continued his productivity, of 
which we shall say more in the next chapter. We only mention 
a paper of I 78I, Memoire sur la theIorie des deblais et des remblais, (40) 
which takes as starting point the engineering problem of moving 
a heap particle after particle from one place to another in a 
minimum of effort. This leads to line congruences, which admit 
two sets of developable focal surfaces. When these are normal, 
the congruence is normal to a surface, and cuts it along the lines 
of curvature. In this original way the lines of curvature were in- 
troduced into literature. Then there is another paper of I784, in 
which he integrates the equation of the minimal surfaces. (4I) 

There are more papers, equally fundamental; but as all are col- 
lected in his book of i8o8, we may discuss them together. Since 
1780 he had been living in Paris for six months a year, where 
he taught hydraulics at the Louvre, but after BEZOUT's death, 1783, 
he settled there permanently. 

About this time the aging EULER again wrote a fundamental 

(38) C. M. T. TINSEAU, Solution de quelques problemes relatifs 'a la theorie 
des surfaces courbes et des courbes 'a double courbure. Mim. div. savans IX, 
1780, P. 593-624. 

(39) L. EULER, De curvis triangularibus. Acta Petr. 2 (1778), P. 3-30. 
(40) Mem. div. sav. 178I (publ. 1784). See P. APPELL. M6morial des Sciences 

math6matiques XXVIII, also our footnote (50). 
(41) G. MONGE, Une m6thode d'integrer les 6quations aux diff6rences ordinaires. 

Mem. div. sav. 1784, P. i i8. An improvement was suggested by LEGENDRE, 

l'Int6gration de quelques 6quations aux diff6rences partielles. Mem. div. sav. 
1787, P. 311-12. 
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paper (42). It sets forth the first analytical treatment of 
the differential geometry of space curves. MONGE had treated 
the subjects from a geometrical point of view, but had not given 
an analytical frame. EULER provides for this by taking x, y, 
z as functions of the arc length s, and the direction coefficients 
of the three axes of the moving trihedron. For this purpose 
EULER introduces the spherical image, using the unit sphere as 
GAUSS did forty years later. The equation of the osculating 
plane is here given in the symmetrical form x (rdq-qdr) + 
y (pdr-rdp) + z (qdp-pdq) t, where t is determined by 
the condition that the plane must pass through a given point 
of the curve. This symmetrical way of treating coordinates 
also characterizes other papers of EULER, as, for example, one 
of 1779, in which he writes the equation of the geodesic lines 
on a surface, 

d2x(qdz-rdy) + d2y(rdx-pdy) + d2Z(pdy-qdz) o, 
where pdx + qdy + rdz= o 

is the differential equation of the surface. In this paper the 
integration is carried out for rotation surfaces, partially repeating 
thereby results of CLAIRAUT. (43) 

An account of the important work on map projection done in 
the i8th century, and again through the efforts of EULER and LA- 
GRANGE, supported by LAMBERT is still missing in our report. All 
this work is carried out after I770, the time of the revival of differ- 
ential geometry in general. In I777, EULER introduced complex 
numbers in his study of conformal projection, which LAGRANGE, 
in the same year, used for the more general problem of mapping 
meridians and parallels of a sphere into an arbitrary orthogonal 
system of plane curves. There is a discussion of this work by 
V. KOMMERELL in CANTOR'S Vorlesungen IV, p. 572-576 and 
in books on cartography. Here, on p. 508-5 II, is also a discussion 
of work on parallel curves done in the same period (EULER, NIEU- 
PORT, KASTNER, and others). 

(42) L. EULER, Methodus facilis omnia symptomata linearum curvarum non 
in eodem plano sitarum investigandi. Acta Petr. I782, I, P. 19-57 (publ. 1786). 

(43) L. EULER, Accuratior evolutio problematis de linea brevissima in superficie 
quacumque ducenda, Nov. Act. Petr. XV, 1779, P. 44-54. 
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4. - Monge and the tcole Polytechnique. 

The French Revolution influenced scientific thought in all 
directions. Under its influence modern geometry was born. In 
algebraic geometry the strict prescriptions of Greek thought were 
discarded, and an entirely new school of reasoning was created. 
In differential geometry the mathematicians at last learned to 
apply the century-old thoughts of LEIBNIz and the BERNOULLIS 

and to establish a science on collective work where EULER SO long 
had pioneered alone. 

GASPARD MONGE was uncontested leader. His political work 
was reflected in his scientific activity. During the revolution 
he joined the Jacobins, but like many of his political friends 
he later supported the Empire, which they interpreted as the 
executor of the will of the French Revolution. NAPOLEON entrus- 
ted to MONGE many important functions; he even made him 
for a while secretary of the navy. On the expedition to Egypt 
he had with him MONGE as well as many other famous scholars. 
But MONGE'S life work became the organization and scientific 
leadership of the Ecole Polytechnique, of which he was the director 
from its beginning, in I794, till the fall of the Empire. But the 
Restoration and the old Republican were irreconcilable, and 
MONGE had to resign. He died a few years later, closing a life 
not only crowded with scientific achievements but characterized 
by a unity of thought and deeds seldom found among scholars. 

The importance of the Ecole Polytechnique for the development 
and the organization of science has so well been treated by FELIX 

KLEIN in his lectures on the history of mathematics in the igth 
century (44), that we need not discuss it here. From the beginning 
MONGE'S teaching was an integrating part of the instruction. 
Here his remarkable geometrical intuition went hand in hand 
with practical engineering applications to which his whole manner 
of thinking was always inclined. He also started a collection 
of models, later continued by TH. OLIVIER. He taught descriptive 
geometry as a new subject, and he collected his lessons in the 

(44) F. KLEIN, Vorlesungen iiber die Entwicklung der Mathematik im i 9. Jahr- 
hundert, I. Berlin, SPRINGER, 1926, Ch. II. KLEIN refers to JACOBI'S paper. 
Werke 7, p. 355-370. 
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Gdomdtrie descriptive, which still is a standard treatise. He taught 
differential geometry in the same way; these lessons appeared first 
as loose pamphlets, the Feuilles d'Analyse appliquee a' la Geometrie 
(since I795), then, in I807, with little modification, as a book, 
Applications de l'Analyse a la Geometrie. The lessons show all 
the characteristics of MONGE'S genius. (45) 

Those who are interested in a discussion of the Feuilles d'Analyse 
can find the material in KOMMERELL'S paper in CANTOR IT. We 
will here discuss the main line of the Applications, which however 
differ but slightly from the Feuilles. 

The leading thought of the book is the geometrical interpretation 
of partial differential equations and the interpretation of geo- 
metrical facts into the language of partial differential equations. 
For this MONGE develops the theory of envelopes, characteristics, 
and edges of regression. At the same time he shows what the 
integration process means in space. 

As the simplest example let us take Chapter II on cylindrical 
surfaces. These surfaces can be considered in different ways. 
If we look at them as surfaces of which the tangent plane is parallel 
to the generating line and therefore parallel to the direction 
x az, y bz, we get as the equation ap + bq - i, (p anc 8 

are the symbols p -, q , ). 

But cylindrical surfaces are also surfaces of which the generating 
line is always parallel to the line x _ az, y bz. This gives 
as equation y - bz .p (x- az), where cp is an arbitrary function. 
In this way we get the integral of ap + bq i. From this we 
can solve several other problems, as the determination of the 
cylindrical surface if the direction of the generators and a space 
curve directing their motion is known, or the determination of 
a surface that envelops a surface along a given curve. At the 
same time this shows the manipulations which may be effected 
with partial differential equation. 

In this way every chapter of the Applications is built up. 
MONGE classifies his problems into those leading to partial differen- 
tial equations of the first order, of the second order, and the third 

(45) The most interesting edition is the fifth, with notes of J. LIOUVILLE, i850. 
The " Feuilles d'Analyse " appeared again in i8oi. 
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order. To the first category belong the cylinders, the cones, 
the canal surfaces; to the second, the developables (rt -S2 _ ) 

the ruled surfaces with generators parallel to a given plane, and 
to the third category, the ruled surfaces. 

But to the second category belongs also that whole class of 
surfaces whose curvatures satisfy certain simple conditions. 
MONGE is, starting in I784, the first to introduce the lines of 
curvature and their properties (4I) In a clever way he integrates 
(Ch. i6) the lines of curvature on an ellipsoid, by increasing the 
order of the differential equation. He then solves the following 
four problems: 

i) surfaces with one set of lines of curvature plane (Ch. I7) 
2) surfaces with R1 const (Ch. i8) 
3) surfaces with R1 R2 (Ch. i9) 
4) surfaces with R1 R2 (Ch. 2o) 

Problem i) leads to the molding surfaces (" surfaces moulures "), 

z) to the tube surfaces, 4) to the minimal surfaces. But in 3) 
MONGE finds the paradoxical result that the sphere alone isasolution. 
In 3) and 4), he integrates the equations in full, and this shows 
him the explanation of the paradox. There is, indeed, an extended 
class of families answering problem 3). But the sphere is the 
one real surface. All other surfaces are imaginary with one real 
curve on each. These surfaces, says MONGE, are really curves, 
with area everywhere zero. This is the first full discussion of 
imaginaries in geometry. 

MONGE, however, does not give any other special cases of his 
general equations of the minimal surfaces than the two known 
since MEUSNIER. 

Another example of a problem leading to a partial differential 
equation of the third order is the problem of the spheres of variable 
radius with centers on a space curve (Ch. z2). If the radius 
is constant the problem is of the second order, if the curve, besides, 
is plane, it is of the first. The methods used, in all cases, follow 
the same line of thought. 

The last chapters deal with another problem at which MONGE 

arrived by noting that the normals to a surface along the lines 
of curvature form a developable surface. This new problem 
is the inverse one; to find the surfaces of which the normals are 
tangent to a given surface. 
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From these lectures many words remained standard expressions. 
Besides those mentioned, we have: " lignes de courbure, " 

" enveloppe," " characteristique," and the notation p, q, r, s, 
t for the partial derivatives. But not only MONGE's differential 
geometry, also his descriptive geometry has a bearing on our 
subject. It deals with curves and surfaces, but in a purely con- 
structive way, without formulas. Two ways are thus indicated 
as methods of attacking geometrical problems on curves and 
surfaces, the geometrical and the analytical. We see this separation 
clearly in work of MONGE'S pupils, as for example DUPIN, who 
proves many theorems twice, both by geometry and by analysis. 
In our present day differential geometry we still show that influence, 
when we define lines of curvature, asymptotic lines, conjugate 
lines in two different ways. From this " descriptive " type of 
geometry, which MONGE taught, projective geometry emanates 
in the hands of his pupils. 

MONGE'S general idea of connecting partial differential equations 
with geometry of space is still a leading method in differential 
geometry, especially in France. In a modernized way, though 
only through indirect influence, it dominates the work of SOPHUS 
LIE. 

5. - Monge's Pupils 

A galaxy of brilliant men supported MONGE at the Ecole Poly- 
technique either as colleagues or as pupils. A school of mathe- 
matics was the result, in which analytical geometry and differential 
geometry flourished, and in which projective geometry was created. 
A stimulating influence had the necessity of teaching courses 
on advanced subjects, and there was a regular output of textbooks 
on mathematics and mechanics, many of which established stan- 
dards valid till today. Almost all geometry was threedimensional. 
Our theory of quadric surfaces dates from those times, and a 
considerable attention was paid to plane and space transforma- 
tions. 

Common to all these scientists was their contact with practice, 
either in the abstract form of mathematical physics and mechanics, 
or in the direct form of engineering and economic or political 
activity. They represented one phase of the emancipation of 

8 
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the French bourgeoisie. NAPOLEON expressed also their ideas 
when he wrote to LAPLACE: " L'avancement, le perfectionnement 
des mathematiques sont lies 'a la prosperite de 1'e6tat." 

Among the colleagues of MONGE of mature age we find LAGRANGE 
and LAZARE CARNOT; among his younger colleagues and pupils, 
FOURIER, AMPiERE, POISSON, PONCELET, RODRIGUES, LANCRET, 
CORIOLIS, MALUS, DUPIN, FRESNEL, CAUCHY, SADI CARNOT, SOPHIE 
GERMAIN. For our purpose we must examine closely the work 
of AMP'ERE, LANCRET, MALUS, RODRIGUES, and especially that 
of DUPIN. 

A. M. AMPtRE'S (I775-I846) mathematical discoveries are less 
remembered than his physical, though a certain type of partial 
differential equation carries his name. He commenced his main 
physical work only after OERSTED'S discovery in i 82o of the 
influence of the electric current on a magnetic needle, when 
he was already famous as a mathematician. For us a paper 
on osculating parabolas (46) is of importance, because it contains 
the notion (if not the name) of the differential invariant. AMPiERE 

recognises the importance of p and s as instrinsic coordinates of 
a plane curve, but remarks that s still depends on an arbitrary 
constant. Therefore higher derivatives are necessary for truly 
intrinsic coordinates. He chooses for this the osculating parabola. 
When its equation with respect to tangent and normal at a point 
of the curve is u2 = pt, (p the parameter), the curve can be given 
as a function between u and t. He shows that u, p, t are differential 
invariants under rotations and translations. They depend on 
third derivatives; and AMPE'RE approaches affine differential geome- 
try, when he finds the condition for points with parabola osculating 
in five consecutive points (affine curvature zero, as we say now) (47). 
To similar contact with affine conceptions came LAZARE CARNOT 

(I753-I823) who, in his Geometrie de position of I803, defined 
what we now call the affine normal. He also proposed intrinsic 
coordinates, the radius of curvature, and the angle of affine normal 
with the ordinary normal, as in AMPERE'S case a mixture of affine 

(46) A. M. AMPE'RE, Sur les avantages qu'on peut retirer, dans la theorie des 
courbes, de la consideration des paraboles osculatrices, avec des reflexions sur 
les fonctions differentielles dont la valeur ne change pas lors de la transformation 
des axes (presented I803). Journal Ec. Polyt. I4e cah. (i8o8), P. 159-181. 

(47) See p. 178 of AMPERE's paper. 

This content downloaded from 131.111.164.128 on March 29, 2017 15:02:36 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



OUTLINE OF A HISTORY OF DIFFERENTIAL GEOMETRY 115 

and metric conceptions, which could not be very fertile. (48) 
That there were many discussions on intrinsic coordinates in 

those days is also seen in S. F. LACROIX' much used textbook 
in three volumes on differential and integral calculus, which 
in its first volume has more than 250 pages on curves and surfaces. 
He deals faithfully with all results obtained by EULER, MONGE, 
MEUSNIER, LAGRANGE and others. He also discusses the sug- 
gestions of CARNOT and AMPERE, and mentions other ways to 
study curves independent of their position in the plane. (49) 

E. L. MALUS (1775-i8i2) is famous as the discoverer of the 
polarization of light (i8o8). His investigations in optics lead 
him, as later HAmILTON, to the study of line congruences. This 
theory dates from MONGE'S work of I78I on " deblais and rem- 
blais " (5o), but MALUS establishes again with his methods the 
theorem that in such a congruence each line is in general cut 
by two other lines, so that the lines are the intersection of two 
families of developpable surfaces. The application to normals 
to a surface establishes the theorem on lines of curvature. MALUS 
studies the behavior of line congruences under reflection and 
refraction. He also studies what we now call line complexes. 
Through a mistake he fails to obtain entirely the "MALUS-DUPIN" 
theorem. (5 I) 

With MICHEL ANGE LANCRET (I 774- I 807) we have a young, 
promising scholar, who died too early to fulfil his promises. 
He belonged with MONGE, FOURIER, AMPtRE, GEOFFROYST.HILAIRE 
and many others, to the scholars who accompanied NAPOLEON 
on his Egyptian expedition. Later he became a member of the 
commission appointed to publish the results, but he died at 

(48) L. N. M. CARNOT, Giom&trie de position. Paris, I803, 489 p., see 
Probleme LXXVI, art. 433, p. 477, and art. 432, p. 475-476. 

(49) S. F. LACROIX, Trait? du calcul difThrentiel et du calcul int6gral. Tome I, 
Paris. Seconde 6d. I8Io, 652 p., espec. no. 255, p. 484-485. From AMPRE3's 
paper it seems that LACROIX in the first edition of his book started the discus- 
sion. The work was continued by GERGONNE, Annaks de mathSmathiques, 4 
(iB83-14) p. 42-55. GERGoNNE, p. 372 of the same volume, in restating some re- 
sults of DUPIN, frames the term "1 tangentes principales ". 

(So) See note (41), also C. SEGRE, MONGE e le congruenze generali di rette. 
Bibliotheca mathematica 3 x8 (1907-08). 

(5I) MALUS, Optique, Jour. Ec. Polyt. 14 cah., I8O8, p. I-4; Dioptrique, 
ib., p. 84-129; Traite d'Optique, Mimoires prisentis a t'InstitUt 2 (i8ii), P. 2I4- 

302, cont. p. 303-5o8 as " Th4orie de la double refraction." 
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33 years of age. He wrote two mathematical papers, (52) the 
first on the general theory of space curves, the other (published 
after his death) on " developpoides," space curves whose tangents 
are lines cutting a given space curve under a constant angle different 
from go9. His first paper is of a more general nature. It contains 
the two fundamental quantities of the space curve, which he 
calls " premiere flexion " and " seconde flexion." The first is 
the angle dj of two consecutive normal planes, the second the 
angle dv of two consecutive osculating planes. (53) Curvature 
and torsion appear therefore as differentials, and are not written 
as finite quantities until CAUCHY. There is a third quantity, 
the angle dwo of two " plans rectifians " (this name and conception 
also appears here), and the " equation of LANCRET" exists 

d,12 + dV2 = dCO2 
which shows that only two of the three quantities are independent. 
As an application we learn that the first flexion of the " d6velop- 
pante " is equal to the second flexion of the " developpee," and 
vice versa, a theorem only correct for the differentials. 

LANCRET is therefore the first to take up the systematic theory 
of space curves after EULER, but it seems in an independent way. 
The line of progress goes here from CLAIRAUT via EULER and 
LANCRET to CAUCHY and FRENET. 

OLINDE RODRIGUES (I794-I85I) did some work on lines of 
curvature, simplifying MONGE'S results. A set of important for- 
mulas still is called after him (54), and so a formula in the theory 
of LEGENDRE functions. He found also what we now call the 
Gaussian curvature of a surface by comparing an element of 
surface with its spherical image; he missed, however, the " theor- 
ema egregium." He later became acquainted with ST. SIMON 

(52) M. A. LANcRE'r, Memoire sur les courbes A double courbure. Memoires 
presentes d l'Institut i (I8o6), P. 4I6-454 (presented 1802); Memoire sur les 
d6veloppoides des courbes planes, des courbes i double courbure et des surfaces 
d6veloppables, ib., 2 (i8I I), p. I-79, presented i8o6. 

(53) LANcurr says that he got his ideas from FOURIER (p. 42o). FOURER did 
not publish it himself. 

(54) 0. RODRIGUES, Recherches sur la theorie analytique des lignes et des rayons 
de courbure des surfaces, et sur la transformation d'une classe d'int6grales doubles, 
qui ont un rapport direct avec les formules de cette thdorie. Correspondance 
sur l'Ec. Polyt. 3, i8I5, P. I62. Also a paper in Bull. Soc. Philomatique Paris, 
(3) 2, I815, P. 34-36: ((Sur quelques proprietes des integrales doubleset des rayons 
de courbure des surfaces." Here the name is given as Rodrigue. 
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and did considerable work to propagate the socialistic theories of 
his master, which prevented him from work in mathematics. 

CHARLES DUPIN (1784-I873), since T824 Baron DUPIN (many 
eminent mathematicians were given titles of nobility in those days, 
a custom introduced by NAPOLAON; MONGE, for instance, became 
" comte de Pelouse ") is the most important differential geometer 
among the direct pupils of MONGE. Many of his discoveries 
were made long before he published them in this books, the delay 
being partly due to his many duties as a naval officer, some of 
which carried him " dans des pays presque barbares," such as Corfu. 
At the age of sixteen he discovered the " cyclide of DUPIN ", (55) 
about I807 the " DUPIN theorem " on orthogonal surfaces. 
His results were collected in the Developpements de g6om6trie 
(I8I3), later followed by the more applied mathematical Applica- 
tions de geomdtrie et de mdcanique of I822. (56) The De'veloppe- 
ments, he explicitly stated, have been written as a sequel to MONGE'S 
books. MONGE'S two methods of approach, the descriptive and 
the analytical, appear as different currents in DUPIN's book, half 
of which is purely geometrical, and half of which uses analysis. 
These tendencies were soon afterward to grow into entirely 
different branches, into projective geometry and differential geo- 
metry proper. DUPIN therefore in almost all cases proves his theo- 
rems in two different ways, geometrically and analytically, again fol- 
lowing MONGE who defined lines of curvature geometrically as 
lines along which the normals form a developable surface and 
analytically as lines along which the normal curvature has extreme 
value. 

The D6veloppements are divided into two sections. The first 
section contains the theory of the indicatrix, the second of the 
orthogonal systems of surfaces. The main discoveries of the 
first section are asymptotic lines and the conjugate sets; that 
of the second section, " DUPIN'S theorem " on the lines of inter- 
section of triply orthogonal systems. This enables the author 

(55) See J. BERTRAND, Vloges acad6miques. Paris, Hachette, I890, P. 22I-246. 
(56) CH. DUPIN, Developpements de geometrie, avec des applications & la 

stabilit6 des vaisseaux, aux d6blais et remblais, au d6filement, & l'optique, etc. 
Th6orie. Paris I8I3. 

CH. DUPIN, Applications de g6ometrie et de mecanique i la marine, aux ponts 
et chauss6es, etc., pour faire suite aux d6veloppements de geometrie. Paris, I822. 
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to give a new treatment of MONGE'S lines of curvature on an 
ellipsoid by introducing confocal quadrics. The general theory 
of the indicatrix leads to a discussion of elliptic, hyperbolic and 
parabolic points, and throws new light upon the lines of curvature 
and the umbilics. DUPIN even enters into a discussion of the 
simplest cases of lines of curvature through an umbilic (guided 
by their behavior on an ellipsoid), and he gives the first geometrical 
proof of MONGE'S theorem that the sphere is the only real surface 
with only umbilics. 

From DUPIN's book date several names, as asymptotic lines, 
and conjugate directions, and also the modern form of writing 
EULER'S equation, 

I cos2a sin2a 
_.+ 

R R1 R2 
DUPIN continued his research in the Applications, where he 

attacked many problems in applied fields, as stability of floating 
bodies, optics, and " deblais et remblais." Here, moreover, we 
also find the correction of " MALUS-DUPIN'S theorem" on normal 
systems of straight lines, and the " cyclide " of DUPIN. (57) 

DUPIN lived to a ripe age, but did not continue his work on 
geometry. His travels led him to many countries, and he became 
especially interested in the growth of capitalism in England, 
which he liked to propagate in France. This he did in a great 
number of papers and books on social subjects. He entered 
politics, became " pair de France " under the Restauration and 
"senateur." 

As representative of the purely geometrical school of MONGE 

in the time of the Restoration we have Louis L. VALLAE (I804- 

I864), a prominent civil engineer, who wrote a Traite' de gdom6trie 
descriptive in I8I9, reprinted in I825, and dedicated to MONGE. 

It contains the theory of space curves and surfaces, showing 
how their theory is built up by geometrical reasoning. Here 
we find for the first time the word " angle de courbure " together 
with " angle de torsion." VALLAE reveals to us why geometry 
should be studied, quoting MONGE: " Pour faire fleurir l'industrie 
fran9aise, il faut diriger l'education nationale vers la connaissance 

(57) MALUS-DUPIN'S theorem on p. I9I, with a criticism of MALUS. See for 
the history DARBOUX, Surfaces II, p. 280. 
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des objets qui exigent l'exactitude," and remarks that DUPIN 
" indique, comme une cause remarquable des succes manufacturiers 
de l'Angleterre, les soins qu'on donne a l'instruction des ouvriers 
anglais." (58) It is no accident that we see so many geometers 
of the Napoleonic time,- MONGE, DUPIN, RODRIGUES, VALLEE- 
interested in industrial problems. JACOBI'S contention that the 
only goal of science is the honor of the human mind belongs to 
a generation already emancipated from the revolution. 

We must devote a few remarks to the Thdorie des fonctions 
analytiques, in which LAGRANGE, in the first years of the Ecole 
Polytechnique, tried to build up calculus without the use of 
infinitesimals (I797). As his main object is the study of " deri- 
vees " f'(x), f" (x), etc. (notation and name appear here for 
the first time) he is attracted by the contact of curves and surfaces. 
In this book therefore we find for the first time an elaborate 
analytical theory of osculation, illustrated by many examples. It 
served as model to all later expositions of the subject, together 
with that of CAUCHY. 

As the last representative of this school we have therefore to men- 
tion A. CAUCHY (1798-I857), who became professor at the Ecole 
Polytechnique as a royalist, in i8i6. He wrote on differential 
geometry in one of his textbooks (i826) " destin6 'a faire suite 
au Resume des lecons sur le Calcul infinitesimal." (59) This 
textbook contains a beautiful exposition of the theory as it stood 
in CAUCHY'S time at Paris, and shows in many respects the 
characteristics of CAUCHY'S genius. Like LAGRANGE, another 
analyst, CAUCHY devotes special attention to the contact of curves 
and surfaces, and gives a first geometrical definition of the contact 
of two curves. He takes a point in common with two curves, draws 
a small circle of radius i with this point as center, considers the 
angle w intercepted on the circumference by the two curves, 
and compares w to a power of i. As source of inspiration in 
many details he mentions " les lumieres de M. M. AMPERE et 
CORIOLIS." AMPERE's investigations on electric currents, indeed, 
inspired CAUCHY'S discrimination between a right-handed and 

(58) L. VALLAE, Trait6 de g6om6trie descriptive. Sec. ed. I825, P. 296-287. 
(59) CAUCHY, Lecons sur les applications du calcul infinitesimal A la geom6trie. 

Paris, I (I826), 400 P.; II (I828), I23 P. In this book the word " normale prin- 
cipale " is used (I, p. 285, 298). 
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a left-handed system of coordinate axes. Other innovations are 
the use of polar coordinates for the computation of the radius 
of curvature, the introduction of the " premi&re courbure 
I1 I 
-and the " seconde courbure " - for space curves, a systematic r 
treatment of space curves and the use of the " rayon vecteur." 
It is entirely clear that CAUCHY used to the fullest extent all previous 
sources, especially MONGE and DUPIN. (6o) 

(to be continued.) 
Mass. Institute of Technology February 1932 

Cambridge, Mass, D. J. STRUIK. 

(6o) Of a certain importance is also the work of TH. OLIVIER (I793-I853), 
a lieutenant of artillery, who was called to Sweden to found a school after the 
pattern of the Ecole Polytechnique, and later became professor of descriptive 
geometry at Paris. He continued MONGE'S tradition in his collection of geometrical 
models, and wrote several papers on differential geometry, e.g., a " M6moire 
de g6ometrie," J7ourn. Ec. Polyt., cah. 24 (I835), p. 6I-9I, in which he studies 
the circular helix having, at a point of a space curve, curvature and torsion equal 
to the corresponding quantities of the curve. 
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