

GEODÉSICAS III. TRANSPORTE PARALELO

Alan Reyes-Figueroa Geometría Diferencial

(AULA 27) 30.ABRIL.2021

Vimos en la clase anterior la ecuación de las geodésicas

$$\sum_{k} \left(a_k'' + \sum_{i,j} a_i' \, a_j' \, \Gamma_{ij}^k \right) \mathbf{x}_k = \mathbf{0}.$$

la cual conduce al sistema de EDO

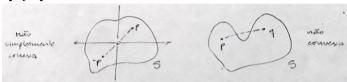
$$a_k''+\Gamma_{ij}^k\,(a^i)'(a^j)'=o,\quad k=1,2,\ldots,n.$$

Propiedad

Dados $\mathbf{p} \in S$, $\mathbf{v} \in T_{\mathbf{p}}S$, existen $\varepsilon > 0$ y una única geodésica $\alpha : (-\varepsilon, \varepsilon) \to S$ tales que $\alpha(0) = \mathbf{p}$, $\alpha'(0) = \mathbf{v}$.

<u>Prueba</u>: Aplicar el teorema de existencia y unicidad de EDO al problema de valor inicial, con las condiciones iniciales $\alpha(o) = \mathbf{p}$, $\alpha'(o) = \mathbf{v}$.

Dada una hiperficie S y puntos \mathbf{p} , $\mathbf{q} \in S$, no siempre existe una geodésica que pasa por \mathbf{p} y \mathbf{q} .



Definición

Una hiperficie S se llama **completa** si toda geodésica en S está totalmente contenida en S (no sale fuera de S).

Proposición

Si S es una hiperficie completa y $\mathbf{p}, \mathbf{q} \in S$, $\mathbf{p} \neq \mathbf{q}$, entonces existe una única geodésica α en S que pasa por \mathbf{p} y \mathbf{q} .

Sea S hiperficie en \mathbb{R}^{n+1} . En la clase anterior vimos es es posible asociar campos de vectores a curvas sobre S.

Definición

Sea $\alpha:(a,b)\to S$ una curva sobre S. Una **campo de vectores** X **a lo largo de** α es un mapa $X:(a,b)\to \mathbb{R}^{n+1}$ tal que $X(t)\in T_{\alpha(t)}S$, $\forall t\in (a,b)$.

X es **diferenciable** si para alguna parametrización $\mathbf{x}(u,v)$, las funciones componentes de $X = \frac{d}{dt}(\mathbf{x} \circ \alpha)(t)$ son todas diferenciables.

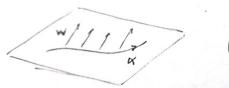
Recordemos que es posible aplicar la derivada covariante a un campo vectorial tangente.

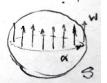
Definición

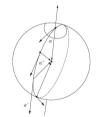
Sea S hiperficie, y $\alpha:(a,b)\to S$ una curva sobre S. Un campo de vectores tangentes X es **paralelo** a lo largo de la curva α si $\nabla_{\alpha}X(t)=0$, para todo $t\in(a,b)$.

Obs! *X* es paralelo a α significa que X'(t) es normal al plano tangente $T_{\alpha}S$, $\forall t$.

Ejemplos: Los campos constantes.







Proposición

 $\alpha: (a,b) \to S$ es geodésica \Leftrightarrow el campo α' es paralelo a α . Prueba: α es geodésica $\Leftrightarrow \nabla_{\alpha}\alpha' = o$.

Proposición

Si X, Y son paralelos a lo largo de α , entonces $\langle X(t), Y(t) \rangle$ es constante. En particular |X(t)|, |Y(t)| y el ángulos entre X y Y son constantes.

<u>Prueba</u>: Por definición X, Y paralelos a lo largo de α implica que X'(t) y Y'(t) son normales a $T_{\alpha(t)}S$.

Luego $\langle X'(t), Y(t) \rangle = o$, y $\langle Y'(t), X(t) \rangle = o$. De ahí

$$rac{\partial}{\partial t}\langle X(t),Y(t)
angle = \langle X'(t),Y(t)
angle + \langle X(t),Y'(t)
angle = 0.$$

También, del aula anterior tenemos que si $X = \sum_i \xi_i \frac{\partial \mathbf{x}}{\partial u_i}$ es un campo paralelo a lo largo de α , entonces vale la **ecuación de los campos paralelos**

$$\nabla_{\alpha}X = \sum_{k} \left(\xi'_{k} + \sum_{i,j} \Gamma^{k}_{ij} \xi_{i} \xi_{j}\right) \mathbf{x}_{k} = \mathbf{0},$$

de modo que $\xi'_k + \sum_{i,j} \Gamma^k_{ij} \xi_i \xi_j = 0$, para $k = 1, 2, \dots, n$.

Propiedad

Sea $\alpha: (a,b) \to S$ una curva sobre S, con $\alpha(t_0) = \mathbf{p}$. Dado $\mathbf{v} \in T_{\mathbf{p}}S$, existe un único campo $X(t) \in T_{\alpha(t)}S$ paralelo a lo largo de α , tal que $X(t_0) = \mathbf{v}$.

 $\underline{\text{Prueba}}$: Aplicar existencia/unicidad a la ecuación de campos paralelos. \Box

Transporte Paralelo

Definición

Sea $\alpha:[a,b]\to S$ una curva sobre S y sean $\mathbf{p}=\alpha(t_0)$, $\mathbf{v}\in T_\mathbf{p}S$, $t_0\in[a,b]$. Sea X un campo paralelo a lo largo de α , con $X(t_0)=\mathbf{v}$. El vector $X(t_1)$, $t_1\in[a,b]$ es llamado el **transporte paralelo** de \mathbf{v} a lo largo de α en el tiempo t_1 .

α

Transporte Paralelo

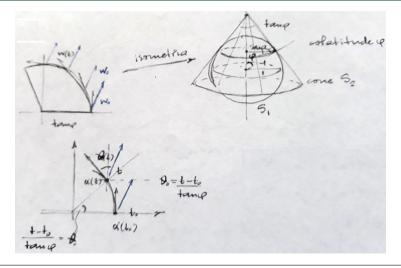
Una curva $\alpha: [a,b] \to S$ es de clase C^k por partes si existe una partición $a=t_0 < t_1 < \ldots < t_r = b$, tal que $\alpha|_{[t_{i-1},t_i]}$ es de clase C^k , $\forall i$.

Observaciones:

- El transporte paralelo existe también para curvas diferenciables por partes. En este caso si X es el campo transportado, éste es solo diferenciable por partes.
- Sean S_1 , S_2 hiperficies en \mathbb{R}^{n+1} , $\alpha:[a,b]\to S_1\cap S_2$ una curva diferenciable (por partes) y suponga que $T_{\alpha(t)}S_1=T_{\alpha(t)}S_2$, $\forall t\in[a,b]$. Si $t_0\in[a,b]$, sea $\mathbf{v}\in T_{\alpha(t_0)}S_1=T_{\alpha(t_0)}S_2$ y sean $X_1(t)$, $X_2(t)$ transportes paralelos sobre α de \mathbf{v} en S_1 y S_2 , resp. Entonces $X_1(t)=X_2(t)$, $\forall t$.

Transporte Paralelo

Ejemplo:



Sea S superficie orientada en \mathbb{R}^3 , y $\alpha:[a,b]\to S$ una curva regular sobre S, parametrizada por longitud de arco $\Rightarrow |\alpha'|^2=1 \Rightarrow \langle \alpha'',\alpha'\rangle=0$. Entonces

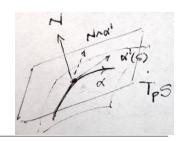
$$\langle \nabla_{\alpha} \alpha'(t), \alpha'(t) \rangle = \langle (\alpha''(t))^{\mathsf{T}}, \alpha'(t) \rangle = \langle \alpha''(t), \alpha'(t) \rangle = \mathsf{O}.$$

Entonces, existe una función $\lambda(t)$ tal que $\nabla_{\alpha}\alpha'(t) = \lambda(t) (N \times \alpha'(t))$, $\forall t$.

Definición

Sea α como antes. La **curvatura geodésica** de α se define como

$$\kappa_{\mathbf{q}}(\alpha) = \lambda(\mathbf{t}) = \langle \nabla_{\alpha} \alpha'(\mathbf{t}), \mathbf{N} \times \alpha'(\mathbf{t}) \rangle.$$



Obs! El signo de κ_g depende de la orientación de S y la orientación de α .

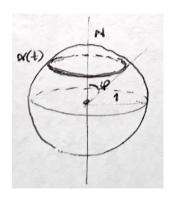
Consideremos S una superficie en \mathbb{R}^3 , y α una curva en S. Tenemos varias nociones de curvatura para α :

- la curvatura de α en el espacio ambiente, $\kappa = |\alpha''(t)|$,
- la curvatura normal, $\kappa_n = \langle \alpha''(t), N \rangle$,
- la curvatura geodésica, $\kappa_g = \langle \alpha''(t), N \times \alpha'(t) \rangle$.

Se tiene el siguiente resultado:

$$\kappa^2 = \kappa_g^2 + \kappa_n^2.$$

(Así, κ se descompone en una parte intrínseca κ_g y una parte extrínseca κ_n).



Ejemplo:

Sea C el círculo paralelo sobre S^2 a un ángulo latitudinal φ . Entonces

$$\kappa^2 = \frac{1}{r^2} = \frac{1}{\sin^2 \varphi}, \quad \kappa_n^2 = 1.$$

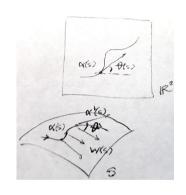
Luego

$$\kappa_g^2 = \kappa^2 - \kappa_n^2 = \frac{1}{\sin^2 \varphi} - 1 = \frac{\sin^2 \varphi - 1}{\sin^2 \varphi} = -\cot^2 \varphi.$$

de modo que $\kappa_g = \cot \varphi$.

Recordemos que para una curva plana $\alpha(s)$, al considerar la indicatriz trangente $\theta(s)$, la curvatura de κ de α está dada por $\kappa(s) = \frac{d\theta}{ds}$.

Podemos generalizar este concepto a superficies usando el transporte paralelo. Dado un campo X(s) paralelo a S, a lo largo de la curva $\alpha(s)$, sea $\theta(s)$ el ángulo entre X(s) y $\alpha'(s)$.



Lema

Sea X(s), Y(s) campos paralelos sobre S a lo largo de α . Entonces

$$\frac{d}{ds}\langle X(s),Y(s)\rangle = \langle \nabla_{\alpha}X(s),Y(s)\rangle + \langle X(s),\nabla_{\alpha}Y(s)\rangle._{\square}$$

Lema

Sean X, X_1, X_2 campos tangentes a S, a lo largo de α , y sea $f: S \to \mathbb{R}^3$ diferenciable. Entonces

- i) $\nabla_{\alpha}(X_1(s) + X_2(s)) = \nabla_{\alpha}X_1(s) + \nabla_{\alpha}X_2(s)$.
- *ii*) $\nabla_{\alpha}(fX)(s) = f(s)\nabla_{\alpha}X(s) + f'(s)X(s)$.

Sea $\{W_1(s), W_2(s)\}$ base ortonormal positiva para $T_{\alpha(s)}S$, con $W_2 = N \times W_1$. Si $W_1(s)$ es un campo paralelo a lo largo de α , también lo es $W_2(s)$ y $W_2 = N \times W_1$, $-W_1 = N \times W_2$.

Como $\langle W_1, W_2 \rangle = 0$, entonces

$$\frac{d}{ds}\langle W_1, W_2 \rangle = \langle \nabla_{\alpha} W_1, W_2 \rangle + \langle W_1, \nabla_{\alpha} W_2 \rangle = \langle \nabla_{\alpha} W_1, W_2 \rangle = 0.$$

Además, como $|W_2|^2 = 1$, entonces

$$\tfrac{d}{ds}\langle \textbf{W}_{\mathbf{2}}, \textbf{W}_{\mathbf{2}} \rangle = \mathbf{2}\langle \nabla_{\alpha} \textbf{W}_{\mathbf{2}}, \textbf{W}_{\mathbf{2}} \rangle = \mathbf{0} \ \Rightarrow \ \langle \nabla_{\alpha} \textbf{W}_{\mathbf{2}}, \textbf{W}_{\mathbf{2}} \rangle = \mathbf{0} \ \Rightarrow \ \nabla_{\alpha} \textbf{W}_{\mathbf{2}} \mid \mid \textbf{W}_{\mathbf{1}}.$$

Como podemos representar $\alpha'(s) = \cos \theta(s) W_1(s) + \sin \theta(s) W_2(s)$, entonces

$$\alpha'(\mathbf{s}) = -\theta'(\mathbf{s})\sin\theta(\mathbf{s})W_1(\mathbf{s}) + \theta'(\mathbf{s})\cos\theta(\mathbf{s})W_2(\mathbf{s}),$$

$$N \times \alpha'(\mathbf{s}) = -\sin\theta(\mathbf{s})W_1(\mathbf{s}) - \cos\theta(\mathbf{s})W_2(\mathbf{s}).$$

Luego

$$\kappa_g(\mathbf{s}) = \langle \nabla_{\alpha} \alpha'(\mathbf{s}), \mathbf{N} \times \alpha'(\mathbf{s}) \rangle = \theta'(\mathbf{s})(\sin^2 \theta(\mathbf{s}) + \cos^2 \theta(\mathbf{s})) = \theta'(\mathbf{s}).$$

Proposición
$$\kappa_g = \theta'(s)$$
.

Definición

Sea X(s) un campo tangente a $S \subset \mathbb{R}^3$ a lo largo de la curva α , tal que |X(s)|=1, $\forall s$. El **valor algebraico** de $\nabla_{\alpha}X$ es el número $[\nabla_{\alpha}X]$ tal que

$$\nabla_{\alpha} X = [\nabla_{\alpha} X](N \times X).$$

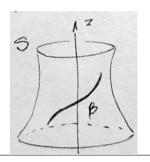
Proposición

Sea S superficie orientada, y sean X(s), Y(s) campos tangentes unitarios a S a lo largo α . Sea $\theta(s)$ el ángulo entre X(s) y Y(s). Entonces

$$\theta'(\mathsf{s}) = \left[
abla_{\alpha} \mathsf{Y}(\mathsf{s}) \right] - \left[
abla_{\alpha} \mathsf{X}(\mathsf{s}) \right]._{\square}$$

Ejemplo: Geodésicas en superficies de revolución.

Consideramos S una superficie de revolución dada por la generatriz $\alpha(s) = (o, f(s), g(s)), f(s) > o$, parametrizada por longitud de arco: $\mathbf{x}(u, v) = (f(v)\cos u, f(v)\sin u, g(v)).$



Queremos determinar si una curva $\beta(s) = \mathbf{x}(a_1(s), a_2(s))$ en S es geodésica. Para ello, usamos la ecuación de las geodésicas

$$a_k''(s) + \sum_{i,j} \Gamma_{ij}^k \, a_i'(s) \, a_j'(s) = 0, \quad k = 1, 2.$$

En este caso, los coeficientes de la 1a. forma fundamental son $E=(f(v))^2$, F=0, G=1, V

$$(g_{ij}) = egin{pmatrix} (f(v))^2 & \mathrm{O} \ \mathrm{O} & \mathrm{1} \end{pmatrix}, \quad (g^{ij}) = egin{pmatrix} rac{1}{(f(v))^2} & \mathrm{O} \ \mathrm{O} & \mathrm{1} \end{pmatrix}.$$

Los símbolos de Christoffel están dados por

$$\Gamma^1_{11} = 0, \quad \Gamma^2_{11} = -ff', \quad \Gamma^1_{12} = \frac{f'}{f}, \quad \Gamma^2_{12} = 0, \quad \Gamma^1_{22} = 0, \quad \Gamma^2_{22} = 0.$$

De la ecuación de las geodésicas resulta el sistema de EDO

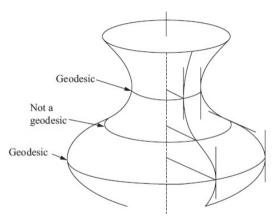
$$u''(s) + 2\frac{f'(v(s))}{f(v(s))}u'(s)v'(s) = 0,$$
 (1)

$$v''(s) - f(v(s))f'(v(s))(u'(s))^2 = 0.$$
 (2)

Analizamos dos casos:

- 1. Si u(s)=a es constante, entonces se satisface (1), de la ecuación (2) se tiene que $v'(s)=\pm 1$ (pues $v''(s)=0 \Rightarrow v'(s)$ es constante. Normalizamos para que sea ± 1 .
 - Entonces, $\beta(a,b+s)$ y $\beta(a,b-s)$ son geodésicas. En consecuencias, todos los meridianos de S son geodésicas.
- 2. Si v(s) = b es constante, entonces de la ecuación (2) tenemos $|u'(s)| = \frac{1}{f(b)}$ y f'(b) = o. Luego, los paralelos correspondientes a puntos de la generatriz α con tangente paralelo al eje de revolución son geodésicas.

Esto ocurre donde se alcanzan los radios máximos o mínimos.



Paralelos geodésicas en una superficie de revolución.

Relación de Clairaut

Consideramos las ecuaciones de geodésicas en superficies de revolución

$$u''(s) + 2\frac{f'(v(s))}{f(v(s))}u'(s)v'(s) = 0,$$

 $v''(s) - f(v(s))f'(v(s))(u'(s))^2 = 0.$

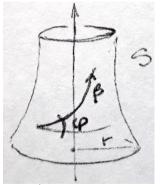
Entonces
$$[f(v(s))]^2 + 2f(v(s))(f \circ v)(s))u'(s) = 0 \Rightarrow$$

 $[f(v(s))^2u'(s)]' = [f(v(s))]^2u''(s) + 2f(v(s))f'(v(s))u'(s)v'(s) = 0.$

Esto implica que $f^2 u' = const.$

Por otro lado, f(v) = r es el radio respecto al eje de revolución. Observe que $\alpha'(s) = \mathbf{x}_u \, u'(s) + \mathbf{x}_v \, v'(s)$. Si φ denota el ángulo entre la una geodésica β y cualquier paralelo de S, este es dado por

Relación de Clairaut



$$\cos\varphi = \frac{\langle \alpha', \mathbf{x}_u \rangle}{|\alpha'| \cdot |\mathbf{x}_u|} = \frac{\langle \mathbf{x}_u, \mathbf{x}_u \rangle \, \mathbf{u}'}{|\mathbf{x}_u|} = \frac{f^2 \mathbf{u}'}{f} = f \mathbf{u}'.$$

Entonces $f^2 u' = f \cdot f u' = r \cos \varphi$. De ahí se obtiene la **relación de Clairaut**

$$r\cos\varphi=const.$$

La recíproca no vale: por ejemplo los paralelos satisfacen $(r \cos \varphi)' = 0$, pero no siempre son geodésicas.