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1 2D Euclidean geometry

1.0.1 Rigid transformations in the Euclidean plane

An isometry (or rigid transformation) is a transformation that leaves the distance between points
invariant. What kind of transformations in the plane satisfy this property?

• Translations.
• Rotations.
• Reflections with respect to straight lines.
• Combinations of the previous ones.

In practice, in computer vision, we will handle translations and rotations (the reflections,
changing the orientations, are not common).

Translation in the Euclidean plane (2 parameters tx, ty):(
x′

y′

)
=

(
x
y

)
+

(
tx
ty

)
or

p′ = p + t.

Rotation in the Euclidean plane, centered on the origin (1 parameter θ):(
x′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
or

p′ = Rθp.

where Rθ is the 2× 2 rotation matrix of angle θ.
Properties of rotation matrices:

• RT
θ Rθ = I2×2

• det(R) = 1 (this is the difference with reflections!).

The columns are the images by the transformation of the vectors of the canonical base: This
allows to verify signs...

Example: What are the transformations of the plane whose matrix representations are:

1



•
(

0 −1
1 0

)
.

•
(

0 −1
−1 0

)
.

The composition of the previous two types of transformations give the general form of the
direct isometries in the plane (those that preserve the orientation, excluding the reflections):

p′ = Rθp + t.

The set of isometries in the plane equipped with the operation of composition (i.e., apply one
transformation after the other) is a group, the Euclidean group E(2).

The set of direct isometries in the plane, equipped with the same operation, is a sub-group of
E(2) called the Special Euclidean group, SE(2). The transformations are also called displacements.

Neutral element? Inverse? Associativity? Commutativity?
Observe that, algebraically, we have heterogeneous operations: one is an addition between

vectors, and the other a matrix multiplication (affine form). To handle everything in a linear way
only, with matrix operations, is to use homogeneous coordinates. For the moment, consider that
it would just work by replacing:

(
x
y

)
by

 x
y
1


How do translations and rotations can be written with these coordinates?
Translations:  x′

y′

1

 =

 1 0 tx
0 1 ty
0 0 1

 x
y
1


Rotations:  x′

y′

1

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 x
y
1


and displacements, in general: x′

y′

1

 =

 cos θ − sin θ tx
sin θ cos θ ty

0 0 1

 x
y
1


The rigid transforms in the plane can be represented by 3× 3 matrices acting over homoge-

neous coordinates. We will see that this can be generalized to projective transformations (per-
spective).

In [ ]: import cv2

import math

import numpy as np
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img = cv2.imread('imgs/messi5.jpg',0)

rows,cols = img.shape

theta = 0.2

fac = 1.0

M = np.float32([[fac*math.cos(theta),-fac*math.sin(theta),10],[fac*math.sin(theta),fac*math.cos(theta),50]])

dst = cv2.warpAffine(img,M,(cols,rows))

cv2.imshow('img',dst)

cv2.waitKey(0)

cv2.destroyAllWindows()

1.0.2 Straight lines

General form of the equation of a straight line:

ax + by + c = 0

Observe that in homogeneous coordinates, one can write:

a.x + b.y + c.1 = 0

which looks like a relation of orthogonality:

lTp = 0

and we can see l =

 a
b
c

 as a representation of the straight line.

Observation:

 2a
2b
2c

 can also be used! (or any scaled version).

A bit later, we will come back to the notion of duality between points and straight lines in the
plane.

2 3D Euclidean geometry

2.0.1 Rigid transformations in the 3D space

Similarly as in the 3D case: the isometrie are the transformations that preserve Euclidean dis-
tances. They form a group called the Euclidean grou E(3). Those that also preserve the orientations
are:

• The 3D rotations.
• The 3D translations.

We will also handle homogeneous coordinates, but this time with 4 coordinates:
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x′

y′

z′

1

 =

(
R t
0 0 0 1

)
x
y
z
1


The 3D rigid transformations can be represented as 4 × 4 matrices acting on homogeneous

coordinates.

• t is a 3D translation vector.
• R is a 3× 3 rotation matrix.

Observe that t is the coordinate vector of the image of the frame origin.
Properties of 3D rotation matrices:

• RTR = I3×3

• det(R) = 1.
• They can be parameterized by elementary rotations along consecutive axis; for example (but

there are many more ways to do it):

R =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 cos φ − sin φ 0
sin φ cos φ 0

0 0 1


One needs to specify well the 3 consecutive rotation axis along whith the elementary rotations

are applied.
Euler representation.
This representation has a singularity: see what happens when θ = 0: gimbal lock (at some

particular configurations, one loses a degree of freedom and the possibility to reach all the neigh-
bouring rotations).

Example: What are the transformations of the plane whose matrix representations are:

•

 0 0 −1
0 1 0
−1 0 0

 .

2.0.2 Invert transformations

Observe that with the homogeneous matrix representations, it is quite simple to invert 3D dis-
placements: (

R t
0 0 0 1

)−1

=

(
RT −RTt
0 0 0 1

)
Invert a rigid transform is equivalent to apply the inverse of the rotation(RT) and translation

−RTt.
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2.0.3 Plane equations

General form of the equation of a plane:

ax + by + cz + d = 0

Observe that in homogeneous coordinates, this can be seen as:

ax + by + cz + d.1 = 0

i.e., again, as an orthogonality relation:

ßTp = 0

and we can see ß =


a
b
c
d

 as a representation of the plane.

Observation:


2a
2b
2c
2d

 can also be used! (or any scaled version).

2.0.4 Cross product

Let two 3D vectors:

v =

 a
b
c


and

v′ =

 a′

b′

c′


the cross-product of v and v′ is denoted as v× v′ and it is defined as the 3D vector:

v× v′ =

 bc′ − b′c
a′c− ac′

ab′ − a′b

 .

The obtained vector is perpendicular to both v and v′: this allows to get an easy expression of
the normal of a plane specified through 3 points A, B, C:

n = (B−A)× (C−A)

Observe that we have the equivalence:
two 3D vectors v and v′ are colinear iff⇔ v× v′ = 0.
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2.0.5 Straight lines in the 3D space

How many parameters to represent a straight line?
5 parameters: 1 particular point (3 parameters) and one direction (2 parameters)
The most commonly used representation is the one of Plucker coordinates: let v be a direction

vector for the line, and p one point belonging to it. The Plucker coordinates are:

(v, p× v)

• A point q belongs to the line:

q = p + λv⇔ q× v = p× v

• Check by yourself that (p× v) is independent of the election of p.

• Also observe the projective nature of the representation: you get the same object when using
the representation scaled by a non-zero scalar.

2.0.6 Skew matrix associated to the cross product

Observe that if one sees the operator:

v× x

as an unary operator on x (with v fixed), then it is a linear operator in x.
Then we can represent the linear map:

fv(x) = v× x

in a matrix form:

fv(x) = A(v)x

One can check that:

A(v) =

 0 −c′ b′

c′ 0 −a′

−b′ a′ 0

 .

The matrix A(v) is denoted as [v]×.
It is skew-symmetric.
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