

REPASO DE PROBABILIDAD DISCRETA

Alan Reyes-Figueroa Criptografía y Cifrado de Información

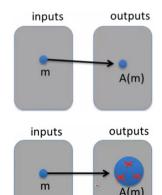
(AULA 04) 22.JULIO.2021

Algoritmos Aleatorios

Algoritmos deterministas vs. algoritmos aleatorios

Un **algoritmo determinista** es una función $\mathbf{x} \mapsto \mathbf{y} = A(\mathbf{x})$. Dada una entrada \mathbf{x} , siempre devuelve el mismo valor al repetirlo.

Un **algoritmo aleatorio** es una función $\mathbf{xy} = A(\mathbf{x}, \mathbf{r})$, donde $\mathbf{r} = R(\mathbf{z})$ es una variable aleatoria. Siempre devuelve distintos valores cada vez que se repite.



Algoritmos Aleatorios

Ejemplo: Algoritmo que encripta un mensaje $E(m, \mathbf{k})$, donde \mathbf{k} se define como una clave aleatoria.

Por ejemplo **k** se elige con distribución uniforme dentro de un conjunto de cadenas de bits $\Omega = \{0, 1\}^n$.

Independencia

La idea de **independencia** es determinar si hay o no relación entre dos eventos A y B.

En otras palabras, si al conocer A, cambia nuestro conocimiento sobre B (o al conocer B cambia nuestro conocimiento sobre A).

Definición

Dos eventos A y B son **independientes** si, y sólo si,

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\,\mathbb{P}(B).$$

Ejemplo

Lanzamiento de dos dados D_1 y D_2 . Consideremos los eventos

$$A = \{D_1 + D_2 \text{ es par}\}, B = \{D_1 < 5\}, C = \{D_1 \le 3, D_2 \le 3\}.$$

Sabemos que
$$\mathbb{P}(A) = \frac{1}{2}$$
, $\mathbb{P}(A \cap B) = \frac{1}{2}$, $\mathbb{P}(A \cap C) = \frac{5}{9}$.

$D_1 \setminus D_2$	1	2	3	4	5	6
1	Х		Х		Х	
2		Χ		Х		Х
3	Х		Χ		Χ	
4		Χ		Х		Х
5						
6						

$D_1 \setminus D_2$	1	2	3	4	5	6
1	Х		Х			
2		Х				
3	Х		Х			
4						
5						
6						

Luego, A y B son independientes; mientras que A y C no lo son.

Independencia

Definición

Dos variables aleatorias discretas X y Y definidas sobre el mismo espacio Ω son **independientes** si

$$\mathbb{P}(X = a, Y = b) = \mathbb{P}(X = a) \mathbb{P}(Y = b), \ \forall \ a, b \in \mathbb{R}.$$

En general, las v.a. discretas X_1, \ldots, X_n son **mutuamente independientes** si

$$\mathbb{P}(X_1=X_1,\ldots,X_n=X_n)=\prod_{i=1}^n\mathbb{P}(X_i=X_i), \ \forall X_1,X_2,\ldots,X_n\in\mathbb{R}.$$

Independencia

Ejemplo: $\Omega = \{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$ y p la distribución uniforme.

Definimos las variables aleatorias $X = \mathbf{lsb}_1(\mathbf{x})$, $Y = \mathbf{msb}_1(\mathbf{x})$.

• Para
$$X = 0, Y = 0$$
: $\mathbb{P}(X = 0, Y = 0) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = \mathbb{P}(X = 0) \mathbb{P}(Y = 0)$.

• Para
$$X = 0, Y = 1$$
: $\mathbb{P}(X = 0, Y = 1) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = \mathbb{P}(X = 0) \mathbb{P}(Y = 1)$.

• Para
$$X=1, Y=0$$
: $\mathbb{P}(X=1, Y=0)=\frac{1}{4}=\frac{1}{2}\cdot\frac{1}{2}=\mathbb{P}(X=1)\,\mathbb{P}(Y=0)$.

• Para
$$X = 1, Y = 1$$
: $\mathbb{P}(X = 1, Y = 1) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = \mathbb{P}(X = 1) \mathbb{P}(Y = 1)$.

Esto comprueba que *X* y *Y* son independientes.

Propiedad del XOR

Teorema (Propiedad de la función XOR)

Si X es una variable aleatoria en $\{0,1\}^n$, y Y es otra v.a. independiente de X, con Y $\sim U(\{0,1\}^n)$, entonces $Z = X \oplus Y \sim U(\{0,1\}^n)$.

Comentario: Si a una cadena de bits X le hacemos XOR con una cadena de bits aleatoria Y (donde la probabilidad de que los bits en Y sean O ó 1 es la misma: $\mathbb{P}(Y_i = O) = \mathbb{P}(Y_i = 1) = \frac{1}{2}$), entonces la cadena de bits

$$Z = X \oplus Y = XOR(X, Y),$$

también cumple que $\mathbb{P}(Z_i = 0) = \mathbb{P}(Z_i = 1) = \frac{1}{2}$.

Así, la función XOR esconde las probabilidades de ocurrencia de caracteres en la cadena de bits original X.

Otra Propiedad Importante

Teorema (Paradoja del cumpleaños)

Sean $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in \Omega$ variables aleatorias independientes con distribución uniforme en Ω , $|\Omega| = n$.

Entonces, para $k \approx 1.2\sqrt{n}$, se tiene con probabilidad $\mathbb{P} \geq \frac{1}{2}$, existen $1 \leq i, j \leq k$, $i \neq j$, tales que $\mathbf{x}_i = \mathbf{x}_j$.

