{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ciencia de Datos 2022\n",
"#
**Aula 21 -- Data Imputation**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Introduction\n",
"\n",
"In this tutorial we will explore some basic techniques of data imputation, that is, how to fill missing values in a dataset."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"\n",
"from sklearn.impute import KNNImputer"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"_kg_hide-input": true
},
"outputs": [],
"source": [
"pd.set_option('max_rows', 30)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"data = pd.read_csv('hpi-data-2016.csv')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Country | \n",
" Region | \n",
" Average-Life-Expectancy | \n",
" Average-Wellbeing_(0-10) | \n",
" Happy-Life-Years | \n",
" Footprint_(gha/capita) | \n",
" Inequality-of-Outcomes | \n",
" Inequality-adjusted-Life-Expectancy | \n",
" Inequality-adjusted-Wellbeing | \n",
" Happy-Planet-Index | \n",
" GDP/capita($PPP) | \n",
" Population | \n",
" GINI-index | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Afghanistan | \n",
" Middle East and North Africa | \n",
" 59.7 | \n",
" 3.8 | \n",
" 12.4 | \n",
" 0.8 | \n",
" 0.43 | \n",
" 38.3 | \n",
" 3.4 | \n",
" 20.2 | \n",
" 691 | \n",
" 29726803 | \n",
" NaN | \n",
"
\n",
" \n",
" 1 | \n",
" Albania | \n",
" Post-communist | \n",
" 77.3 | \n",
" 5.5 | \n",
" 34.4 | \n",
" 2.2 | \n",
" 0.17 | \n",
" 69.7 | \n",
" 5.1 | \n",
" 36.8 | \n",
" 4247 | \n",
" 2900489 | \n",
" 29.0 | \n",
"
\n",
" \n",
" 2 | \n",
" Algeria | \n",
" Middle East and North Africa | \n",
" 74.3 | \n",
" 5.6 | \n",
" 30.5 | \n",
" 2.1 | \n",
" 0.24 | \n",
" 60.5 | \n",
" 5.2 | \n",
" 33.3 | \n",
" 5584 | \n",
" 37439427 | \n",
" NaN | \n",
"
\n",
" \n",
" 3 | \n",
" Argentina | \n",
" Americas | \n",
" 75.9 | \n",
" 6.5 | \n",
" 40.2 | \n",
" 3.1 | \n",
" 0.16 | \n",
" 68.3 | \n",
" 6.0 | \n",
" 35.2 | \n",
" 14357 | \n",
" 42095224 | \n",
" 42.5 | \n",
"
\n",
" \n",
" 4 | \n",
" Armenia | \n",
" Post-communist | \n",
" 74.4 | \n",
" 4.3 | \n",
" 24.0 | \n",
" 2.2 | \n",
" 0.22 | \n",
" 66.9 | \n",
" 3.7 | \n",
" 25.7 | \n",
" 3566 | \n",
" 2978339 | \n",
" 30.5 | \n",
"
\n",
" \n",
" 5 | \n",
" Australia | \n",
" Asia Pacific | \n",
" 82.1 | \n",
" 7.2 | \n",
" 53.1 | \n",
" 9.3 | \n",
" 0.08 | \n",
" 78.6 | \n",
" 6.9 | \n",
" 21.2 | \n",
" 67646 | \n",
" 22728254 | \n",
" NaN | \n",
"
\n",
" \n",
" 6 | \n",
" Austria | \n",
" Europe | \n",
" 81.0 | \n",
" 7.4 | \n",
" 54.4 | \n",
" 6.1 | \n",
" 0.07 | \n",
" 78.0 | \n",
" 7.1 | \n",
" 30.5 | \n",
" 48324 | \n",
" 8429991 | \n",
" 30.5 | \n",
"
\n",
" \n",
" 7 | \n",
" Bangladesh | \n",
" Asia Pacific | \n",
" 70.8 | \n",
" 4.7 | \n",
" 23.3 | \n",
" 0.7 | \n",
" 0.27 | \n",
" 56.6 | \n",
" 4.3 | \n",
" 38.4 | \n",
" 859 | \n",
" 155257387 | \n",
" NaN | \n",
"
\n",
" \n",
" 8 | \n",
" Belarus | \n",
" Post-communist | \n",
" 70.9 | \n",
" 5.7 | \n",
" 34.0 | \n",
" 5.1 | \n",
" 0.13 | \n",
" 66.7 | \n",
" 5.3 | \n",
" 21.7 | \n",
" 6722 | \n",
" 9464000 | \n",
" 26.0 | \n",
"
\n",
" \n",
" 9 | \n",
" Belgium | \n",
" Europe | \n",
" 80.4 | \n",
" 6.9 | \n",
" 49.5 | \n",
" 7.4 | \n",
" 0.09 | \n",
" 77.2 | \n",
" 6.6 | \n",
" 23.7 | \n",
" 44731 | \n",
" 11128246 | \n",
" 27.6 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Country Region Average-Life-Expectancy \\\n",
"0 Afghanistan Middle East and North Africa 59.7 \n",
"1 Albania Post-communist 77.3 \n",
"2 Algeria Middle East and North Africa 74.3 \n",
"3 Argentina Americas 75.9 \n",
"4 Armenia Post-communist 74.4 \n",
"5 Australia Asia Pacific 82.1 \n",
"6 Austria Europe 81.0 \n",
"7 Bangladesh Asia Pacific 70.8 \n",
"8 Belarus Post-communist 70.9 \n",
"9 Belgium Europe 80.4 \n",
"\n",
" Average-Wellbeing_(0-10) Happy-Life-Years Footprint_(gha/capita) \\\n",
"0 3.8 12.4 0.8 \n",
"1 5.5 34.4 2.2 \n",
"2 5.6 30.5 2.1 \n",
"3 6.5 40.2 3.1 \n",
"4 4.3 24.0 2.2 \n",
"5 7.2 53.1 9.3 \n",
"6 7.4 54.4 6.1 \n",
"7 4.7 23.3 0.7 \n",
"8 5.7 34.0 5.1 \n",
"9 6.9 49.5 7.4 \n",
"\n",
" Inequality-of-Outcomes Inequality-adjusted-Life-Expectancy \\\n",
"0 0.43 38.3 \n",
"1 0.17 69.7 \n",
"2 0.24 60.5 \n",
"3 0.16 68.3 \n",
"4 0.22 66.9 \n",
"5 0.08 78.6 \n",
"6 0.07 78.0 \n",
"7 0.27 56.6 \n",
"8 0.13 66.7 \n",
"9 0.09 77.2 \n",
"\n",
" Inequality-adjusted-Wellbeing Happy-Planet-Index GDP/capita($PPP) \\\n",
"0 3.4 20.2 691 \n",
"1 5.1 36.8 4247 \n",
"2 5.2 33.3 5584 \n",
"3 6.0 35.2 14357 \n",
"4 3.7 25.7 3566 \n",
"5 6.9 21.2 67646 \n",
"6 7.1 30.5 48324 \n",
"7 4.3 38.4 859 \n",
"8 5.3 21.7 6722 \n",
"9 6.6 23.7 44731 \n",
"\n",
" Population GINI-index \n",
"0 29726803 NaN \n",
"1 2900489 29.0 \n",
"2 37439427 NaN \n",
"3 42095224 42.5 \n",
"4 2978339 30.5 \n",
"5 22728254 NaN \n",
"6 8429991 30.5 \n",
"7 155257387 NaN \n",
"8 9464000 26.0 \n",
"9 11128246 27.6 "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head(10)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(140, 13)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Missing data\n",
"\n",
"Entries missing values are given the value `NaN`, short for \"Not a Number\". For technical reasons these `NaN` values are always of the `float64` dtype.\n",
"\n",
"Pandas provides some methods specific to missing data. To select `NaN` entries you can use `pd.isnull()` (or its companion `pd.notnull()`). This is meant to be used thusly:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Country 0\n",
"Region 0\n",
"Average-Life-Expectancy 0\n",
"Average-Wellbeing_(0-10) 0\n",
"Happy-Life-Years 0\n",
"Footprint_(gha/capita) 0\n",
"Inequality-of-Outcomes 0\n",
"Inequality-adjusted-Life-Expectancy 0\n",
"Inequality-adjusted-Wellbeing 0\n",
"Happy-Planet-Index 0\n",
"GDP/capita($PPP) 0\n",
"Population 0\n",
"GINI-index 75\n",
"dtype: int64"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.isnull().sum()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Replacing missing values is a common operation. Pandas provides a really handy method for this problem: `fillna()`. `fillna()` provides a few different strategies for mitigating such data. For example, we can simply replace each `NaN` with an `\"Unknown\"`:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"data['GINI-index'].fillna(\"Unknown\", inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Country | \n",
" Region | \n",
" Average-Life-Expectancy | \n",
" Average-Wellbeing_(0-10) | \n",
" Happy-Life-Years | \n",
" Footprint_(gha/capita) | \n",
" Inequality-of-Outcomes | \n",
" Inequality-adjusted-Life-Expectancy | \n",
" Inequality-adjusted-Wellbeing | \n",
" Happy-Planet-Index | \n",
" GDP/capita($PPP) | \n",
" Population | \n",
" GINI-index | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Afghanistan | \n",
" Middle East and North Africa | \n",
" 59.7 | \n",
" 3.8 | \n",
" 12.4 | \n",
" 0.8 | \n",
" 0.43 | \n",
" 38.3 | \n",
" 3.4 | \n",
" 20.2 | \n",
" 691 | \n",
" 29726803 | \n",
" Unknown | \n",
"
\n",
" \n",
" 1 | \n",
" Albania | \n",
" Post-communist | \n",
" 77.3 | \n",
" 5.5 | \n",
" 34.4 | \n",
" 2.2 | \n",
" 0.17 | \n",
" 69.7 | \n",
" 5.1 | \n",
" 36.8 | \n",
" 4247 | \n",
" 2900489 | \n",
" 29.0 | \n",
"
\n",
" \n",
" 2 | \n",
" Algeria | \n",
" Middle East and North Africa | \n",
" 74.3 | \n",
" 5.6 | \n",
" 30.5 | \n",
" 2.1 | \n",
" 0.24 | \n",
" 60.5 | \n",
" 5.2 | \n",
" 33.3 | \n",
" 5584 | \n",
" 37439427 | \n",
" Unknown | \n",
"
\n",
" \n",
" 3 | \n",
" Argentina | \n",
" Americas | \n",
" 75.9 | \n",
" 6.5 | \n",
" 40.2 | \n",
" 3.1 | \n",
" 0.16 | \n",
" 68.3 | \n",
" 6.0 | \n",
" 35.2 | \n",
" 14357 | \n",
" 42095224 | \n",
" 42.5 | \n",
"
\n",
" \n",
" 4 | \n",
" Armenia | \n",
" Post-communist | \n",
" 74.4 | \n",
" 4.3 | \n",
" 24.0 | \n",
" 2.2 | \n",
" 0.22 | \n",
" 66.9 | \n",
" 3.7 | \n",
" 25.7 | \n",
" 3566 | \n",
" 2978339 | \n",
" 30.5 | \n",
"
\n",
" \n",
" 5 | \n",
" Australia | \n",
" Asia Pacific | \n",
" 82.1 | \n",
" 7.2 | \n",
" 53.1 | \n",
" 9.3 | \n",
" 0.08 | \n",
" 78.6 | \n",
" 6.9 | \n",
" 21.2 | \n",
" 67646 | \n",
" 22728254 | \n",
" Unknown | \n",
"
\n",
" \n",
" 6 | \n",
" Austria | \n",
" Europe | \n",
" 81.0 | \n",
" 7.4 | \n",
" 54.4 | \n",
" 6.1 | \n",
" 0.07 | \n",
" 78.0 | \n",
" 7.1 | \n",
" 30.5 | \n",
" 48324 | \n",
" 8429991 | \n",
" 30.5 | \n",
"
\n",
" \n",
" 7 | \n",
" Bangladesh | \n",
" Asia Pacific | \n",
" 70.8 | \n",
" 4.7 | \n",
" 23.3 | \n",
" 0.7 | \n",
" 0.27 | \n",
" 56.6 | \n",
" 4.3 | \n",
" 38.4 | \n",
" 859 | \n",
" 155257387 | \n",
" Unknown | \n",
"
\n",
" \n",
" 8 | \n",
" Belarus | \n",
" Post-communist | \n",
" 70.9 | \n",
" 5.7 | \n",
" 34.0 | \n",
" 5.1 | \n",
" 0.13 | \n",
" 66.7 | \n",
" 5.3 | \n",
" 21.7 | \n",
" 6722 | \n",
" 9464000 | \n",
" 26.0 | \n",
"
\n",
" \n",
" 9 | \n",
" Belgium | \n",
" Europe | \n",
" 80.4 | \n",
" 6.9 | \n",
" 49.5 | \n",
" 7.4 | \n",
" 0.09 | \n",
" 77.2 | \n",
" 6.6 | \n",
" 23.7 | \n",
" 44731 | \n",
" 11128246 | \n",
" 27.6 | \n",
"
\n",
" \n",
" 10 | \n",
" Belize | \n",
" Americas | \n",
" 69.8 | \n",
" 6.1 | \n",
" 34.2 | \n",
" 2.5 | \n",
" 0.18 | \n",
" 61.7 | \n",
" 5.7 | \n",
" 33.8 | \n",
" 4674 | \n",
" 336707 | \n",
" Unknown | \n",
"
\n",
" \n",
" 11 | \n",
" Benin | \n",
" Sub Saharan Africa | \n",
" 59.2 | \n",
" 3.2 | \n",
" 9.9 | \n",
" 1.4 | \n",
" 0.44 | \n",
" 37.3 | \n",
" 2.8 | \n",
" 13.4 | \n",
" 808 | \n",
" 10049792 | \n",
" Unknown | \n",
"
\n",
" \n",
" 12 | \n",
" Bhutan | \n",
" Asia Pacific | \n",
" 68.7 | \n",
" 5.6 | \n",
" 27.4 | \n",
" 2.3 | \n",
" 0.27 | \n",
" 54.5 | \n",
" 5.2 | \n",
" 28.6 | \n",
" 2452 | \n",
" 743711 | \n",
" 38.7 | \n",
"
\n",
" \n",
" 13 | \n",
" Bolivia | \n",
" Americas | \n",
" 67.5 | \n",
" 6.0 | \n",
" 25.6 | \n",
" 3.0 | \n",
" 0.35 | \n",
" 47.9 | \n",
" 5.5 | \n",
" 23.3 | \n",
" 2645 | \n",
" 10238762 | \n",
" 46.7 | \n",
"
\n",
" \n",
" 14 | \n",
" Bosnia and Herzegovina | \n",
" Post-communist | \n",
" 76.2 | \n",
" 4.8 | \n",
" 28.6 | \n",
" 3.1 | \n",
" 0.19 | \n",
" 71.1 | \n",
" 4.2 | \n",
" 25.3 | \n",
" 4495 | \n",
" 3828419 | \n",
" Unknown | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Country Region \\\n",
"0 Afghanistan Middle East and North Africa \n",
"1 Albania Post-communist \n",
"2 Algeria Middle East and North Africa \n",
"3 Argentina Americas \n",
"4 Armenia Post-communist \n",
"5 Australia Asia Pacific \n",
"6 Austria Europe \n",
"7 Bangladesh Asia Pacific \n",
"8 Belarus Post-communist \n",
"9 Belgium Europe \n",
"10 Belize Americas \n",
"11 Benin Sub Saharan Africa \n",
"12 Bhutan Asia Pacific \n",
"13 Bolivia Americas \n",
"14 Bosnia and Herzegovina Post-communist \n",
"\n",
" Average-Life-Expectancy Average-Wellbeing_(0-10) Happy-Life-Years \\\n",
"0 59.7 3.8 12.4 \n",
"1 77.3 5.5 34.4 \n",
"2 74.3 5.6 30.5 \n",
"3 75.9 6.5 40.2 \n",
"4 74.4 4.3 24.0 \n",
"5 82.1 7.2 53.1 \n",
"6 81.0 7.4 54.4 \n",
"7 70.8 4.7 23.3 \n",
"8 70.9 5.7 34.0 \n",
"9 80.4 6.9 49.5 \n",
"10 69.8 6.1 34.2 \n",
"11 59.2 3.2 9.9 \n",
"12 68.7 5.6 27.4 \n",
"13 67.5 6.0 25.6 \n",
"14 76.2 4.8 28.6 \n",
"\n",
" Footprint_(gha/capita) Inequality-of-Outcomes \\\n",
"0 0.8 0.43 \n",
"1 2.2 0.17 \n",
"2 2.1 0.24 \n",
"3 3.1 0.16 \n",
"4 2.2 0.22 \n",
"5 9.3 0.08 \n",
"6 6.1 0.07 \n",
"7 0.7 0.27 \n",
"8 5.1 0.13 \n",
"9 7.4 0.09 \n",
"10 2.5 0.18 \n",
"11 1.4 0.44 \n",
"12 2.3 0.27 \n",
"13 3.0 0.35 \n",
"14 3.1 0.19 \n",
"\n",
" Inequality-adjusted-Life-Expectancy Inequality-adjusted-Wellbeing \\\n",
"0 38.3 3.4 \n",
"1 69.7 5.1 \n",
"2 60.5 5.2 \n",
"3 68.3 6.0 \n",
"4 66.9 3.7 \n",
"5 78.6 6.9 \n",
"6 78.0 7.1 \n",
"7 56.6 4.3 \n",
"8 66.7 5.3 \n",
"9 77.2 6.6 \n",
"10 61.7 5.7 \n",
"11 37.3 2.8 \n",
"12 54.5 5.2 \n",
"13 47.9 5.5 \n",
"14 71.1 4.2 \n",
"\n",
" Happy-Planet-Index GDP/capita($PPP) Population GINI-index \n",
"0 20.2 691 29726803 Unknown \n",
"1 36.8 4247 2900489 29.0 \n",
"2 33.3 5584 37439427 Unknown \n",
"3 35.2 14357 42095224 42.5 \n",
"4 25.7 3566 2978339 30.5 \n",
"5 21.2 67646 22728254 Unknown \n",
"6 30.5 48324 8429991 30.5 \n",
"7 38.4 859 155257387 Unknown \n",
"8 21.7 6722 9464000 26.0 \n",
"9 23.7 44731 11128246 27.6 \n",
"10 33.8 4674 336707 Unknown \n",
"11 13.4 808 10049792 Unknown \n",
"12 28.6 2452 743711 38.7 \n",
"13 23.3 2645 10238762 46.7 \n",
"14 25.3 4495 3828419 Unknown "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head(15)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Fill with zeros"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"## reemplazar con 0\n",
"data = pd.read_csv('hpi-data-2016.csv')\n",
"data2 = data.copy()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"data2['GINI-index'] = data2['GINI-index'].fillna(0)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Country | \n",
" Region | \n",
" Average-Life-Expectancy | \n",
" Average-Wellbeing_(0-10) | \n",
" Happy-Life-Years | \n",
" Footprint_(gha/capita) | \n",
" Inequality-of-Outcomes | \n",
" Inequality-adjusted-Life-Expectancy | \n",
" Inequality-adjusted-Wellbeing | \n",
" Happy-Planet-Index | \n",
" GDP/capita($PPP) | \n",
" Population | \n",
" GINI-index | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Afghanistan | \n",
" Middle East and North Africa | \n",
" 59.7 | \n",
" 3.8 | \n",
" 12.4 | \n",
" 0.8 | \n",
" 0.43 | \n",
" 38.3 | \n",
" 3.4 | \n",
" 20.2 | \n",
" 691 | \n",
" 29726803 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 1 | \n",
" Albania | \n",
" Post-communist | \n",
" 77.3 | \n",
" 5.5 | \n",
" 34.4 | \n",
" 2.2 | \n",
" 0.17 | \n",
" 69.7 | \n",
" 5.1 | \n",
" 36.8 | \n",
" 4247 | \n",
" 2900489 | \n",
" 29.0 | \n",
"
\n",
" \n",
" 2 | \n",
" Algeria | \n",
" Middle East and North Africa | \n",
" 74.3 | \n",
" 5.6 | \n",
" 30.5 | \n",
" 2.1 | \n",
" 0.24 | \n",
" 60.5 | \n",
" 5.2 | \n",
" 33.3 | \n",
" 5584 | \n",
" 37439427 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 3 | \n",
" Argentina | \n",
" Americas | \n",
" 75.9 | \n",
" 6.5 | \n",
" 40.2 | \n",
" 3.1 | \n",
" 0.16 | \n",
" 68.3 | \n",
" 6.0 | \n",
" 35.2 | \n",
" 14357 | \n",
" 42095224 | \n",
" 42.5 | \n",
"
\n",
" \n",
" 4 | \n",
" Armenia | \n",
" Post-communist | \n",
" 74.4 | \n",
" 4.3 | \n",
" 24.0 | \n",
" 2.2 | \n",
" 0.22 | \n",
" 66.9 | \n",
" 3.7 | \n",
" 25.7 | \n",
" 3566 | \n",
" 2978339 | \n",
" 30.5 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Country Region Average-Life-Expectancy \\\n",
"0 Afghanistan Middle East and North Africa 59.7 \n",
"1 Albania Post-communist 77.3 \n",
"2 Algeria Middle East and North Africa 74.3 \n",
"3 Argentina Americas 75.9 \n",
"4 Armenia Post-communist 74.4 \n",
"\n",
" Average-Wellbeing_(0-10) Happy-Life-Years Footprint_(gha/capita) \\\n",
"0 3.8 12.4 0.8 \n",
"1 5.5 34.4 2.2 \n",
"2 5.6 30.5 2.1 \n",
"3 6.5 40.2 3.1 \n",
"4 4.3 24.0 2.2 \n",
"\n",
" Inequality-of-Outcomes Inequality-adjusted-Life-Expectancy \\\n",
"0 0.43 38.3 \n",
"1 0.17 69.7 \n",
"2 0.24 60.5 \n",
"3 0.16 68.3 \n",
"4 0.22 66.9 \n",
"\n",
" Inequality-adjusted-Wellbeing Happy-Planet-Index GDP/capita($PPP) \\\n",
"0 3.4 20.2 691 \n",
"1 5.1 36.8 4247 \n",
"2 5.2 33.3 5584 \n",
"3 6.0 35.2 14357 \n",
"4 3.7 25.7 3566 \n",
"\n",
" Population GINI-index \n",
"0 29726803 0.0 \n",
"1 2900489 29.0 \n",
"2 37439427 0.0 \n",
"3 42095224 42.5 \n",
"4 2978339 30.5 "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data2.head()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"36.52"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['GINI-index'].mean()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"16.955714285714286"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data2['GINI-index'].mean()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAQuElEQVR4nO3df4xlZX3H8ffXXY3LjiwY8Jbsko41hsTstOje2FoSe0fUbIWobWwrQQKGZpq02m27RrGm0f5hurFdq0kbmy1QiFKmFjBaSCxEmVITpM4gOuBiNXaju+KuhLo6dBM69ds/5uxkGObnuefeOY95v5LJnHvuPed87hP4zJkz5z4bmYkkqTzP2+oAkqR6LHBJKpQFLkmFssAlqVAWuCQVavswD3bBBRfk6Oho3/t5+umn2blzZ/+BBsyczTJns0rJCeVkHVTOmZmZJzPzwuc8kZlD+9q3b1824f77729kP4NmzmaZs1ml5MwsJ+ugcgLTuUKneglFkgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFWrdAo+ImyPiVEQ8usJz74mIjIgLBhNPkrSajZyB3wLsX74yIi4G3gB8t+FMkqQNWLfAM/MB4KkVnvpr4L2AE4pL0haI3MA/6BARo8Ddmbm3evxm4PLMPBARx4BuZj65yrYTwARAp9PZNzk5WSvo7InTi8udHXDyTK3d1DK2e1et7ebm5hgZGWk4TfPM2SxzNq+UrIPKOT4+PpOZ3eXrNz0XSkScA3wAeONGXp+ZR4AjAN1uN3u93mYPCcB1N9yzuHxwbJ7Ds8ObxuXY1b1a201NTVH3/Q6TOZtlzuaVknXYOevchfIy4KXA16qz7z3AwxHxc00GkyStbdOnsZk5C7zk7OP1LqFIkgZjI7cR3g48CFwSEccj4vrBx5IkrWfdM/DMvGqd50cbSyNJ2jA/iSlJhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYUa3pR+2rTRJTMwDtLBsflnzfZ47NAVQzmupP54Bi5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBv5V+lvjohTEfHoknV/GRGPR8TXI+IzEXHeQFNKkp5jI2fgtwD7l627D9ibmb8I/Cfw/oZzSZLWsW6BZ+YDwFPL1t2bmfPVwy8DewaQTZK0hsjM9V8UMQrcnZl7V3juX4B/ysxPrbLtBDAB0Ol09k1OTtYKOnvi9OJyZwecPFNrN7WM7d5Va7u5uTlGRkZqH3fpex6k5eNZ9/0OWr/jOSzmbF4pWQeVc3x8fCYzu8vX9zWdbER8AJgHblvtNZl5BDgC0O12s9fr1TrW0ulOD47Nc3h2eDPhHru6V2u7qakp6r5fePZ7HqTl41n3/Q5av+M5LOZsXilZh52zdgtGxLXAlcDluZHTeElSo2oVeETsB94H/Fpm/k+zkSRJG7GR2whvBx4ELomI4xFxPfA3wIuA+yLikYj4uwHnlCQts+4ZeGZetcLqmwaQRZK0CX4SU5IKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQ6xZ4RNwcEaci4tEl614cEfdFxLeq7+cPNqYkabmNnIHfAuxftu4G4AuZ+XLgC9VjSdIQrVvgmfkA8NSy1W8Bbq2WbwXe2mwsSdJ6IjPXf1HEKHB3Zu6tHv8oM89b8vx/Z+aKl1EiYgKYAOh0OvsmJydrBZ09cXpxubMDTp6ptZtaxnbvqrXd3NwcIyMjtY+79D0P0vLxrPt+B63f8RwWczavlKyDyjk+Pj6Tmd3l67c3fqRlMvMIcASg2+1mr9ertZ/rbrhncfng2DyHZwcefdGxq3u1tpuamqLu+4Vnv+dBWj6edd/voPU7nsNizuaVknXYOevehXIyIi4CqL6fai6SJGkj6hb454Brq+Vrgc82E0eStFEbuY3wduBB4JKIOB4R1wOHgDdExLeAN1SPJUlDtO6F5My8apWnLm84iyRpE/wkpiQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCtVXgUfEH0fEYxHxaETcHhEvbCqYJGlttQs8InYDfwh0M3MvsA14e1PBJElr6/cSynZgR0RsB84Bvt9/JEnSRkRm1t844gDwYeAMcG9mXr3CayaACYBOp7NvcnKy1rFmT5xeXO7sgJNnau1mqMzZrEHmHNu9q7F9zc3NMTIy0tj+BqWUnFBO1kHlHB8fn8nM7vL1tQs8Is4H7gR+B/gR8M/AHZn5qdW26Xa7OT09Xet4ozfcs7h8cGyew7Pba+1nmMzZrEHmPHboisb2NTU1Ra/Xa2x/g1JKTign66ByRsSKBd7PJZTXA/+VmT/MzP8F7gJ+tY/9SZI2oZ8C/y7wKxFxTkQEcDlwtJlYkqT11C7wzHwIuAN4GJit9nWkoVySpHX0dUExMz8IfLChLJKkTfCTmJJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmF6qvAI+K8iLgjIh6PiKMR8ZqmgkmS1ra9z+0/Dnw+M98WES8AzmkgkyRpA2oXeEScC7wWuA4gM58BnmkmliRpPZGZ9TaMuBQ4AnwD+CVgBjiQmU8ve90EMAHQ6XT2TU5O1jre7InTi8udHXDyTK3dDJU5mzXInGO7dzW2r7m5OUZGRhrb36CUkhPKyTqonOPj4zOZ2V2+vp8C7wJfBi7LzIci4uPAjzPzz1bbptvt5vT0dK3jjd5wz+LywbF5Ds/2e/Vn8MzZrEHmPHboisb2NTU1Ra/Xa2x/g1JKTign66ByRsSKBd7PHzGPA8cz86Hq8R3Aq/rYnyRpE2oXeGb+APheRFxSrbqchcspkqQh6Pf30XcDt1V3oHwHeGf/kSRJG9FXgWfmI8BzrstIkgbPT2JKUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1Kh2j8FnfQzbulMm8N0y/6dW3JcNcczcEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmF6rvAI2JbRHw1Iu5uIpAkaWOaOAM/ABxtYD+SpE3oq8AjYg9wBXBjM3EkSRvV7xn4x4D3Aj/tP4okaTMiM+ttGHEl8KbM/P2I6AHvycwrV3jdBDAB0Ol09k1OTtY63uyJ04vLnR1w8kyt3QyVOZtlzma9dNc2RkZGtjrGhszNzRWRdVA5x8fHZzKzu3x9PwX+F8A1wDzwQuBc4K7MfMdq23S73Zyenq51vKVzJh8cm+fwbPunMjdns8zZrFv276TX6211jA2ZmpoqIuugckbEigVe+xJKZr4/M/dk5ijwduCLa5W3JKlZ3gcuSYVq5Pe8zJwCpprYlyRpYzwDl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQrV/xh1JAzF74jTXLZkkbpiOHbpiS477s8YzcEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVC1CzwiLo6I+yPiaEQ8FhEHmgwmSVpbP5NZzQMHM/PhiHgRMBMR92XmNxrKJklaQ+0z8Mx8IjMfrpZ/AhwFdjcVTJK0tsjM/ncSMQo8AOzNzB8ve24CmADodDr7Jicnax1j9sTpxeXODjh5pm7a4TFns8zZrK3MObZ716ZePzc3x8jISN/HXdojg7DWmG72PS81Pj4+k5nd5ev7LvCIGAH+DfhwZt611mu73W5OT0/XOs7oknmLD47Nc3i2/VOZm7NZ5mzWVubc7HzgU1NT9Hq9vo87OuD5z9ca037mQI+IFQu8r7tQIuL5wJ3AbeuVtySpWf3chRLATcDRzPxoc5EkSRvRzxn4ZcA1wOsi4pHq600N5ZIkraP2BbDM/BIQDWaRJG2Cn8SUpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKlRfBR4R+yPimxHx7Yi4oalQkqT11S7wiNgG/C3w68ArgKsi4hVNBZMkra2fM/BXA9/OzO9k5jPAJPCWZmJJktYTmVlvw4i3Afsz83erx9cAv5yZ71r2uglgonp4CfDN+nEXXQA82cB+Bs2czTJns0rJCeVkHVTOn8/MC5ev3N7HDmOFdc/5aZCZR4AjfRznuQeOmM7MbpP7HARzNsuczSolJ5STddg5+7mEchy4eMnjPcD3+4sjSdqofgr8K8DLI+KlEfEC4O3A55qJJUlaT+1LKJk5HxHvAv4V2AbcnJmPNZZsbY1ekhkgczbLnM0qJSeUk3WoOWv/EVOStLX8JKYkFcoCl6RCtbrAI+LiiLg/Io5GxGMRcaBa/6GIOBERj1Rfb9rinC+MiP+IiK9VOf+8Wv/iiLgvIr5VfT+/pTlbNZ5nRcS2iPhqRNxdPW7VeJ61Qs62juexiJitMk1X61o3pqvkbN2YRsR5EXFHRDxeddRrhj2erb4GHhEXARdl5sMR8SJgBngr8NvAXGb+1VbmOysiAtiZmXMR8XzgS8AB4DeBpzLzUDVXzPmZ+b4W5txPi8bzrIj4E6ALnJuZV0bER2jReJ61Qs4P0c7xPAZ0M/PJJetaN6ar5PwQLRvTiLgV+PfMvLG6E+8c4E8Z4ni2+gw8M5/IzIer5Z8AR4HdW5vquXLBXPXw+dVXsjC1wK3V+ltZ+OGzZdbI2ToRsQe4ArhxyepWjSesmrMkrRvTEkTEucBrgZsAMvOZzPwRQx7PVhf4UhExCrwSeKha9a6I+HpE3NySX/u2RcQjwCngvsx8COhk5hOw8MMIeMkWRgRWzQktG0/gY8B7gZ8uWde68WTlnNC+8YSFH9b3RsRMLExxAe0c05VyQrvG9BeAHwL/UF0+uzEidjLk8SyiwCNiBLgT+KPM/DHwCeBlwKXAE8DhrUu3IDP/LzMvZeETqa+OiL1bHGlFq+Rs1XhGxJXAqcyc2coc61kjZ6vGc4nLMvNVLMwg+gcR8dqtDrSKlXK2bUy3A68CPpGZrwSeBoY+pXbrC7y6VnsncFtm3gWQmSerIvop8PcszIzYCtWvUVMsXFc+WV3HP3s9/9TWJXu2pTlbOJ6XAW+uroVOAq+LiE/RvvFcMWcLxxOAzPx+9f0U8BkWcrVtTFfM2cIxPQ4cX/Ib7B0sFPpQx7PVBV790e0m4GhmfnTJ+ouWvOw3gEeHnW2piLgwIs6rlncArwceZ2FqgWurl10LfHZLAlZWy9m28czM92fmnswcZWGKhi9m5jto2XiulrNt4wkQETurGwGoftV/Iwu5WjWmq+Vs25hm5g+A70XEJdWqy4FvMOTx7Gc2wmG4DLgGmK2u28LCX3mviohLWbhWdgz4va0It8RFwK2x8I9cPA/4dGbeHREPAp+OiOuB7wK/tZUhWT3nJ1s2nqs5RLvGczUfaeF4doDPLJwTsR34x8z8fER8hXaN6Wo52/jf6LuB26o7UL4DvJPq/6thjWerbyOUJK2u1ZdQJEmrs8AlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSof4fpR50pzE+oW0AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data['GINI-index'].hist()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAARgElEQVR4nO3db2xdd33H8feXFgTU0CS0tawULZsWFRhZA7mCok7ouiEoo4jkwTqBCjJTJz8BVKROW7pJk3gwLU+ChiI0zQKGJTK8qrRzVCRYZPCmSawQQyEtaRf+mJI22KP5Ay4RLOy7Bz4B4zj19fW5f37e+yVZ556fzzn3+/WfT05+PufeyEwkSeV5Ua8LkCS1xwCXpEIZ4JJUKANckgplgEtSoa7t5pPdcMMNuW3btrb2ff7557nuuuvqLagH7KO/2Ed/2Sh9QL29zMzM/Dgzb1w+3tUA37ZtG8ePH29r3+npaZrNZr0F9YB99Bf76C8bpQ+ot5eI+MFK406hSFKhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSobp6J+Z6nHjmAu8/8PmePPfswTt78ryS9EI8A5ekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEKtGuARcUtEPLbk4ycR8eGI2BIRxyLiVLXc3I2CJUmLVg3wzHwqM3dm5k5gF/Az4GHgADCVmduBqWpdktQla51C2Q18NzN/AOwDxqvxcWB/jXVJklax1gB/N/DZ6vFgZp4BqJY31VmYJOmFRWa2tmHES4Bngd/LzLmIOJ+Zm5Z8/lxmXjEPHhGjwCjA4ODgromJibYKnT97gbmLbe26bju2Xl/bsRYWFhgYGKjteL1iH/3FPvpPnb0MDw/PZGZj+fhaXk72D4GvZ+ZctT4XEUOZeSYihoD5lXbKzDFgDKDRaGSz2Vxb5ZXDRyY5dKI3r347e3eztmNNT0/T7tegn9hHf7GP/tONXtYyhfIefj19AnAUGKkejwCTdRUlSVpdSwEeES8H9gAPLRk+COyJiFPV5w7WX54k6WpampPIzJ8Br1o29hyLV6VIknrAOzElqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQrX6psabIuLBiHgyIk5GxFsiYktEHIuIU9Vyc6eLlST9Wqtn4B8DvpCZrwFuBU4CB4CpzNwOTFXrkqQuWTXAI+KVwFuBTwJk5i8y8zywDxivNhsH9nemREnSSiIzX3iDiJ3AGPBtFs++Z4B7gWcyc9OS7c5l5hXTKBExCowCDA4O7pqYmGir0PmzF5i72Nau67Zj6/W1HWthYYGBgYHajtcr9tFf7KP/1NnL8PDwTGY2lo+3EuAN4D+B2zPz0Yj4GPAT4EOtBPhSjUYjjx8/3k79HD4yyaET17a173rNHryztmNNT0/TbDZrO16v2Ed/sY/+U2cvEbFigLcyB34aOJ2Zj1brDwJvBOYiYqg6+BAwX0ulkqSWrBrgmfkj4IcRcUs1tJvF6ZSjwEg1NgJMdqRCSdKKWp2T+BBwJCJeAnwP+BMWw/+BiLgHeBq4qzMlSpJW0lKAZ+ZjwBXzLyyejUuSesA7MSWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCtfSemBExC/wU+CVwKTMbEbEF+GdgGzAL/HFmnutMmZKk5dZyBj6cmTsz8/KbGx8ApjJzOzBVrUuSumQ9Uyj7gPHq8Tiwf93VSJJaFpm5+kYR3wfOAQn8Q2aORcT5zNy0ZJtzmbl5hX1HgVGAwcHBXRMTE20VOn/2AnMX29p13XZsvb62Yy0sLDAwMFDb8XrFPvqLffSfOnsZHh6eWTL78SstzYEDt2fmsxFxE3AsIp5s9YkzcwwYA2g0GtlsNlvd9TccPjLJoROtlluv2bubtR1renqadr8G/cQ++ot99J9u9NLSFEpmPlst54GHgTcBcxExBFAt5ztVpCTpSqsGeERcFxGvuPwYeDvwOHAUGKk2GwEmO1WkJOlKrcxJDAIPR8Tl7f8pM78QEV8DHoiIe4Cngbs6V6YkablVAzwzvwfcusL4c8DuThQlSVqdd2JKUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSpUywEeEddExDci4pFqfUtEHIuIU9Vyc+fKlCQtt5Yz8HuBk0vWDwBTmbkdmKrWJUld0lKAR8TNwJ3AJ5YM7wPGq8fjwP5aK5MkvaDIzNU3ingQ+FvgFcCfZeY7I+J8Zm5ass25zLxiGiUiRoFRgMHBwV0TExNtFTp/9gJzF9vadd12bL2+tmMtLCwwMDBQ2/F6xT76i330nzp7GR4ensnMxvLxa1fbMSLeCcxn5kxENNf6xJk5BowBNBqNbDbXfAgADh+Z5NCJVcvtiNm7m7Uda3p6mna/Bv3EPvqLffSfbvTSSiLeDrwrIt4BvBR4ZUR8BpiLiKHMPBMRQ8B8JwuVJP2mVefAM/P+zLw5M7cB7wa+lJnvBY4CI9VmI8Bkx6qUJF1hPdeBHwT2RMQpYE+1LknqkjVNKmfmNDBdPX4O2F1/SZKkVngnpiQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklSoVQM8Il4aEV+NiG9GxBMR8ZFqfEtEHIuIU9Vyc+fLlSRd1soZ+M+BOzLzVmAnsDcibgMOAFOZuR2YqtYlSV2yaoDnooVq9cXVRwL7gPFqfBzY34kCJUkri8xcfaOIa4AZ4HeBj2fmX0TE+czctGSbc5l5xTRKRIwCowCDg4O7JiYm2ip0/uwF5i62teu67dh6fW3HWlhYYGBgoLbj9Yp99Bf76D919jI8PDyTmY3l49e2snNm/hLYGRGbgIcj4vWtPnFmjgFjAI1GI5vNZqu7/obDRyY5dKKlcms3e3eztmNNT0/T7tegn9hHf7GP/tONXtZ0FUpmngemgb3AXEQMAVTL+bqLkyRdXStXodxYnXkTES8D3gY8CRwFRqrNRoDJDtUoSVpBK3MSQ8B4NQ/+IuCBzHwkIr4CPBAR9wBPA3d1sE5J0jKrBnhmfgt4wwrjzwG7O1GUJGl13okpSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSpUb94lWOoz2w58vmfPPXvwzp49t8rmGbgkFaqVNzV+dUR8OSJORsQTEXFvNb4lIo5FxKlqubnz5UqSLmvlDPwScF9mvha4DfhARLwOOABMZeZ2YKpalyR1yaoBnplnMvPr1eOfAieBrcA+YLzabBzY36EaJUkrWNMceERsY/Ed6h8FBjPzDCyGPHBT7dVJkq4qMrO1DSMGgH8D/iYzH4qI85m5acnnz2XmFfPgETEKjAIMDg7umpiYaKvQ+bMXmLvY1q7rtmPr9bUda2FhgYGBgdqO1ysbrY8Tz1zoWQ11/HxttO/HRlBnL8PDwzOZ2Vg+3tJlhBHxYuBzwJHMfKganouIocw8ExFDwPxK+2bmGDAG0Gg0stlstlM/h49McuhEb656nL27Wduxpqenafdr0E82Wh/v7+VlhDX8fG2078dG0I1eWrkKJYBPAicz86NLPnUUGKkejwCT9ZcnSbqaVk5pbwfeB5yIiMeqsb8EDgIPRMQ9wNPAXR2pUJK0olUDPDP/A4irfHp3veVIklrlnZiSVCgDXJIKZYBLUqF8NUL1lW6/KuB9Oy719BJCaT08A5ekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUr0Yo9Vgdr8DYzqsqzh68c93Pq97yDFySCtXKu9J/KiLmI+LxJWNbIuJYRJyqlps7W6YkablWzsA/DexdNnYAmMrM7cBUtS5J6qJVAzwz/x04u2x4HzBePR4H9tdbliRpNZGZq28UsQ14JDNfX62fz8xNSz5/LjNXnEaJiFFgFGBwcHDXxMREW4XOn73A3MW2dl23HVuvr+1YCwsLDAwM1Ha8XulUHyeeuVD7MV/I4Mvo2c9Vndrpo86f67pslN8PqLeX4eHhmcxsLB/v+FUomTkGjAE0Go1sNpttHefwkUkOnejNRTOzdzdrO9b09DTtfg36Saf66Pb7U96341LPfq7q1E4fdf5c12Wj/H5Ad3pp9yqUuYgYAqiW8/WVJElqRbunHkeBEeBgtZysrSJJXVHH9eft8hr0erRyGeFnga8At0TE6Yi4h8Xg3hMRp4A91bokqYtWPQPPzPdc5VO7a65FkrQG3okpSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgpV/ntJSSrO1d5M4r4dlzr6tnob7Y0kPAOXpEJ5Bi7p/41uvo3c8v9NdOLs3zNwSSqUAS5JhVpXgEfE3oh4KiK+ExEH6ipKkrS6tgM8Iq4BPg78IfA64D0R8bq6CpMkvbD1nIG/CfhOZn4vM38BTAD76ilLkrSayMz2doz4I2BvZv5ptf4+4M2Z+cFl240Co9XqLcBTbdZ6A/DjNvftJ/bRX+yjv2yUPqDeXn4rM29cPrieywhjhbEr/jXIzDFgbB3Ps/hkEcczs7He4/SaffQX++gvG6UP6E4v65lCOQ28esn6zcCz6ytHktSq9QT414DtEfHbEfES4N3A0XrKkiStpu0plMy8FBEfBL4IXAN8KjOfqK2yK617GqZP2Ed/sY/+slH6gC700vYfMSVJveWdmJJUKANckgpVRICXest+RHwqIuYj4vElY1si4lhEnKqWm3tZYysi4tUR8eWIOBkRT0TEvdV4Ub1ExEsj4qsR8c2qj49U40X1AYt3QkfENyLikWq9uB4AImI2Ik5ExGMRcbwaK66XiNgUEQ9GxJPV78lbutFH3wd44bfsfxrYu2zsADCVmduBqWq9310C7svM1wK3AR+ovgel9fJz4I7MvBXYCeyNiNsorw+Ae4GTS9ZL7OGy4czcueSa6RJ7+Rjwhcx8DXAri9+bzveRmX39AbwF+OKS9fuB+3td1xrq3wY8vmT9KWCoejwEPNXrGtvoaRLYU3IvwMuBrwNvLq0PFu+5mALuAB6pxorqYUkvs8ANy8aK6gV4JfB9qotCutlH35+BA1uBHy5ZP12NlWowM88AVMubelzPmkTENuANwKMU2Es19fAYMA8cy8wS+/g74M+B/10yVloPlyXwrxExU73sBpTXy+8A/w38YzWt9YmIuI4u9FFCgLd0y746LyIGgM8BH87Mn/S6nnZk5i8zcyeLZ7FviojX97ikNYmIdwLzmTnT61pqcntmvpHFKdIPRMRbe11QG64F3gj8fWa+AXieLk37lBDgG+2W/bmIGAKolvM9rqclEfFiFsP7SGY+VA0X2QtAZp4Hpln8G0VJfdwOvCsiZll8BdA7IuIzlNXDr2Tms9VyHniYxVc5La2X08Dp6n9zAA+yGOgd76OEAN9ot+wfBUaqxyMszif3tYgI4JPAycz86JJPFdVLRNwYEZuqxy8D3gY8SUF9ZOb9mXlzZm5j8XfhS5n5Xgrq4bKIuC4iXnH5MfB24HEK6yUzfwT8MCJuqYZ2A9+mG330+g8ALf6R4B3AfwHfBf6q1/Wsoe7PAmeA/2HxX+l7gFex+AeoU9VyS6/rbKGPP2Bx2upbwGPVxztK6wX4feAbVR+PA39djRfVx5J+mvz6j5jF9cDi3PE3q48nLv9uF9rLTuB49bP1L8DmbvThrfSSVKgSplAkSSswwCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1Kh/g+uDxlqlfey9AAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data2['GINI-index'].hist()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Fill with statistical resumes"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"36.52\n"
]
}
],
"source": [
"## reemplazar con la media\n",
"\n",
"data3 = data.copy()\n",
"media = data3['GINI-index'].mean()\n",
"print(media)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"data3['GINI-index'] = data3['GINI-index'].fillna(media)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Country | \n",
" Region | \n",
" Average-Life-Expectancy | \n",
" Average-Wellbeing_(0-10) | \n",
" Happy-Life-Years | \n",
" Footprint_(gha/capita) | \n",
" Inequality-of-Outcomes | \n",
" Inequality-adjusted-Life-Expectancy | \n",
" Inequality-adjusted-Wellbeing | \n",
" Happy-Planet-Index | \n",
" GDP/capita($PPP) | \n",
" Population | \n",
" GINI-index | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Afghanistan | \n",
" Middle East and North Africa | \n",
" 59.7 | \n",
" 3.8 | \n",
" 12.4 | \n",
" 0.8 | \n",
" 0.43 | \n",
" 38.3 | \n",
" 3.4 | \n",
" 20.2 | \n",
" 691 | \n",
" 29726803 | \n",
" 36.52 | \n",
"
\n",
" \n",
" 1 | \n",
" Albania | \n",
" Post-communist | \n",
" 77.3 | \n",
" 5.5 | \n",
" 34.4 | \n",
" 2.2 | \n",
" 0.17 | \n",
" 69.7 | \n",
" 5.1 | \n",
" 36.8 | \n",
" 4247 | \n",
" 2900489 | \n",
" 29.00 | \n",
"
\n",
" \n",
" 2 | \n",
" Algeria | \n",
" Middle East and North Africa | \n",
" 74.3 | \n",
" 5.6 | \n",
" 30.5 | \n",
" 2.1 | \n",
" 0.24 | \n",
" 60.5 | \n",
" 5.2 | \n",
" 33.3 | \n",
" 5584 | \n",
" 37439427 | \n",
" 36.52 | \n",
"
\n",
" \n",
" 3 | \n",
" Argentina | \n",
" Americas | \n",
" 75.9 | \n",
" 6.5 | \n",
" 40.2 | \n",
" 3.1 | \n",
" 0.16 | \n",
" 68.3 | \n",
" 6.0 | \n",
" 35.2 | \n",
" 14357 | \n",
" 42095224 | \n",
" 42.50 | \n",
"
\n",
" \n",
" 4 | \n",
" Armenia | \n",
" Post-communist | \n",
" 74.4 | \n",
" 4.3 | \n",
" 24.0 | \n",
" 2.2 | \n",
" 0.22 | \n",
" 66.9 | \n",
" 3.7 | \n",
" 25.7 | \n",
" 3566 | \n",
" 2978339 | \n",
" 30.50 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Country Region Average-Life-Expectancy \\\n",
"0 Afghanistan Middle East and North Africa 59.7 \n",
"1 Albania Post-communist 77.3 \n",
"2 Algeria Middle East and North Africa 74.3 \n",
"3 Argentina Americas 75.9 \n",
"4 Armenia Post-communist 74.4 \n",
"\n",
" Average-Wellbeing_(0-10) Happy-Life-Years Footprint_(gha/capita) \\\n",
"0 3.8 12.4 0.8 \n",
"1 5.5 34.4 2.2 \n",
"2 5.6 30.5 2.1 \n",
"3 6.5 40.2 3.1 \n",
"4 4.3 24.0 2.2 \n",
"\n",
" Inequality-of-Outcomes Inequality-adjusted-Life-Expectancy \\\n",
"0 0.43 38.3 \n",
"1 0.17 69.7 \n",
"2 0.24 60.5 \n",
"3 0.16 68.3 \n",
"4 0.22 66.9 \n",
"\n",
" Inequality-adjusted-Wellbeing Happy-Planet-Index GDP/capita($PPP) \\\n",
"0 3.4 20.2 691 \n",
"1 5.1 36.8 4247 \n",
"2 5.2 33.3 5584 \n",
"3 6.0 35.2 14357 \n",
"4 3.7 25.7 3566 \n",
"\n",
" Population GINI-index \n",
"0 29726803 36.52 \n",
"1 2900489 29.00 \n",
"2 37439427 36.52 \n",
"3 42095224 42.50 \n",
"4 2978339 30.50 "
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data3.head()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"36.520000000000046"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data3['GINI-index'].mean()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAQuElEQVR4nO3df4xlZX3H8ffXXY3LjiwY8Jbsko41hsTstOje2FoSe0fUbIWobWwrQQKGZpq02m27RrGm0f5hurFdq0kbmy1QiFKmFjBaSCxEmVITpM4gOuBiNXaju+KuhLo6dBM69ds/5uxkGObnuefeOY95v5LJnHvuPed87hP4zJkz5z4bmYkkqTzP2+oAkqR6LHBJKpQFLkmFssAlqVAWuCQVavswD3bBBRfk6Oho3/t5+umn2blzZ/+BBsyczTJns0rJCeVkHVTOmZmZJzPzwuc8kZlD+9q3b1824f77729kP4NmzmaZs1ml5MwsJ+ugcgLTuUKneglFkgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFWrdAo+ImyPiVEQ8usJz74mIjIgLBhNPkrSajZyB3wLsX74yIi4G3gB8t+FMkqQNWLfAM/MB4KkVnvpr4L2AE4pL0haI3MA/6BARo8Ddmbm3evxm4PLMPBARx4BuZj65yrYTwARAp9PZNzk5WSvo7InTi8udHXDyTK3d1DK2e1et7ebm5hgZGWk4TfPM2SxzNq+UrIPKOT4+PpOZ3eXrNz0XSkScA3wAeONGXp+ZR4AjAN1uN3u93mYPCcB1N9yzuHxwbJ7Ds8ObxuXY1b1a201NTVH3/Q6TOZtlzuaVknXYOevchfIy4KXA16qz7z3AwxHxc00GkyStbdOnsZk5C7zk7OP1LqFIkgZjI7cR3g48CFwSEccj4vrBx5IkrWfdM/DMvGqd50cbSyNJ2jA/iSlJhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYUa3pR+2rTRJTMwDtLBsflnzfZ47NAVQzmupP54Bi5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBv5V+lvjohTEfHoknV/GRGPR8TXI+IzEXHeQFNKkp5jI2fgtwD7l627D9ibmb8I/Cfw/oZzSZLWsW6BZ+YDwFPL1t2bmfPVwy8DewaQTZK0hsjM9V8UMQrcnZl7V3juX4B/ysxPrbLtBDAB0Ol09k1OTtYKOnvi9OJyZwecPFNrN7WM7d5Va7u5uTlGRkZqH3fpex6k5eNZ9/0OWr/jOSzmbF4pWQeVc3x8fCYzu8vX9zWdbER8AJgHblvtNZl5BDgC0O12s9fr1TrW0ulOD47Nc3h2eDPhHru6V2u7qakp6r5fePZ7HqTl41n3/Q5av+M5LOZsXilZh52zdgtGxLXAlcDluZHTeElSo2oVeETsB94H/Fpm/k+zkSRJG7GR2whvBx4ELomI4xFxPfA3wIuA+yLikYj4uwHnlCQts+4ZeGZetcLqmwaQRZK0CX4SU5IKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQ6xZ4RNwcEaci4tEl614cEfdFxLeq7+cPNqYkabmNnIHfAuxftu4G4AuZ+XLgC9VjSdIQrVvgmfkA8NSy1W8Bbq2WbwXe2mwsSdJ6IjPXf1HEKHB3Zu6tHv8oM89b8vx/Z+aKl1EiYgKYAOh0OvsmJydrBZ09cXpxubMDTp6ptZtaxnbvqrXd3NwcIyMjtY+79D0P0vLxrPt+B63f8RwWczavlKyDyjk+Pj6Tmd3l67c3fqRlMvMIcASg2+1mr9ertZ/rbrhncfng2DyHZwcefdGxq3u1tpuamqLu+4Vnv+dBWj6edd/voPU7nsNizuaVknXYOevehXIyIi4CqL6fai6SJGkj6hb454Brq+Vrgc82E0eStFEbuY3wduBB4JKIOB4R1wOHgDdExLeAN1SPJUlDtO6F5My8apWnLm84iyRpE/wkpiQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCtVXgUfEH0fEYxHxaETcHhEvbCqYJGlttQs8InYDfwh0M3MvsA14e1PBJElr6/cSynZgR0RsB84Bvt9/JEnSRkRm1t844gDwYeAMcG9mXr3CayaACYBOp7NvcnKy1rFmT5xeXO7sgJNnau1mqMzZrEHmHNu9q7F9zc3NMTIy0tj+BqWUnFBO1kHlHB8fn8nM7vL1tQs8Is4H7gR+B/gR8M/AHZn5qdW26Xa7OT09Xet4ozfcs7h8cGyew7Pba+1nmMzZrEHmPHboisb2NTU1Ra/Xa2x/g1JKTign66ByRsSKBd7PJZTXA/+VmT/MzP8F7gJ+tY/9SZI2oZ8C/y7wKxFxTkQEcDlwtJlYkqT11C7wzHwIuAN4GJit9nWkoVySpHX0dUExMz8IfLChLJKkTfCTmJJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmF6qvAI+K8iLgjIh6PiKMR8ZqmgkmS1ra9z+0/Dnw+M98WES8AzmkgkyRpA2oXeEScC7wWuA4gM58BnmkmliRpPZGZ9TaMuBQ4AnwD+CVgBjiQmU8ve90EMAHQ6XT2TU5O1jre7InTi8udHXDyTK3dDJU5mzXInGO7dzW2r7m5OUZGRhrb36CUkhPKyTqonOPj4zOZ2V2+vp8C7wJfBi7LzIci4uPAjzPzz1bbptvt5vT0dK3jjd5wz+LywbF5Ds/2e/Vn8MzZrEHmPHboisb2NTU1Ra/Xa2x/g1JKTign66ByRsSKBd7PHzGPA8cz86Hq8R3Aq/rYnyRpE2oXeGb+APheRFxSrbqchcspkqQh6Pf30XcDt1V3oHwHeGf/kSRJG9FXgWfmI8BzrstIkgbPT2JKUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1Kh2j8FnfQzbulMm8N0y/6dW3JcNcczcEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmF6rvAI2JbRHw1Iu5uIpAkaWOaOAM/ABxtYD+SpE3oq8AjYg9wBXBjM3EkSRvV7xn4x4D3Aj/tP4okaTMiM+ttGHEl8KbM/P2I6AHvycwrV3jdBDAB0Ol09k1OTtY63uyJ04vLnR1w8kyt3QyVOZtlzma9dNc2RkZGtjrGhszNzRWRdVA5x8fHZzKzu3x9PwX+F8A1wDzwQuBc4K7MfMdq23S73Zyenq51vKVzJh8cm+fwbPunMjdns8zZrFv276TX6211jA2ZmpoqIuugckbEigVe+xJKZr4/M/dk5ijwduCLa5W3JKlZ3gcuSYVq5Pe8zJwCpprYlyRpYzwDl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQrV/xh1JAzF74jTXLZkkbpiOHbpiS477s8YzcEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVC1CzwiLo6I+yPiaEQ8FhEHmgwmSVpbP5NZzQMHM/PhiHgRMBMR92XmNxrKJklaQ+0z8Mx8IjMfrpZ/AhwFdjcVTJK0tsjM/ncSMQo8AOzNzB8ve24CmADodDr7Jicnax1j9sTpxeXODjh5pm7a4TFns8zZrK3MObZ716ZePzc3x8jISN/HXdojg7DWmG72PS81Pj4+k5nd5ev7LvCIGAH+DfhwZt611mu73W5OT0/XOs7oknmLD47Nc3i2/VOZm7NZ5mzWVubc7HzgU1NT9Hq9vo87OuD5z9ca037mQI+IFQu8r7tQIuL5wJ3AbeuVtySpWf3chRLATcDRzPxoc5EkSRvRzxn4ZcA1wOsi4pHq600N5ZIkraP2BbDM/BIQDWaRJG2Cn8SUpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKlRfBR4R+yPimxHx7Yi4oalQkqT11S7wiNgG/C3w68ArgKsi4hVNBZMkra2fM/BXA9/OzO9k5jPAJPCWZmJJktYTmVlvw4i3Afsz83erx9cAv5yZ71r2uglgonp4CfDN+nEXXQA82cB+Bs2czTJns0rJCeVkHVTOn8/MC5ev3N7HDmOFdc/5aZCZR4AjfRznuQeOmM7MbpP7HARzNsuczSolJ5STddg5+7mEchy4eMnjPcD3+4sjSdqofgr8K8DLI+KlEfEC4O3A55qJJUlaT+1LKJk5HxHvAv4V2AbcnJmPNZZsbY1ekhkgczbLnM0qJSeUk3WoOWv/EVOStLX8JKYkFcoCl6RCtbrAI+LiiLg/Io5GxGMRcaBa/6GIOBERj1Rfb9rinC+MiP+IiK9VOf+8Wv/iiLgvIr5VfT+/pTlbNZ5nRcS2iPhqRNxdPW7VeJ61Qs62juexiJitMk1X61o3pqvkbN2YRsR5EXFHRDxeddRrhj2erb4GHhEXARdl5sMR8SJgBngr8NvAXGb+1VbmOysiAtiZmXMR8XzgS8AB4DeBpzLzUDVXzPmZ+b4W5txPi8bzrIj4E6ALnJuZV0bER2jReJ61Qs4P0c7xPAZ0M/PJJetaN6ar5PwQLRvTiLgV+PfMvLG6E+8c4E8Z4ni2+gw8M5/IzIer5Z8AR4HdW5vquXLBXPXw+dVXsjC1wK3V+ltZ+OGzZdbI2ToRsQe4ArhxyepWjSesmrMkrRvTEkTEucBrgZsAMvOZzPwRQx7PVhf4UhExCrwSeKha9a6I+HpE3NySX/u2RcQjwCngvsx8COhk5hOw8MMIeMkWRgRWzQktG0/gY8B7gZ8uWde68WTlnNC+8YSFH9b3RsRMLExxAe0c05VyQrvG9BeAHwL/UF0+uzEidjLk8SyiwCNiBLgT+KPM/DHwCeBlwKXAE8DhrUu3IDP/LzMvZeETqa+OiL1bHGlFq+Rs1XhGxJXAqcyc2coc61kjZ6vGc4nLMvNVLMwg+gcR8dqtDrSKlXK2bUy3A68CPpGZrwSeBoY+pXbrC7y6VnsncFtm3gWQmSerIvop8PcszIzYCtWvUVMsXFc+WV3HP3s9/9TWJXu2pTlbOJ6XAW+uroVOAq+LiE/RvvFcMWcLxxOAzPx+9f0U8BkWcrVtTFfM2cIxPQ4cX/Ib7B0sFPpQx7PVBV790e0m4GhmfnTJ+ouWvOw3gEeHnW2piLgwIs6rlncArwceZ2FqgWurl10LfHZLAlZWy9m28czM92fmnswcZWGKhi9m5jto2XiulrNt4wkQETurGwGoftV/Iwu5WjWmq+Vs25hm5g+A70XEJdWqy4FvMOTx7Gc2wmG4DLgGmK2u28LCX3mviohLWbhWdgz4va0It8RFwK2x8I9cPA/4dGbeHREPAp+OiOuB7wK/tZUhWT3nJ1s2nqs5RLvGczUfaeF4doDPLJwTsR34x8z8fER8hXaN6Wo52/jf6LuB26o7UL4DvJPq/6thjWerbyOUJK2u1ZdQJEmrs8AlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSof4fpR50pzE+oW0AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data['GINI-index'].hist() # pandas histogram descarta los faltantes"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAATM0lEQVR4nO3df6zdd33f8eeLGATkQowHvbIcNHedlY1hEfARo4uE7q1JlTao9qalAgXkVJm8PwpLt06r239K/6hmVWu1SquqecB6tVLuspDIViKxWm7uOiSWYoe0JnWQO+qlcVK7UNtwaVWW9r0/7jfZ5foe3+N7z6+PeD4k65zvj/s9r3wEL3/vx+f7/aaqkCS15zWTDiBJ2hwLXJIaZYFLUqMscElqlAUuSY3aNs4Pe+tb31q7d+/e8nG+/e1vc+utt2490IiZc7jMOVyt5IR2so4q55kzZ75eVW+7bkNVje3Pvn37ahiefPLJoRxn1Mw5XOYcrlZyVrWTdVQ5gdO1Tqc6hSJJjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY0a66X0asPuI09M7LMvHL13Yp8ttcYzcElqlAUuSY2ywCWpUQMVeJJ/meTZJF9J8tkkr0+yI8nJJOe717eMOqwk6f/bsMCT7AL+BdCrqncCtwAfAo4Ap6pqD3CqW5YkjcmgUyjbgDck2Qa8EXgROAAsdNsXgINDTydJ6isr9wrfYKfkIeAXgb8Efruq7k9ytaq2r9rnSlVdN42S5DBwGGB2dnbf4uLilkMvLy8zMzOz5eOMWqs5z168NrEse3fd1ndbq+M5rVrJCe1kHVXO+fn5M1XVW7t+w++Bd3PbB4DvB64C/y3JRwb94Ko6BhwD6PV6NTc3N+iP9rW0tMQwjjNqreZ8YJLfA79/ru+2VsdzWrWSE9rJOu6cg0yhfAD446r6s6r6v8CjwD8CLiXZCdC9Xh5dTEnSWoMU+PPA+5K8MUmA/cA54ARwqNvnEHB8NBElSevZcAqlqp5K8gjwNPAy8GVWpkRmgIeTPMhKyd83yqCSpO820L1QqurngZ9fs/qvWDkblyRNgFdiSlKjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIatWGBJ7kjyTOr/nwzyU8l2ZHkZJLz3et1T6SXJI3OhgVeVV+tqjur6k5gH/AXwGPAEeBUVe0BTnXLkqQxudkplP3A/66q/wMcABa69QvAwSHmkiRtIFU1+M7Jp4Gnq+o/JLlaVdtXbbtSVddNoyQ5DBwGmJ2d3be4uLjl0MvLy8zMzGz5OKPWas6zF69NLMveXbf13dbqeE6rVnJCO1lHlXN+fv5MVfXWrh+4wJO8DngR+AdVdWnQAl+t1+vV6dOnby75OpaWlpibm9vycUat1Zy7jzwxsSwXjt7bd1ur4zmtWskJ7WQdVc4k6xb4zUyh/AgrZ9+XuuVLSXZ2B98JXN56TEnSoG6mwD8MfHbV8gngUPf+EHB8WKEkSRsbqMCTvBG4G3h01eqjwN1Jznfbjg4/niSpn22D7FRVfwH8rTXrvsHKt1IkSRPglZiS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEYN+kSe7UkeSfJcknNJfjDJjiQnk5zvXm/4QGNJ0nANegb+q8Dnq+rvAe8CzgFHgFNVtQc41S1LksZkwwJP8mbg/cCnAKrqO1V1FTgALHS7LQAHRxNRkrSeVNWNd0juBI4Bf8jK2fcZ4CHgYlVtX7Xflaq6bholyWHgMMDs7Oy+xcXFLYdeXl5mZmZmy8cZtVZznr14bWJZ9u66re+2VsdzWrWSE9rJOqqc8/PzZ6qqt3b9IAXeA/4XcFdVPZXkV4FvAh8fpMBX6/V6dfr06c3k/y5LS0vMzc1t+Tij1mrO3UeemFiWC0fv7but1fGcVq3khHayjipnknULfJA58BeAF6rqqW75EeA9wKUkO7uD7wQuDyusJGljGxZ4Vf0p8CdJ7uhW7WdlOuUEcKhbdwg4PpKEkqR1bRtwv48Dn0nyOuBrwE+wUv4PJ3kQeB64bzQRJUnrGajAq+oZ4Lr5F1bOxiVJE+CVmJLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRg30QIckF4BvAX8NvFxVvSQ7gP8K7AYuAD9eVVdGE1OStNbNnIHPV9Wdq56MfAQ4VVV7gFPdsiRpTLYyhXIAWOjeLwAHt5xGkjSwVNXGOyV/DFwBCviPVXUsydWq2r5qnytV9ZZ1fvYwcBhgdnZ23+Li4pZDLy8vMzMzs+XjjFqrOc9evDaxLHt33dZ3W6vjOa1ayQntZB1Vzvn5+TOrZj9eNehT6e+qqheTfB9wMslzg35wVR0DjgH0er2am5sb9Ef7WlpaYhjHGbVWcz5w5ImJZblw/1zfba2O57RqJSe0k3XcOQeaQqmqF7vXy8BjwHuBS0l2AnSvl0cVUpJ0vQ0LPMmtSd70ynvgh4GvACeAQ91uh4DjowopSbreIFMos8BjSV7Z/7eq6vNJvgQ8nORB4HngvtHFlCSttWGBV9XXgHets/4bwP5RhJIkbcwrMSWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjRq4wJPckuTLSR7vlnckOZnkfPd63RPpJUmjczNn4A8B51YtHwFOVdUe4FS3LEkak4EKPMntwL3AJ1etPgAsdO8XgINDTSZJuqFU1cY7JY8A/xZ4E/Cvq+qDSa5W1fZV+1ypquumUZIcBg4DzM7O7ltcXNxy6OXlZWZmZrZ8nFFrNefZi9cmlmXvrtv6bmt1PKdVKzmhnayjyjk/P3+mqnpr12/4UOMkHwQuV9WZJHM3+8FVdQw4BtDr9Wpu7qYPcZ2lpSWGcZxRazXnA0eemFiWC/fP9d3W6nhOq1ZyQjtZx51zwwIH7gJ+LMmPAq8H3pzkN4FLSXZW1UtJdgKXRxlUkvTdNpwDr6qfrarbq2o38CHgd6rqI8AJ4FC32yHg+MhSSpKus5XvgR8F7k5yHri7W5YkjckgUyivqqolYKl7/w1g//AjSZIG4ZWYktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGbVjgSV6f5PeS/H6SZ5P8Qrd+R5KTSc53r9c9kV6SNDqDnIH/FfBDVfUu4E7gniTvA44Ap6pqD3CqW5YkjckgDzWuqlruFl/b/SngALDQrV8ADo4ioCRpfamqjXdKbgHOAH8X+LWq+pkkV6tq+6p9rlTVddMoSQ4DhwFmZ2f3LS4ubjn08vIyMzMzWz7OqLWa8+zFaxPLsnfXbX23tTqe06qVnNBO1lHlnJ+fP1NVvbXrByrwV3dOtgOPAR8HvjBIga/W6/Xq9OnTA39eP0tLS8zNzW35OKPWas7dR56YWJYLR+/tu63V8ZxWreSEdrKOKmeSdQv8pr6FUlVXWXkq/T3ApSQ7u4PvBC5vPaYkaVCDfAvlbd2ZN0neAHwAeA44ARzqdjsEHB9RRknSOrYNsM9OYKGbB38N8HBVPZ7ki8DDSR4EngfuG2FOSdIaGxZ4Vf0B8O511n8D2D+KUJKkjXklpiQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpUYM8Uu3tSZ5Mci7Js0ke6tbvSHIyyfnu9YYPNJYkDdcgZ+AvAz9dVX8feB/wk0neARwBTlXVHuBUtyxJGpMNC7yqXqqqp7v33wLOAbuAA8BCt9sCcHBEGSVJ60hVDb5zshv4XeCdwPNVtX3VtitVdd00SpLDwGGA2dnZfYuLi1uMDMvLy8zMzGz5OKPWas6zF69NLMveXbf13dbqeE6rVnJCO1lHlXN+fv5MVfXWrh+4wJPMAP8D+MWqejTJ1UEKfLVer1enT5++ueTrWFpaYm5ubsvHGbVWc+4+8sTEslw4em/fba2O57RqJSe0k3VUOZOsW+ADfQslyWuBzwGfqapHu9WXkuzstu8ELg8rrCRpY4N8CyXAp4BzVfUrqzadAA517w8Bx4cfT5LUz7YB9rkL+ChwNskz3bqfA44CDyd5EHgeuG8kCSVJ69qwwKvqC0D6bN4/3DiSpEF5JaYkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDVqkEvpp8LqO+T99N6XeWCMd8y70R3yJGlSPAOXpEY1cwb+vWhc9+Ue9280kobDM3BJapQFLkmNssAlqVEWuCQ1apBHqn06yeUkX1m1bkeSk0nOd683fJixJGn4BjkD/w3gnjXrjgCnqmoPcKpbliSN0YYFXlW/C/z5mtUHgIXu/QJwcLixJEkbSVVtvFOyG3i8qt7ZLV+tqu2rtl+pqnWnUZIcBg4DzM7O7ltcXNxU0LMXr736fvYNcOkvN3WYTdm767ZN/dzy8jIzMzOb/tzV/82jNO7xvJEbjfVWx3NczDl8rWQdVc75+fkzVdVbu37kF/JU1THgGECv16u5ublNHeeBNZfS//LZ8V2DdOH+uU393NLSEpv97wXGdnHNuMfzRm401lsdz3Ex5/C1knXcOTf7LZRLSXYCdK+XhxdJkjSIzRb4CeBQ9/4QcHw4cSRJgxrka4SfBb4I3JHkhSQPAkeBu5OcB+7uliVJY7ThxGdVfbjPpv1DzjK1NntTKW8SdfNuNNajHE9vGawWeSWmJDXKApekRlngktQoC1ySGmWBS1KjLHBJatR0XD8tfQ8b17NP1/qNe26dyOdqeDwDl6RGWeCS1CinUCSGO43hFbgaF8/AJalRnoFL36POXrw2sd8UvPfMcHgGLkmNssAlqVFOoUj6njHq79zf6B+wRzFt5Bm4JDVqSwWe5J4kX03yR0mODCuUJGljmy7wJLcAvwb8CPAO4MNJ3jGsYJKkG9vKGfh7gT+qqq9V1XeAReDAcGJJkjaSqtrcDyb/FLinqv5Zt/xR4B9W1cfW7HcYONwt3gF8dfNxX/VW4OtDOM6omXO4zDlcreSEdrKOKuffrqq3rV25lW+hZJ111/1tUFXHgGNb+JzrPzg5XVW9YR5zFMw5XOYcrlZyQjtZx51zK1MoLwBvX7V8O/Di1uJIkga1lQL/ErAnyfcneR3wIeDEcGJJkjay6SmUqno5yceA/w7cAny6qp4dWrIbG+qUzAiZc7jMOVyt5IR2so4156b/EVOSNFleiSlJjbLAJalRU13gSd6e5Mkk55I8m+Shbv0nklxM8kz350cnnPP1SX4vye93OX+hW78jyckk57vXt0xpzqkaz1ckuSXJl5M83i1P1Xi+Yp2c0zqeF5Kc7TKd7tZN3Zj2yTl1Y5pke5JHkjzXddQPjns8p3oOPMlOYGdVPZ3kTcAZ4CDw48ByVf27SeZ7RZIAt1bVcpLXAl8AHgL+CfDnVXW0u1fMW6rqZ6Yw5z1M0Xi+Ism/AnrAm6vqg0l+iSkaz1esk/MTTOd4XgB6VfX1Veumbkz75PwEUzamSRaA/1lVn+y+ifdG4OcY43hO9Rl4Vb1UVU93778FnAN2TTbV9WrFcrf42u5PsXJrgYVu/QIrf/lMzA1yTp0ktwP3Ap9ctXqqxhP65mzJ1I1pC5K8GXg/8CmAqvpOVV1lzOM51QW+WpLdwLuBp7pVH0vyB0k+PSW/9t2S5BngMnCyqp4CZqvqJVj5ywj4vglGBPrmhCkbT+DfA/8G+JtV66ZuPFk/J0zfeMLKX9a/neRMVm5xAdM5puvlhOka078D/Bnwn7vps08muZUxj2cTBZ5kBvgc8FNV9U3g14EfAO4EXgJ+eXLpVlTVX1fVnaxckfreJO+ccKR19ck5VeOZ5IPA5ao6M8kcG7lBzqkaz1Xuqqr3sHIH0Z9M8v5JB+pjvZzTNqbbgPcAv15V7wa+DYz9ltpTX+DdXO3ngM9U1aMAVXWpK6K/Af4TK3dGnArdr1FLrMwrX+rm8V+Zz788uWTfbXXOKRzPu4Af6+ZCF4EfSvKbTN94rptzCscTgKp6sXu9DDzGSq5pG9N1c07hmL4AvLDqN9hHWCn0sY7nVBd4949unwLOVdWvrFq/c9Vu/xj4yrizrZbkbUm2d+/fAHwAeI6VWwsc6nY7BByfSMBOv5zTNp5V9bNVdXtV7WblFg2/U1UfYcrGs1/OaRtPgCS3dl8EoPtV/4dZyTVVY9ov57SNaVX9KfAnSe7oVu0H/pAxj+e0PxPzLuCjwNlu3hZW/pX3w0nuZGWu7ALwzycRbpWdwEJWHnLxGuDhqno8yReBh5M8CDwP3DfJkPTP+V+mbDz7Ocp0jWc/vzSF4zkLPLZyTsQ24Leq6vNJvsR0jWm/nNP4v9GPA5/pvoHyNeAn6P5/Na7xnOqvEUqS+pvqKRRJUn8WuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWrU/wPKqdKzL/b5CwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data3['GINI-index'].hist()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"35.2\n"
]
}
],
"source": [
"# reemplazar con la mediana\n",
"\n",
"mediana = data['GINI-index'].median()\n",
"print(mediana)\n",
"data3['GINI-index'] = data3['GINI-index'].fillna(mediana)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 Sub Saharan Africa\n",
"dtype: object\n"
]
}
],
"source": [
"moda = data['Region'].mode()\n",
"print(moda)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 26.1\n",
"1 27.3\n",
"2 27.4\n",
"3 30.5\n",
"4 35.2\n",
"5 36.0\n",
"6 38.7\n",
"7 45.1\n",
"dtype: float64\n"
]
}
],
"source": [
"moda = data['GINI-index'].mode()\n",
"print(moda)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"36.0 2\n",
"26.1 2\n",
"30.5 2\n",
"38.7 2\n",
"27.4 2\n",
" ..\n",
"39.3 1\n",
"51.9 1\n",
"35.9 1\n",
"33.1 1\n",
"24.7 1\n",
"Name: GINI-index, Length: 57, dtype: int64"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['GINI-index'].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Fill with group or cluster mean "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sometimes it is more convenient to replace missing values with group means, where the groups correspond to some categorial variable values, or some clustering scheme."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['Middle East and North Africa', 'Post-communist', 'Americas',\n",
" 'Asia Pacific', 'Europe', 'Sub Saharan Africa'], dtype=object)"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"regions = data.Region.unique()\n",
"regions"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Region\n",
"Americas 48.726667\n",
"Asia Pacific 37.557143\n",
"Europe 31.394444\n",
"Middle East and North Africa 34.850000\n",
"Post-communist 30.957895\n",
"Sub Saharan Africa 39.250000\n",
"Name: GINI-index, dtype: float64"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.groupby('Region')['GINI-index'].mean()\n",
"#means = data.groupby('Region')['GINI-index'].mean().values\n",
"#means"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([48.72666667, 37.55714286, 31.39444444, 34.85 , 30.95789474,\n",
" 39.25 ])"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"means = data.groupby('Region')['GINI-index'].mean().values\n",
"means"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Country | \n",
" Region | \n",
" Average-Life-Expectancy | \n",
" Average-Wellbeing_(0-10) | \n",
" Happy-Life-Years | \n",
" Footprint_(gha/capita) | \n",
" Inequality-of-Outcomes | \n",
" Inequality-adjusted-Life-Expectancy | \n",
" Inequality-adjusted-Wellbeing | \n",
" Happy-Planet-Index | \n",
" GDP/capita($PPP) | \n",
" Population | \n",
" GINI-index | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Afghanistan | \n",
" Middle East and North Africa | \n",
" 59.7 | \n",
" 3.8 | \n",
" 12.4 | \n",
" 0.8 | \n",
" 0.43 | \n",
" 38.3 | \n",
" 3.4 | \n",
" 20.2 | \n",
" 691 | \n",
" 29726803 | \n",
" 36.281429 | \n",
"
\n",
" \n",
" 1 | \n",
" Albania | \n",
" Post-communist | \n",
" 77.3 | \n",
" 5.5 | \n",
" 34.4 | \n",
" 2.2 | \n",
" 0.17 | \n",
" 69.7 | \n",
" 5.1 | \n",
" 36.8 | \n",
" 4247 | \n",
" 2900489 | \n",
" 29.000000 | \n",
"
\n",
" \n",
" 2 | \n",
" Algeria | \n",
" Middle East and North Africa | \n",
" 74.3 | \n",
" 5.6 | \n",
" 30.5 | \n",
" 2.1 | \n",
" 0.24 | \n",
" 60.5 | \n",
" 5.2 | \n",
" 33.3 | \n",
" 5584 | \n",
" 37439427 | \n",
" 36.281429 | \n",
"
\n",
" \n",
" 3 | \n",
" Argentina | \n",
" Americas | \n",
" 75.9 | \n",
" 6.5 | \n",
" 40.2 | \n",
" 3.1 | \n",
" 0.16 | \n",
" 68.3 | \n",
" 6.0 | \n",
" 35.2 | \n",
" 14357 | \n",
" 42095224 | \n",
" 42.500000 | \n",
"
\n",
" \n",
" 4 | \n",
" Armenia | \n",
" Post-communist | \n",
" 74.4 | \n",
" 4.3 | \n",
" 24.0 | \n",
" 2.2 | \n",
" 0.22 | \n",
" 66.9 | \n",
" 3.7 | \n",
" 25.7 | \n",
" 3566 | \n",
" 2978339 | \n",
" 30.500000 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 135 | \n",
" Venezuela | \n",
" Americas | \n",
" 73.9 | \n",
" 7.1 | \n",
" 41.5 | \n",
" 3.6 | \n",
" 0.19 | \n",
" 65.5 | \n",
" 6.5 | \n",
" 33.6 | \n",
" 12772 | \n",
" 29854238 | \n",
" 43.844000 | \n",
"
\n",
" \n",
" 136 | \n",
" Vietnam | \n",
" Asia Pacific | \n",
" 75.5 | \n",
" 5.5 | \n",
" 32.8 | \n",
" 1.7 | \n",
" 0.19 | \n",
" 64.8 | \n",
" 5.2 | \n",
" 40.3 | \n",
" 1755 | \n",
" 88809200 | \n",
" 38.700000 | \n",
"
\n",
" \n",
" 137 | \n",
" Yemen | \n",
" Middle East and North Africa | \n",
" 63.3 | \n",
" 4.1 | \n",
" 15.2 | \n",
" 1.0 | \n",
" 0.39 | \n",
" 44.7 | \n",
" 3.6 | \n",
" 22.8 | \n",
" 1289 | \n",
" 24882792 | \n",
" 36.281429 | \n",
"
\n",
" \n",
" 138 | \n",
" Zambia | \n",
" Sub Saharan Africa | \n",
" 58.4 | \n",
" 5.0 | \n",
" 16.7 | \n",
" 1.0 | \n",
" 0.41 | \n",
" 38.7 | \n",
" 4.5 | \n",
" 25.2 | \n",
" 1687 | \n",
" 14786581 | \n",
" 36.841176 | \n",
"
\n",
" \n",
" 139 | \n",
" Zimbabwe | \n",
" Sub Saharan Africa | \n",
" 53.7 | \n",
" 5.0 | \n",
" 16.4 | \n",
" 1.4 | \n",
" 0.37 | \n",
" 36.9 | \n",
" 4.6 | \n",
" 22.1 | \n",
" 851 | \n",
" 14565482 | \n",
" 36.841176 | \n",
"
\n",
" \n",
"
\n",
"
140 rows × 13 columns
\n",
"
"
],
"text/plain": [
" Country Region Average-Life-Expectancy \\\n",
"0 Afghanistan Middle East and North Africa 59.7 \n",
"1 Albania Post-communist 77.3 \n",
"2 Algeria Middle East and North Africa 74.3 \n",
"3 Argentina Americas 75.9 \n",
"4 Armenia Post-communist 74.4 \n",
".. ... ... ... \n",
"135 Venezuela Americas 73.9 \n",
"136 Vietnam Asia Pacific 75.5 \n",
"137 Yemen Middle East and North Africa 63.3 \n",
"138 Zambia Sub Saharan Africa 58.4 \n",
"139 Zimbabwe Sub Saharan Africa 53.7 \n",
"\n",
" Average-Wellbeing_(0-10) Happy-Life-Years Footprint_(gha/capita) \\\n",
"0 3.8 12.4 0.8 \n",
"1 5.5 34.4 2.2 \n",
"2 5.6 30.5 2.1 \n",
"3 6.5 40.2 3.1 \n",
"4 4.3 24.0 2.2 \n",
".. ... ... ... \n",
"135 7.1 41.5 3.6 \n",
"136 5.5 32.8 1.7 \n",
"137 4.1 15.2 1.0 \n",
"138 5.0 16.7 1.0 \n",
"139 5.0 16.4 1.4 \n",
"\n",
" Inequality-of-Outcomes Inequality-adjusted-Life-Expectancy \\\n",
"0 0.43 38.3 \n",
"1 0.17 69.7 \n",
"2 0.24 60.5 \n",
"3 0.16 68.3 \n",
"4 0.22 66.9 \n",
".. ... ... \n",
"135 0.19 65.5 \n",
"136 0.19 64.8 \n",
"137 0.39 44.7 \n",
"138 0.41 38.7 \n",
"139 0.37 36.9 \n",
"\n",
" Inequality-adjusted-Wellbeing Happy-Planet-Index GDP/capita($PPP) \\\n",
"0 3.4 20.2 691 \n",
"1 5.1 36.8 4247 \n",
"2 5.2 33.3 5584 \n",
"3 6.0 35.2 14357 \n",
"4 3.7 25.7 3566 \n",
".. ... ... ... \n",
"135 6.5 33.6 12772 \n",
"136 5.2 40.3 1755 \n",
"137 3.6 22.8 1289 \n",
"138 4.5 25.2 1687 \n",
"139 4.6 22.1 851 \n",
"\n",
" Population GINI-index \n",
"0 29726803 36.281429 \n",
"1 2900489 29.000000 \n",
"2 37439427 36.281429 \n",
"3 42095224 42.500000 \n",
"4 2978339 30.500000 \n",
".. ... ... \n",
"135 29854238 43.844000 \n",
"136 88809200 38.700000 \n",
"137 24882792 36.281429 \n",
"138 14786581 36.841176 \n",
"139 14565482 36.841176 \n",
"\n",
"[140 rows x 13 columns]"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data4 = data.copy()\n",
"data4['GINI-index'] = data4['GINI-index'].fillna(data3.groupby('Region')['GINI-index'].transform('mean'))\n",
"data4"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAQ5ElEQVR4nO3dXYxcZ33H8e+fOIjUS2JbCduVg+oCVlqERcAjCrKKdjFBLomwWzUIBGiDUm0vIEpVqmK4gouqFiqoXCBUNwFWJXRrBSJbiURrmWxppPDihYAJDjJKrRDH2LzYho1QUeDfiz0Ow3pnZ7wzZ+Y85PuRrJnzsmd+frL57dnHZ85EZiJJKs/zRh1AkrQ2FrgkFcoCl6RCWeCSVCgLXJIKtW6YL3bttdfmli1b+j7O008/zfr16/sPVDNzDpY5B6uUnFBO1rpyLiws/Dgzr7tkQ2YO7c/27dtzEB588MGBHKdu5hwscw5WKTkzy8laV07gaK7QqU6hSFKhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoYb6VnqVYcveB0b22if33Tyy15ZK4xm4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVA9FXhEbIiIeyPisYg4HhGvi4hNEXE4Ik5UjxvrDitJ+o1ez8A/DnwxM/8IeCVwHNgLHMnMrcCRalmSNCRdCzwirgZeD9wNkJm/zMzzwG5gttptFthTT0RJ0kp6OQN/CfAj4NMR8c2IuCsi1gPjmXkaoHp8UY05JUnLxNIn1q+yQ0QL+AqwIzO/GhEfB34G3JGZG9r2O5eZl8yDR8QMMAMwPj6+fW5uru/Qi4uLjI2N9X2cupWa89ipCyPLsm3zNR23lTqeTVVKTigna105p6amFjKztXx9LwX++8BXMnNLtfynLM13vwyYzMzTETEBzGfmDasdq9Vq5dGjR9f4V/iN+fl5Jicn+z5O3UrN2dS7EZY6nk1VSk4oJ2tdOSNixQLvOoWSmT8EfhARF8t5J/Bd4BAwXa2bBg4OKKskqQe93g/8DuCeiHg+8DjwbpbK/0BE3A48AdxaT0RJ0kp6KvDMfAS45PSdpbNxSdII+E5MSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSodb1slNEnAR+DvwKeCYzWxGxCfgPYAtwEnhrZp6rJ6YkabnLOQOfyswbM7NVLe8FjmTmVuBItSxJGpJ+plB2A7PV81lgT99pJEk9i8zsvlPE/wLngAT+JTP3R8T5zNzQts+5zNy4wtfOADMA4+Pj2+fm5voOvbi4yNjYWN/HqVupOY+dujCyLNs2X9NxW6nj2VSl5IRystaVc2pqaqFt9uNZPc2BAzsy86mIeBFwOCIe6/WFM3M/sB+g1Wrl5ORkr1/a0fz8PIM4Tt1KzXnb3gdGluXkOyY7bit1PJuqlJxQTtZh5+xpCiUzn6oezwL3Aa8BzkTEBED1eLaukJKkS3Ut8IhYHxEvvPgceBPwHeAQMF3tNg0crCukJOlSvUyhjAP3RcTF/T+XmV+MiK8DByLiduAJ4Nb6YkqSluta4Jn5OPDKFdb/BNhZRyhJUne+E1OSCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQvVc4BFxRUR8MyLur5Y3RcThiDhRPW6sL6YkabnLOQO/EzjetrwXOJKZW4Ej1bIkaUh6KvCIuB64GbirbfVuYLZ6PgvsGWgySdKqIjO77xRxL/CPwAuBv8vMWyLifGZuaNvnXGZeMo0SETPADMD4+Pj2ubm5vkMvLi4yNjbW93HqVmrOY6cujCzLts3XdNxW6ng2VSk5oZysdeWcmppayMzW8vXrun1hRNwCnM3MhYiYvNwXzsz9wH6AVquVk5OXfYhLzM/PM4jj1K3UnLftfWBkWU6+Y7LjtlLHs6lKyQnlZB12zq4FDuwA3hIRbwZeAFwdEZ8FzkTERGaejogJ4GydQSVJv63rHHhmfiAzr8/MLcDbgC9l5juBQ8B0tds0cLC2lJKkS/RzHfg+4KaIOAHcVC1LkoaklymUZ2XmPDBfPf8JsHPwkSRJvfCdmJJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJ1LfCIeEFEfC0ivhURj0bEh6v1myLicEScqB431h9XknRRL2fg/we8ITNfCdwI7IqI1wJ7gSOZuRU4Ui1Lkoaka4HnksVq8crqTwK7gdlq/Sywp46AkqSVRWZ23yniCmABeBnwicx8f0Scz8wNbfucy8xLplEiYgaYARgfH98+NzfXd+jFxUXGxsb6Pk7dSs157NSFkWXZtvmajttKHc+mKiUnlJO1rpxTU1MLmdlavr6nAn9254gNwH3AHcBDvRR4u1arlUePHu359TqZn59ncnKy7+PUrdScW/Y+MLIsJ/fd3HFbqePZVKXkhHKy1pUzIlYs8Mu6CiUzzwPzwC7gTERMVAefAM72H1OS1KterkK5rjrzJiKuAt4IPAYcAqar3aaBgzVllCStYF0P+0wAs9U8+POAA5l5f0Q8DByIiNuBJ4Bba8wpSVqma4Fn5reBV62w/ifAzjpCSZK6852YklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBWqa4FHxIsj4sGIOB4Rj0bEndX6TRFxOCJOVI8b648rSbqolzPwZ4D3ZeYfA68F3hMRLwf2AkcycytwpFqWJA1J1wLPzNOZ+Y3q+c+B48BmYDcwW+02C+ypKaMkaQWRmb3vHLEF+DLwCuCJzNzQtu1cZl4yjRIRM8AMwPj4+Pa5ubk+I8Pi4iJjY2N9H6du/eY8durCANN0Nn4VnPnFUF6qq22br+m47bny331YSskJ5WStK+fU1NRCZraWr++5wCNiDPhv4B8y8wsRcb6XAm/XarXy6NGjl5d8BfPz80xOTvZ9nLr1m3PL3gcGF2YV79v2DB89tm4or9XNyX03d9z2XPnvPiyl5IRystaVMyJWLPCerkKJiCuBzwP3ZOYXqtVnImKi2j4BnB1UWElSd71chRLA3cDxzPxY26ZDwHT1fBo4OPh4kqROevm9eQfwLuBYRDxSrfsgsA84EBG3A08At9aSUJK0oq4FnpkPAdFh887BxpEk9cp3YkpSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQjXjc7R60P7xYu/b9gy3DenjxmD1j/nS74ZBfnzd5X5/+v2ltfIMXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklSorgUeEZ+KiLMR8Z22dZsi4nBEnKgeN9YbU5K0XC9n4J8Bdi1btxc4kplbgSPVsiRpiLoWeGZ+GfjpstW7gdnq+SywZ7CxJEndRGZ23yliC3B/Zr6iWj6fmRvatp/LzBWnUSJiBpgBGB8f3z43N7emoMdOXXj2+fhVcOYXazrMUJnz8m3bfE3HbYuLi4yNjdXyuu3fX/263PFc7e9cpzrHc9BKyVpXzqmpqYXMbC1fX/vNrDJzP7AfoNVq5eTk5JqOc9uym1l99Fjz78Nlzst38h2THbfNz8+z1u+fbgZ5c7TLHc/V/s51qnM8B62UrMPOudarUM5ExARA9Xh2cJEkSb1Ya4EfAqar59PAwcHEkST1qpfLCP8deBi4ISKejIjbgX3ATRFxAripWpYkDVHXibrMfHuHTTsHnEWSdBl8J6YkFaoZlx5IldU+2mzYH6UnNZ1n4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCjfiSmN2GrvPq3TZ3atH8nranA8A5ekQlngklQoC1ySCmWBS1KhLHBJKpRXoUjPUcdOXRjZ/dVP7rt5JK/7u8YzcEkqlAUuSYVyCkXSc0bdb5pa7WP/6pg28gxckgplgUtSoSxwSSpUXwUeEbsi4nsR8f2I2DuoUJKk7tZc4BFxBfAJ4M+AlwNvj4iXDyqYJGl1/ZyBvwb4fmY+npm/BOaA3YOJJUnqJjJzbV8Y8ZfArsz8q2r5XcCfZOZ7l+03A8xUizcA31t73GddC/x4AMepmzkHy5yDVUpOKCdrXTn/IDOvW76yn+vAY4V1l/w0yMz9wP4+XufSF444mpmtQR6zDuYcLHMOVik5oZysw87ZzxTKk8CL25avB57qL44kqVf9FPjXga0R8YcR8XzgbcChwcSSJHWz5imUzHwmIt4L/CdwBfCpzHx0YMlWN9ApmRqZc7DMOVil5IRysg4155r/EVOSNFq+E1OSCmWBS1KhGl3gEfHiiHgwIo5HxKMRcWe1/kMRcSoiHqn+vHnEOV8QEV+LiG9VOT9crd8UEYcj4kT1uLGhORs1nhdFxBUR8c2IuL9abtR4XrRCzqaO58mIOFZlOlqta9yYdsjZuDGNiA0RcW9EPFZ11OuGPZ6NngOPiAlgIjO/EREvBBaAPcBbgcXM/KdR5rsoIgJYn5mLEXEl8BBwJ/AXwE8zc191r5iNmfn+BubcRYPG86KI+FugBVydmbdExEdo0HhetELOD9HM8TwJtDLzx23rGjemHXJ+iIaNaUTMAv+TmXdVV+L9HvBBhjiejT4Dz8zTmfmN6vnPgePA5tGmulQuWawWr6z+JEu3Fpit1s+y9MNnZFbJ2TgRcT1wM3BX2+pGjSd0zFmSxo1pCSLiauD1wN0AmfnLzDzPkMez0QXeLiK2AK8Cvlqtem9EfDsiPtWQX/uuiIhHgLPA4cz8KjCemadh6YcR8KIRRgQ65oSGjSfwz8DfA79uW9e48WTlnNC88YSlH9b/FRELsXSLC2jmmK6UE5o1pi8BfgR8upo+uysi1jPk8SyiwCNiDPg88DeZ+TPgk8BLgRuB08BHR5duSWb+KjNvZOkdqa+JiFeMONKKOuRs1HhGxC3A2cxcGGWOblbJ2ajxbLMjM1/N0h1E3xMRrx91oA5Wytm0MV0HvBr4ZGa+CngaGPottRtf4NVc7eeBezLzCwCZeaYqol8D/8rSnREbofo1ap6leeUz1Tz+xfn8s6NL9tvaczZwPHcAb6nmQueAN0TEZ2neeK6Ys4HjCUBmPlU9ngXuYylX08Z0xZwNHNMngSfbfoO9l6VCH+p4NrrAq390uxs4npkfa1s/0bbbnwPfGXa2dhFxXURsqJ5fBbwReIylWwtMV7tNAwdHErDSKWfTxjMzP5CZ12fmFpZu0fClzHwnDRvPTjmbNp4AEbG+uhCA6lf9N7GUq1Fj2iln08Y0M38I/CAibqhW7QS+y5DHs+mfSr8DeBdwrJq3haV/5X17RNzI0lzZSeCvRxGuzQQwG0sfcvE84EBm3h8RDwMHIuJ24Ang1lGGpHPOf2vYeHayj2aNZycfaeB4jgP3LZ0TsQ74XGZ+MSK+TrPGtFPOJn6P3gHcU12B8jjwbqr/r4Y1no2+jFCS1Fmjp1AkSZ1Z4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQ/w+M/abehIdi3AAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data4['GINI-index'].hist()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Fill with linear regression estimations"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Average-Life-Expectancy | \n",
" Average-Wellbeing_(0-10) | \n",
" Happy-Life-Years | \n",
" Footprint_(gha/capita) | \n",
" Inequality-of-Outcomes | \n",
" Inequality-adjusted-Life-Expectancy | \n",
" Inequality-adjusted-Wellbeing | \n",
" Happy-Planet-Index | \n",
" GDP/capita($PPP) | \n",
" Population | \n",
" GINI-index | \n",
"
\n",
" \n",
" \n",
" \n",
" Average-Life-Expectancy | \n",
" 1.000000 | \n",
" 0.684597 | \n",
" 0.874994 | \n",
" 0.621546 | \n",
" -0.933635 | \n",
" 0.982560 | \n",
" 0.670472 | \n",
" 0.540539 | \n",
" 0.620792 | \n",
" 0.013189 | \n",
" -0.329860 | \n",
"
\n",
" \n",
" Average-Wellbeing_(0-10) | \n",
" 0.684597 | \n",
" 1.000000 | \n",
" 0.929916 | \n",
" 0.669626 | \n",
" -0.756944 | \n",
" 0.696176 | \n",
" 0.994429 | \n",
" 0.509647 | \n",
" 0.710701 | \n",
" -0.023479 | \n",
" -0.158217 | \n",
"
\n",
" \n",
" Happy-Life-Years | \n",
" 0.874994 | \n",
" 0.929916 | \n",
" 1.000000 | \n",
" 0.748900 | \n",
" -0.919483 | \n",
" 0.889390 | \n",
" 0.930779 | \n",
" 0.499604 | \n",
" 0.796483 | \n",
" -0.027091 | \n",
" -0.357976 | \n",
"
\n",
" \n",
" Footprint_(gha/capita) | \n",
" 0.621546 | \n",
" 0.669626 | \n",
" 0.748900 | \n",
" 1.000000 | \n",
" -0.717209 | \n",
" 0.668154 | \n",
" 0.681618 | \n",
" -0.130605 | \n",
" 0.796346 | \n",
" -0.056481 | \n",
" -0.424435 | \n",
"
\n",
" \n",
" Inequality-of-Outcomes | \n",
" -0.933635 | \n",
" -0.756944 | \n",
" -0.919483 | \n",
" -0.717209 | \n",
" 1.000000 | \n",
" -0.971618 | \n",
" -0.757822 | \n",
" -0.464021 | \n",
" -0.668670 | \n",
" 0.001681 | \n",
" 0.579074 | \n",
"
\n",
" \n",
" Inequality-adjusted-Life-Expectancy | \n",
" 0.982560 | \n",
" 0.696176 | \n",
" 0.889390 | \n",
" 0.668154 | \n",
" -0.971618 | \n",
" 1.000000 | \n",
" 0.682141 | \n",
" 0.487741 | \n",
" 0.642361 | \n",
" -0.001109 | \n",
" -0.470139 | \n",
"
\n",
" \n",
" Inequality-adjusted-Wellbeing | \n",
" 0.670472 | \n",
" 0.994429 | \n",
" 0.930779 | \n",
" 0.681618 | \n",
" -0.757822 | \n",
" 0.682141 | \n",
" 1.000000 | \n",
" 0.486368 | \n",
" 0.730921 | \n",
" -0.023779 | \n",
" -0.211804 | \n",
"
\n",
" \n",
" Happy-Planet-Index | \n",
" 0.540539 | \n",
" 0.509647 | \n",
" 0.499604 | \n",
" -0.130605 | \n",
" -0.464021 | \n",
" 0.487741 | \n",
" 0.486368 | \n",
" 1.000000 | \n",
" 0.114016 | \n",
" 0.066213 | \n",
" 0.245163 | \n",
"
\n",
" \n",
" GDP/capita($PPP) | \n",
" 0.620792 | \n",
" 0.710701 | \n",
" 0.796483 | \n",
" 0.796346 | \n",
" -0.668670 | \n",
" 0.642361 | \n",
" 0.730921 | \n",
" 0.114016 | \n",
" 1.000000 | \n",
" -0.051025 | \n",
" -0.401849 | \n",
"
\n",
" \n",
" Population | \n",
" 0.013189 | \n",
" -0.023479 | \n",
" -0.027091 | \n",
" -0.056481 | \n",
" 0.001681 | \n",
" -0.001109 | \n",
" -0.023779 | \n",
" 0.066213 | \n",
" -0.051025 | \n",
" 1.000000 | \n",
" 0.301755 | \n",
"
\n",
" \n",
" GINI-index | \n",
" -0.329860 | \n",
" -0.158217 | \n",
" -0.357976 | \n",
" -0.424435 | \n",
" 0.579074 | \n",
" -0.470139 | \n",
" -0.211804 | \n",
" 0.245163 | \n",
" -0.401849 | \n",
" 0.301755 | \n",
" 1.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Average-Life-Expectancy \\\n",
"Average-Life-Expectancy 1.000000 \n",
"Average-Wellbeing_(0-10) 0.684597 \n",
"Happy-Life-Years 0.874994 \n",
"Footprint_(gha/capita) 0.621546 \n",
"Inequality-of-Outcomes -0.933635 \n",
"Inequality-adjusted-Life-Expectancy 0.982560 \n",
"Inequality-adjusted-Wellbeing 0.670472 \n",
"Happy-Planet-Index 0.540539 \n",
"GDP/capita($PPP) 0.620792 \n",
"Population 0.013189 \n",
"GINI-index -0.329860 \n",
"\n",
" Average-Wellbeing_(0-10) \\\n",
"Average-Life-Expectancy 0.684597 \n",
"Average-Wellbeing_(0-10) 1.000000 \n",
"Happy-Life-Years 0.929916 \n",
"Footprint_(gha/capita) 0.669626 \n",
"Inequality-of-Outcomes -0.756944 \n",
"Inequality-adjusted-Life-Expectancy 0.696176 \n",
"Inequality-adjusted-Wellbeing 0.994429 \n",
"Happy-Planet-Index 0.509647 \n",
"GDP/capita($PPP) 0.710701 \n",
"Population -0.023479 \n",
"GINI-index -0.158217 \n",
"\n",
" Happy-Life-Years Footprint_(gha/capita) \\\n",
"Average-Life-Expectancy 0.874994 0.621546 \n",
"Average-Wellbeing_(0-10) 0.929916 0.669626 \n",
"Happy-Life-Years 1.000000 0.748900 \n",
"Footprint_(gha/capita) 0.748900 1.000000 \n",
"Inequality-of-Outcomes -0.919483 -0.717209 \n",
"Inequality-adjusted-Life-Expectancy 0.889390 0.668154 \n",
"Inequality-adjusted-Wellbeing 0.930779 0.681618 \n",
"Happy-Planet-Index 0.499604 -0.130605 \n",
"GDP/capita($PPP) 0.796483 0.796346 \n",
"Population -0.027091 -0.056481 \n",
"GINI-index -0.357976 -0.424435 \n",
"\n",
" Inequality-of-Outcomes \\\n",
"Average-Life-Expectancy -0.933635 \n",
"Average-Wellbeing_(0-10) -0.756944 \n",
"Happy-Life-Years -0.919483 \n",
"Footprint_(gha/capita) -0.717209 \n",
"Inequality-of-Outcomes 1.000000 \n",
"Inequality-adjusted-Life-Expectancy -0.971618 \n",
"Inequality-adjusted-Wellbeing -0.757822 \n",
"Happy-Planet-Index -0.464021 \n",
"GDP/capita($PPP) -0.668670 \n",
"Population 0.001681 \n",
"GINI-index 0.579074 \n",
"\n",
" Inequality-adjusted-Life-Expectancy \\\n",
"Average-Life-Expectancy 0.982560 \n",
"Average-Wellbeing_(0-10) 0.696176 \n",
"Happy-Life-Years 0.889390 \n",
"Footprint_(gha/capita) 0.668154 \n",
"Inequality-of-Outcomes -0.971618 \n",
"Inequality-adjusted-Life-Expectancy 1.000000 \n",
"Inequality-adjusted-Wellbeing 0.682141 \n",
"Happy-Planet-Index 0.487741 \n",
"GDP/capita($PPP) 0.642361 \n",
"Population -0.001109 \n",
"GINI-index -0.470139 \n",
"\n",
" Inequality-adjusted-Wellbeing \\\n",
"Average-Life-Expectancy 0.670472 \n",
"Average-Wellbeing_(0-10) 0.994429 \n",
"Happy-Life-Years 0.930779 \n",
"Footprint_(gha/capita) 0.681618 \n",
"Inequality-of-Outcomes -0.757822 \n",
"Inequality-adjusted-Life-Expectancy 0.682141 \n",
"Inequality-adjusted-Wellbeing 1.000000 \n",
"Happy-Planet-Index 0.486368 \n",
"GDP/capita($PPP) 0.730921 \n",
"Population -0.023779 \n",
"GINI-index -0.211804 \n",
"\n",
" Happy-Planet-Index GDP/capita($PPP) \\\n",
"Average-Life-Expectancy 0.540539 0.620792 \n",
"Average-Wellbeing_(0-10) 0.509647 0.710701 \n",
"Happy-Life-Years 0.499604 0.796483 \n",
"Footprint_(gha/capita) -0.130605 0.796346 \n",
"Inequality-of-Outcomes -0.464021 -0.668670 \n",
"Inequality-adjusted-Life-Expectancy 0.487741 0.642361 \n",
"Inequality-adjusted-Wellbeing 0.486368 0.730921 \n",
"Happy-Planet-Index 1.000000 0.114016 \n",
"GDP/capita($PPP) 0.114016 1.000000 \n",
"Population 0.066213 -0.051025 \n",
"GINI-index 0.245163 -0.401849 \n",
"\n",
" Population GINI-index \n",
"Average-Life-Expectancy 0.013189 -0.329860 \n",
"Average-Wellbeing_(0-10) -0.023479 -0.158217 \n",
"Happy-Life-Years -0.027091 -0.357976 \n",
"Footprint_(gha/capita) -0.056481 -0.424435 \n",
"Inequality-of-Outcomes 0.001681 0.579074 \n",
"Inequality-adjusted-Life-Expectancy -0.001109 -0.470139 \n",
"Inequality-adjusted-Wellbeing -0.023779 -0.211804 \n",
"Happy-Planet-Index 0.066213 0.245163 \n",
"GDP/capita($PPP) -0.051025 -0.401849 \n",
"Population 1.000000 0.301755 \n",
"GINI-index 0.301755 1.000000 "
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.corr()"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWUAAAFlCAYAAAAzhfm7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA43ElEQVR4nO3deZxcdZnv8c/TWejsZCcmaUIwIyaYYKZFQEAW8UaGgbAIqIOIOMFRCIx3RpiXqONy78A4LgSYi0EF5IqEMbKIEWQiCFe2BIFAQFliQhqyNpCVTtJdz/3jnOpUd2o5VX2q6lTV9/169aurTp869VSl8vTp5/x+z8/cHRERSYamagcgIiJ7KSmLiCSIkrKISIIoKYuIJIiSsohIgigpi4gkSM0l5Tlz5jigL33F+ZWXPnP6KsNXTjWXlDdv3lztEKTB6DMnlVRzSVlEpJ4pKYuIJEj/agcgIqVLpZzV7TvYsLWD8cObmTJ6CE1NVu2w9lErcSaBkrJIjUqlnPtWrudLdzxDx54UzQOa+N7ZhzFnxgGJSni1EmdSqHwhUqNWt+/oTnQAHXtSfOmOZ1jdvqPKkfVUK3EmhZJyDCZObsHMSvqaOLml2uFLjdqwtaM70aV17EmxcVtHlSLKrlbiTAqVL2LwRttazvnhoyU9dtFFR8UcjTSK8cObaR7Q1CPhNQ9oYtyw5orFEKVWnIQ4a4nOlEVq1JTRQ/je2YfRPCD4b5yu1U4ZPaQiz5+uFZ+84BE+ceMTnLzgEe5buZ5UqufciGrHWWvKeqZsZnOAa4B+wI/c/aoc+30AeBw4x91/Uc6YROpFU5MxZ8YBHDL/GDZu62DcsMqOashVKz5k/jFMHTs0MXHWmrIlZTPrB1wPnAS0AcvM7B53fyHLflcD95crFpF61dRkTB07tEcSrJR8teLe8VQzzlpTzvLF4cAr7r7K3XcDtwOnZdnvEmAxsLGMsYhIzNK14kyqFfddOZPyRGBtxv22cFs3M5sInA7cUMY4RKQMVCsuj3LWlLMVjHp3R/oBcLm7d5nlri+Z2TxgHkBLi4aQSfnpM1eYasXlUc6k3AZMzrg/CXij1z6twO1hQh4DnGxmne5+V+ZO7r4QWAjQ2tqat+2dSBz0mYtGteL4lTMpLwOmmdlBwOvAucAnM3dw94PSt83sZuDe3glZRKSRlC0pu3unmV1MMKqiH/ATd19pZp8Pf646sohIL2Udp+zuS4AlvbZlTcbu/plyxiIiUgsijb4wsyFm1hTe/iszO9XMBpQ3NBGRxhN1SNzDQHM4hG0pcAFwc7mCEhFpVFGTsrn7TuAM4Fp3Px2YXr6wREQaU9SaspnZkcCngAuLfKyISMPo6yorURPrZcC/AHeGIyimAg8WH66ISP2KY5WVSOULd/+9u58KXBfeX+Xu80sPXUSk/sSxykrU0RdHmtkLwIvh/Vlm9p8lxCwiUrfiWGUl6oW+HwD/A2gHcPdngWMjP4uISAOIo3Ne5C5x7r6216auyM8iItIA4uicF/VC31ozOwpwMxsIzCcsZYiISCCOznlRk/LnCZZ1mkjQ/e23wBeLjlhEJENfh48lUV8750VKyu6+mWCMsohILOIYPlaPIiXlsP3mJcCUzMeEw+RERIoWdeHVRhO1fHEX8GPgV0Aq/64iIoUVs/BqI4malDvcfUFZIxGRhpIePpaZmLXwavQhcdeY2dfDSSSz019ljUxE6poWXs0u6pny+4DzgBPYW77w8L6ISNG08Gp2UZPy6cBUd99dzmBEpLFo4dV9RS1fPAvsX8Y4RESE6GfK44E/mdkyYFd6o4bEiYjEK2pS/npZoxARESD6jL7fm9l44APhpifdfWP5whIRaUxR+ymfDTwJfBw4G3jCzM4qZ2AiIo0oavniK8AH0mfHZjYW+G/gF+UKTESkEUUdfdHUq1zRXsRjRUQkoqhnyveZ2f3Az8P75wC/KU9IIiLJUen2olEv9P2zmZ0BHA0YsNDd7yxbVCIiCVCN9qJRL/QdBCxx9y+5+z8SnDlPKUtEIiIJEcfq1MWKWhf+L3q27OwKt+VlZnPM7M9m9oqZXZHl56eZ2Qoze8bMlpvZ0RHjEZEalUo5qzZt57FXN7Nq03ZSKa92SDnFsTp1saLWlPtn9r1w993hWn05mVk/4HrgJIIlpJaZ2T3u/kLGbkuBe9zdzWwmcAdwSFGvQERqRq2tNlKN9qJRz5Q3mVn3lGozOw3YXOAxhwOvuPuqMKHfDpyWuYO7b3f39K/JIQSd50SkTlWjHNAX1WgvWszCqT8zs+vC+20ErTzzmQiszbjfBnyw905mdjrwb8A44G+yHcjM5gHzAFpaWiKGLFI6febKo9ZWG6lGe9GoZ8opdz8CmA7McPejKLwsVLao9zkTdvc73f0QYC7wrWwHcveF7t7q7q1jx46NGLJI6fSZK490OSBT0lcbSbcXPWLqGKaOHVr2MkvUpLwYussN28JthWbztQGTM+5PAt7ItbO7PwwcbGZjIsa0j4mTWzCzkr4mTtbZkEi5abWRwvKWL8zsEGAGMCIcp5w2HCj0q20ZMC0cTvc6cC7wyV7HfzfwanihbzYwkGC2YEneaFvLOT98tKTHLrroqFKfVkQi0mojhRWqKb8HOIWgwf3fZmzfBvx9vge6e6eZXQzcD/QDfuLuK83s8+HPbwDOBD5tZnuAd4BzMi78iUgd0moj+eVNyu5+N3C3mR3p7o8Ve3B3XwIs6bXthozbVwNXF3tckXpW6Wm9kixRR1/MM7N9zozd/bMxxyPS0GptHK/EL+qFvnuBX4dfSwlqytvLFZRIo6q1cbwSv6gNiRZn3jeznxP0UxaRPuhdqmjfsatq43hVNkmGqOWL3qYBGkMm0gfZShVXnzmTA0cPYk37O937VWIcr8omyRG1S9w2M9ua/g78Cri8vKGJ1LdspYrLF6/gW6e9r+LjeFU2SY6o5Yth5Q5EpNHkmnI8oJ+xpMLjeGtt+nM9K5iUw25wnyKYROLAC8Bt7r6rzLFVVlN/zKrwZ1ofnvddkybz+trXYg5IKiVXB7Lxw5srPo43jm5oqknHo9CMvunAPcAfgKcI+lkcB3zFzE7t1YaztqU6qzMbsFrPK1WXnnLcu45bjSnHfY1FNen4FDpTvhb4B3d/IHOjmX2EoFfy8eUKTKTeJWnKcV9jyVWTPmT+MSp/FKlQUp7YOyEDuPt/m9m1ZYpJpGEkacpxX2JRTTo+hUZfNJnZfr03mlkzpQ+nE5E6U4stOZOqUFL+KbA4c5HU8PYdwK3lC0tEaolacsanUEOib4ed3h42s8Hh5h3Af7i7yhciAiSrPl7rCpYg3P064DozGxbe31bgISLSgJJUH++tlobrRa4Lp5Oxmf2ru/9r2SISEYlRrQ3Xi9olLtOphXcREUmGWptCnjcph0s57bO5TLGIiMQu33C9JCp0pvwLADNbmrHtr8sXjohIvGptuF6hmnKTmX0d+Csz+1J6Y7pXg7t/r4yxiYj0WZKms0dRKCmfC8wN91OnOBGpObU2XK/QOOU/A1eb2Qp3/02FYhJpWMUO3arWUK+4njfXceI4frZjJHG4Xm9Rh8Q9ambfA44N7/8e+Ka7bylPWBKJ2n7WlWKHblVrqFdcz5vrOB9973h+++KGPh2/1obBZYqalH8CPA+cHd4/D7gJOKMcQUlEavtZV4rttFatzmxxPW+u4yyad0Sfj1/LXeuijlM+2N2/7u6rwq9vAFPLGZhIoyl26Fa1hnrF9by5jrNuS9+PX2vD4DJFTcrvmNnR6Ttm9iHgnTz7i0iRih26Va2hXqU8byrlrNq0ncde3cyqTdtJpTzncSaMGNTn11Vrw+AyRU3KnweuN7PVZrYGuA64qHxhiTSeYjutVaszW7HPm67vnrzgET5x4xOcvOAR7lu5npaRg7MeZ8aE4X1+XbXctS7qwqnPArPMbHh4f2tZo5JEmzi5hTfa1pb02H4D9qNrT2nLO9b7xclih25Va6hXsc+bq767ZP4xOY/T19dVa8PgMhXVqN7dt5rZQmBelP3NbA5wDdAP+JG7X9Xr558CLg/vbidYeurZYmKSynujbW2fLjDq4mRuxXZaq1ZntmKet9CqJNmOE8frSnLXunxKWT2kNcpOZtaPYB2/k4A2YJmZ3dNrsdW/AB9297fM7GPAQuCDJcQkIhVS7BjiOFbKbiSldInbGHG/w4FXwtEau4HbgdMyd3D3R939rfDu48CkEuIRkQrJVR9OpTznY2q5vlsNkc6UzewUYIm7p9x9TsRjTwQyC49t5D8LvhDQrEGRBCtl/G8t13erIWr54lzgGjNbDNzk7i9GeEy2dzzrr1MzO54gKR+d4+fzCOvYLS0tkQIW6Yu4PnPVXvGimOfPti/QY1v7jl0lrVpdbH231Pet2u93HKKOvvi7cOTFJ4CbzMwJZvT9PM/yUG3A5Iz7k4A3eu9kZjOBHwEfc/f2HM+/kKDeTGtra+6/k0RiEsdnrtpTfYt5/lz7DuxvXHzb093brj5zJgeOHsSa9r3TFOKuD5f6vlX7/Y5L5JpyOAxuMUFteAJwOvBHM7skx0OWAdPM7CAzG0hwtn1P5g5m1gL8EjjP3V8qIX6RxKr2ihfFPH+ufVe0bemx7fLFK/jWae8ra3241Pet2u93XKLWlE8FLgAOBm4FDnf3jeEK1y8C+6xs7e6d4UrY9xMMifuJu680s8+HP78B+BowGvjPsLFOp7tHGt0hknSFhoIl6flz7dv7+l3HnhQD+hlLylgfLvV9q/b7HZeoNeWzgO+7+8OZG919p5l9NteD3H0JsKTXthsybn8O+Fz0cEVqR7WHghXz/Ln27Z1rDxw9iMED+5W1Zlvq+1bt9zsuUcsX63onZDO7GsDdl2Z/iEhjmzRiEN887dAef+p/87RDmTRiUEWev5ihaLn2nTlpRPe2A0cP4pITpnHOwscjD4crd9xxPC5pop4pn8TemXdpH8uyTURCL27YyvUPvsyFR0/FDNzh+gdf5j3jhzJr8siyP38xQ9Fy7Qt0lyoGDejHOQsfL3s7zFKH0NXL0Lu8SdnM/gH4AnCwma3I+NEw4A/lDEyk1q3b0sGa9ne4/sFXemxfv6WDWZNzPChmxQxFy7Vvettjr26uWM221CnStTq1OlOhM+XbCCZ0/BtwRcb2be7+ZtmiEkm4KONh0y0oe9c4DxjRXLHxtFGfJ8p+9VKzTbpCSdndfbWZfbH3D8xslBKzNKKo42FnTBjOt+ceypV3Pd+937fnHsp7xw+vyHjaqHFG3a/WVoWuVVHOlE8BniKYjZf5iXG0+og0oKhTjfv3b2LurIlMGzeU9Vs6OGBEMzMmjOC1t3ZWZKmiqHFG3a9earZJV2g161PC7wdVJhyR5CtmPGz//k3MmjyyRw25lPG0pZQ7NmztYOTggZwxexLp9XUXP9XGSxuCSbjpYxQTT1OTdZ8Zb9gaLK3UMnIwr721s6anNidJoQt9s/P93N3/GG84IsnX19pqsY8vdfrwhBHNfPrIA7lm6cvdj7v0xGn8ZfMOLlv0TPcxioknWyzfnnso1/7uZda0v1OzU5uTpNA45e/m+fqP8oYmkkx9HQ9b7ONLnT7claI7Iacfd83Sl+lKeY9jFBNPtliuvOt5Tpk5sajYJLdC5YvjKxWISK3oa2212MeXOn1447bsj+vo3JtQ08eIGk+uWMx63q+1qc1JEnnlETM7FJgOdP9N4+4/LUdQIknX1/GwuR6frXYc97Rj932PkRlPvvp1oWNGjS2qemjFWaxI06zN7OsETYeuBY4H/h04tYxxiTScYld9LmXa8aUnTuOXf2zLeYxCK4tkO+a35x7KvSteLyq2vrwfcU/rTppiGhLNAp529wvMbDxBD2QRiUkpqz7n07tMMnZoM/2a4P0t++c8RqHhcdlKLy0jBzO7ZWTsw+RKWeWkHkRNyu+4e8rMOsNm9xvRGGWRWJWy6nM+uf70nzKmb+0vs5VeyjG1uV5acRYralJebmb7AzcSTCTZDjxZrqBEGlGc05hLHUaXpKnUSYqlkiLVlN39C+7+dtgL+STgfHe/oLyhiTSWOFtPljqMLkntL5MUSyVFXXnk2GzbevdYFpHSxTmNudQ//ZM0lTpJsVRS1PLFP2fcbgYOJyhjnBB7RCI1qrMzxcp1W1i3pYMJIwYxY8Jw+vePvAwmEF/ryb786Z+k9pdJiqVSoq5m/beZ981sMsGwOBEhSMh3Pfv6Ph3h5s6aWHRijoM6utWuyJNHemkDDo0zEJFatnLdlu6EDHunH08bV5lVRnpr1D/960HUmvK1BK06Ibg4eBjwbJlikkpo6o+Z/oPGZd2W7DXcSq4y0lsj/ulfDyIPicu43Qn83N21HFQtS3Vyzg8fLemhiy46KuZgal++VUbKofcY5Mz2mRNGNNOVCnpfNMrU5HoStaZ8S7kDEalluVYZmTFhROzPla995u5O36ddp1pp1pao5Yvn2Fu+6PEjgiWjZsYalUiNybXKSDku8uVqn3nh0cEk297tOhthanI9iVq++E34/dbw+6eAnYDOoEVC2VYZiVO6ZPHShm187pipLH6qjXVbgtU/MttnZlttpN6nJteTqEn5Q+7+oYz7V5jZH9z9m+UISkR6ylaymH/CNG59fA3rtnR0t88c1twv62ojBwyv76nJ9STq31ZDzOzo9B0zOwrQgEeRCslWsljwu5c5Y/akHu0zO7s8x2oj1YxeihE1KV8IXG9mq83sL8B/Ap8t9CAzm2NmfzazV8zsiiw/P8TMHjOzXWb2T8WFLtI4ck2bnjlxOEvmH8PcWRO56TOH8+5xQ7Put2l7RyXDlT6IOvriKWBW2LbT3H1LoceYWT/geoIGRm3AMjO7x91fyNjtTWA+MLfYwEWSohKrY+SaNj1t/LDuWnH6e+Z+E0Y08/HWSezc3cWqTds1PK4GRF15ZLyZ/RhY5O5bzGy6mV1Y4GGHA6+4+yp33w3cDpyWuYO7b3T3ZcCeUoIXqbZKrY4RtWNa5n7p1awXPryKz968vGFW7qh1US/03QzcBHwlvP8SsAj4cZ7HTATWZtxvAz5YZHwiiVap1TGiTpvO3G/Ttl2cf9OTGh5XY6LWlMe4+x1ACsDdO4GuAo/J9jdSSb+izWyemS03s+WbNm0q5RAiRYn6mcvXIjNu6WnTR0wd0700U779Uu4Vi03iE/VMeYeZjSZMqmZ2BFCortwGZI7YnAS8UXSEgLsvBBYCtLa26m8vKbuon7lctd5BA/qRSjlNTRZrzTnzWIMH9md3Vxejh+yX9ZiNunJHrYt6pvwl4B7gYDP7A/BT4JICj1kGTDOzg8xsIHBueAyRupGt1jv/hGnMv/1p7lu5ns7OVGw1597163MWPsayv7zFBTc/mfWYjbpyR62LOvrij2b2YeA9BGWJP7t73otz7t5pZhcD9wP9gJ+4+0oz+3z48xvM7ACCZkfDgZSZXQZMd/etJb8ikQpK13AnzjuCpX/aSFeK7gkdX7rjGRbNOyK2mnOuscoXHj016zHVvrM2FdNP+XBgSviY2WaGu/803wPcfQmwpNe2GzJurycoa4jUrKYmY+fuLhYsfaXH9o49qZwtPUuZ9pyrfm2W+5hq31l7ojYkuhU4GHiGvRf4nKCMIdLwctVvJ4yIp66bSjmdXZ71WO6qFdeTqDXlVoL+F19w90vCr/nlDEykluSq386YMCKWuu7q9h1cefdzzD9hWo9jffWU6dy74nXViutI1PLF88ABwLoyxiJSs/LVb+Oo627Y2sGa9ne49fE1XHj0VMzAHd41Yj9u+szhqhXXkahJeQzwgpk9CexKb3T3U8sSlUgN814DK3LVdbMNlQOyDp9Ll0fWbeng+geD2nXzgCbOnN3z4l4lpnxLeUVNyv9aziBEIunDuoLvmjSZ19e+FnNAe2VrrZlvxY9c+w/sb1x829P7HCPK6tTFxiDJFHVI3O/LHYhIQQleV7DY6da59p937NScxyhUBqnUlG8pr7xJ2cy2kX8ZqOFliUqkxuSbbp0tIebav/ecksxjFBreVmwMkkx5k7K7D6tUICK1LNeQuKH79eeJVe3s2N3JgaOGcNCYnjXi3vv3rjIcOHoQgwb047FXNxesEWtadX2If1VHkQaUbUjcd86ayaOvtnP+TU/y2ZuX8zfX7p1inWsI3cxJI7q3HTh6EJecMI1zFj4eaYq2plXXh2Jm9IlIDr2Hvg0a0I9HX23Pu7J0thoxwJKMY5yz8PHINWJNq64PSsoiMcms+S5b3c6owQPz1nhz1YjT2x57dXPRNWJNq659Kl+IxCyVct54u4M3trzTXUpIK6bGm64Rl/p4qU1KyiIxW92+g8sXr+CO5W37TIsupsarGnFjUvlCJGbpoWnrtnT0mBZ9zLvH8IEpoyLXeFUjbkxKyiIxyxyalp4WfeDoQZz03nE88Zf2oqY/q0bceFS+EIlZ77JDsUPbpLHpTFkkZtmGxxUztE0am86URcogc+Xpnbu7tKq0RKakLFJmGtomxVBSFikzDW2TYqimLFJmGtomxVBSFqkADW2TqFS+EBFJECVlEZEEMe+9ymPCmdkmYE2144jZGGBztYMosyS/xs3uPifXDyv8mUvi+5TEmCCZcUWNKednruaScj0ys+Xu3lrtOMqpEV5jHJL4PiUxJkhmXHHEpPKFiEiCKCmLiCSIknIyLKx2ABXQCK8xDkl8n5IYEyQzrj7HpJqyiEiC6ExZRCRBlJRFRBKk5pLynDlzHNCXvuL8ykufOX2V4SunmkvKmzcnbay41Dt95qSSai4pi4jUMyVlEZEEUetO6ZNUylndvoMNWzuKWqVZRLJTUpaSpVLOfSvX86U7nqFjT6p7RY05Mw5QYhYpUcXKF2a2v5n9wsz+ZGYvmtmRZjbKzB4ws5fD7yMrFY/03er2Hd0JGfau0ry6fUeVIxOpXZWsKV8D3OfuhwCzgBeBK4Cl7j4NWBrelxqxYWuHVmkWiVlFkrKZDQeOBX4M4O673f1t4DTglnC3W4C5lYhH4qFVmkXiV6kz5anAJuAmM3vazH5kZkOA8e6+DiD8Pq5C8UgMtEqzSPwqdaGvPzAbuMTdnzCzayiiVGFm84B5AC0tLeWJUIpWz6s06zMn1VKpM+U2oM3dnwjv/4IgSW8wswkA4feN2R7s7gvdvdXdW8eOHVuRgCWa9CrNR0wdw9SxQ+siIYM+c1I9FUnK7r4eWGtm7wk3nQi8ANwDnB9uOx+4uxLxiIgkVSXHKV8C/MzMBgKrgAsIfincYWYXAq8BH69gPCIiiVOxpOzuzwDZFhQ8sVIxiIgknXpfiIgkiJKyiEiCqPdFA1MzIZHkUVJuUGomJJJMKl80KDUTEkkmJeUGpWZCIsmkpNyg1ExIJJmUlBuUmgmJJJMu9DWoem4mJFLLlJQbWLqZ0NSxQ6sdioiEVL4QEUkQJWURkQRRUhYRSRAlZRGRBFFSFhFJECVlEZEEUVIWEUkQjVOuEWqzKdIYlJRrgNpsijQOlS9qgNpsijQOnSknUO9SRb42m5oiLVJflJQTJlup4sbzWmke0NQjMavNpkh9UvkiYbKVKq68+zmuPnOm2myKNACdKVdYoVEU2UoVa9rfYeL+zSxRm02RuqekXEFRRlGkVwTpXaoYNWQ/tdkUaQAqX1RQlFEUWhFEpLHpTLmCooyi0IogIo1NSbmCcpUmeo+i0IogIo1L5YsKUmlCRAqp2Jmyma0GtgFdQKe7t5rZKGARMAVYDZzt7m9VKqZKU2lCRAqp9Jny8e5+mLu3hvevAJa6+zRgaXi/rqVLE0dMHcPUsUOVkEWkh2qXL04Dbglv3wLMrV4oIiLVV8mk7MBvzewpM5sXbhvv7usAwu/jKhiPiEjiVHL0xYfc/Q0zGwc8YGZ/ivrAMInPA2hpaSlXfCLd9JmTaqnYmbK7vxF+3wjcCRwObDCzCQDh9405HrvQ3VvdvXXs2LGVClkamD5zUi0VScpmNsTMhqVvAx8FngfuAc4PdzsfuLsS8YiIJFWlyhfjgTvNLP2ct7n7fWa2DLjDzC4EXgM+XqF4YqWlmkQkLkUnZTO70N1/nHG/H3Clu38j12PcfRUwK8v2duDEYmNIknIs1aQkL9K4SilfnGhmS8xsgpkdCjwODIs5rppR7FJNqZSzatN2Hnt1M6s2bSeV8n1+ft/K9Zy84BE+ceMTnLzgEe5buX6f/USkPhV9puzunzSzc4DngJ3AJ9z9D7FHViOKWaopyll1riR/yPxj1AtDpAEUfaZsZtOAS4HFBFOjzzOzwTHHVTPSTYYy5VqqKcpZdb4kLyL1r5Tyxa+Ar7n7RcCHgZeBZbFGVUOKaTIUJeEWk+RFpP6UMvricHffCuDuDnzXzO6JN6zaUUyToSitO9NJvneJQ53kRBpDKUl5kJl9H5jo7nPMbDpwJMEZc0OK2v84SsJtajI++t7xLJp3BOu2dDBhRDMzJoyo+ugLjQgRqYxSkvLNwE3AV8L7LxG03/xxrgdIIMpZdSrl/PbFDbEOseurcgz7E5HsSqkpj3H3O4AUgLt3EvRIlggKte4sdohdJSQxJpF6VUpS3mFmowm6vmFmRwBbYo2qgSVx9EUSYxKpV6WUL75E0LPiYDP7AzAWOCvWqBpY1HX8SlVKbbjcMYnIXkWfKbv7HwmGwh0FXATMcPcVcQfWqMq5jl+pswW1tqBI5Vgwqi3CjmZn5Pu5u/8ylogKaG1t9eXLl1fiqSoq8wx23LBm+jXB+q3xruO3atN2Tl7wyD5nvEsizBZMxxfX2oIJG82R94nr9TMnVZXzM1dM+eJvw+/jCM6SfxfePx54CKhIUq5HlRrdUMyU8N6iDvuLQqM5RHKLXL5w9wvc/QKCC3zT3f1Mdz8TmFG26BpEpUY3JGW2oEZziORWyuiLKel19UIbgL+KKZ6GVKnRDUmpDWs0h0hupYy+eMjM7gd+TnDWfC7wYKxRNZhKjW4oZkp4OWk0h0hupYy+uBj4IUHT+sOAhe5+ScxxNZRKnsEWmrxSCUk5YxdJosijL5KiXq+Exz26IekS9no1+kIqLZbRF8GRgqFxVxOMwrDwy919eMnhSayjG2pBo71ekahKudD378Cp7j7C3Ye7+zAl5OoptLyUlNfEyS2YWZ++Jk5uqfbLkAQp5ULfBnd/MfZIpGga71t9b7St5ZwfPtqnYyy66KiYopF6UEpSXm5mi4C7gF3pjZWa0ZdklZ6lVmvr+SVsFp9IIpWSlIcTLJj60YxtToPP6KvGWWtfZuhVms7qRaIpZTXrC8oRSK2rxllrLY33rbWzepFqiZyUzezL7v7vZnYtYS/lTO4+P9bIasyGrR2MHDyQM2ZPwsITv8VPtZV01hr1z/xaWs+vls7qRaqpmDPl9MU9DdjMYsKIZj595IFcs/Tl7gR56YnTOGB47rPWbMkXiPxnflJm6EVRS2f1ItUUOSm7+6/C77ekt5nZAe6+vhyB1ZquFN0JGYKzwGuWvsxHpx9QVPKdPmFYUX/m18p431o6qxepplIu9GVaAsyOI5Bat3Fb9j/P39q5iz+v3BY5+d5yweF1+Wd+LZ3Vi1RTKZNHMul/VChXW8wB/ZqyJt8NW3dlTb47d3cmor1mOSSh74ZI0vU1Kd8YSxR1IFeTnZ27u4pKvi2j1KxHpJEVM/piVJbNt6e3u/ubEY7Rj+BC4evufkr42EXAFGA1cLa7vxU1piTJ9ef56vYdWS9wDR7YnxvPa+XKu59jTfs73cn3oDFDOGjMEP2ZL9KgiqkpP0UwFC4zO6TvOzA1wjEuJRjFke6VcQWw1N2vMrMrwvuXFxFTomS76JbtAtelJ07jskXP8NbO3Vx95kwm7t/MqCH79Ui+tXDxTkTiV8zoi4P68kRmNgn4G+B/AV8KN58GHBfevoVgrb+aTcrZZJ5Br2nfwdNr3+anj61h3ZZglY3LF6+ItHCpiDSGYsoXeVtZuftrBQ7xA+DLwLCMbePTS0u5+zozG5fjuecB8wBaWpLXUavQZI/0GfSGrR0sWPpKj8fWw8iKepT0z5zUr2LKF78me/liLEFv5X65HmhmpwAb3f0pMzuu2CDdfSGwEIKG48U+vpyK6emgCRS1o6Kfuab+mPXtmsG7Jk3m9bWFzoukFhRTvnhf5n0zm0JQavgI8L8LPPxDwKlmdjLQDAw3s/8LbDCzCeFZ8gRgYzHBJ0ExPR2mjB7CdZ98PyvatpBy6GfwvkkjYhtZoS5sNSrVqfaf0q2UlUemAV8BPgh8F5jv7nvyPcbd/wX4l/DxxwH/5O5/Z2bfAc4Hrgq/311sPNWWq6fDhq0d3T/PnMW3u9NZ+PCqHmfVcVAXNpH6EHmcspkdamY/BxYD/w0c6u4/KpSQC7gKOMnMXgZOCu/XlFyTRvZ0OScveIRP3PgEJy94hPtWrucvm7OfVa9u39HnOHKdscdxbBGpnGImjzwLHAk8AhwOfN/MFqS/oh7E3R9y91PC2+3ufqK7Twu/FxzrnDTZJo1cfeZMvnr3c/skyDVv7sg5hbqv8nVhE5HaUUz54kKytOxsdNkmjbTv2MWa9nd67NexJ8WQ/fqX7UKfLiKK1IdiLvTdXMY4alq2SSPZEuT4YfuVrVOaurCJ1Idixin/ijxnyu5+aiwR1YFcCbJl1BBaRpVnCrW6sInUh2LKF/+RZVs6Set/foZCCbJcU6hrpbeyiORWTFLeH5jk7tcDmNmTBBNHnDqbGl2qbOOElSBFpBjFJOUvA+dm3B8ItAJDgJuA/4oxrpqjccJSVTHMCuw3YD+69uzq0zE0s7DviknKA919bcb9/+fu7UC7mTX81SSt1ixVFdOsQM0srL5ikvLIzDvufnHG3bHxhFM9fZ2iHHU1a02FFpF8iknKT5jZ37t7j9VGzOwi4Ml4w6qsOEoP2Vaz/uop09nTlWLVpu1Fr1QtIo2pmBl9/whcYGYPmtl3w6+HgM8Al5UhtoopZYpyKuWs2rSdx17dzKpN2+ns8n1Ws/7WvS/w+Kq3uqdZv/ampkKLSH7FTB7ZCBxlZicAM8LNv3b335UlsgrKNUX5pQ3bcId+TbBuS8/GQr3PeP/jrFlZj2FW/ytVi0h8iu4SFybhmkvE+Wq5uaYoP/f6Vi5b9AyXnjiNnz62hrd27uZ7Zx/Ge8YP2+eM9+WN27Iew8OR3JmLpWoqtIjk0tfVrGtCumbcu2tbKhVkzGxNheafMI1f/rGNjj0prln6MmfMnpS3sdAdy9v436e/L+sx0ve1UrWIFFL0mXItKjRcLXMG3ksbtvHc61u59fG96+ilyxDp29kaC721czezW/Znyfxj2LC1gz1dzlfvfo51Wzq0UrWIRNYQSTlfW8t0LTc9RRngskXP5CxDNA9oYtzQ7I2FWkYN6T5OKuXc9JnDKzrNWkRqX0Mk5WLaWmZrJpSuKadvm1Gw+U9f+lBoLLNI42qIpFxMW8vepYxXNm4H4My/noQ7/PSxNby/ZX+mjBlaljPeRpmurV88Itk1RFIutq1lZinj337zIqfMnIgZmMHA/lbW0RKNMF27UX7xiJSiIZIyZC8nFDpbaxk5mEtOmMaVdz3fnTy+PfdQWkYOLlucUerfta4RfvGIlKphknJvUc7WXntrZ3dChiB5XHnX88xuGVm25NEIyzo1wi8ekVI1XFJOnx2vbt9B25s7uPj4d9PRGSSIq+97kUMOGNadGKqRPBphWadG+MUjUqqGSsqZZ8cjBw/k00ceyHUPvtKd/OafMI03d+xiyughrG7fwTt7urj0xHdzx/K27jHL+ZJHHBevGmFZp0b4xSNSqoZKypm1zDNmT9qngdCC373MHfOO2Kes0XuadbbkEefFq3pf1qkRfvGIlKqhknJmOSLdKChTx54U7Tt273MR6pqlL3PLBYczdth+OZOHLl4Vp95/8YiUqq6Tcu9ywoQRPWuZ2eqagwf2z5qsHc+bQHTxSkTiULcNibI1IXph3Tau++T7aR7QxOKn2rj0xGn7NAcaP3y/7m1pUS5CpS9eFfs4EZFMdXumnKuc8OtLjmFJWMs8YHgzH51+AJu2761rAiVdhNLFKxGJQ90m5VzlhE3bOzhi6pgeJYWDx/UsLxR7ESpdJhk7bCCL5h3Bzt1dVZ86rGnMIrWpbpNyrrGwhnWvmVdomnWUWnCuURcfPGh0yUmwrwlV05hFaldFaspm1mxmT5rZs2a20sy+EW4fZWYPmNnL4feRhY4VVbbG9ZeeOI3LFj2zT5P7vihlfb98CjXkr0ZMIlI5lbrQtws4wd1nAYcBc8zsCOAKYKm7TwOWhvdjkR4Lu2T+Mdz0mVbmHTuVnz4WNK6PM0nlG3VRijgSatwxiUTW1B8z69PXxMkt1X4VVVWR8oW7O7A9vDsg/HLgNOC4cPstwEPA5XE9b7oMsWFrBwuWvtLjZ3ENV4t7ynAcQ+s0jVmqJtXJOT98tE+HWHTRUTEFU5sqNiTOzPqZ2TPARuABd38CGO/u6wDC7+PK8dzlHK6WrUzSl1EXfYk1lXJWbdrOhq0d3HheKweOHhRLTCJSORW70OfuXcBhZrY/cKeZHRr1sWY2D5gH0NJS/J82U0YP4bpPvp8VbVtIOfQzeN+kEbEkqVxThoHuBFnMxbpSh9Zlu7h39Zkzmbh/M6OG5J6JKNn19TMnUqqKj75w97fN7CFgDrDBzCa4+zozm0BwFp3tMQuBhQCtra0lXZ3b3eksfHhVj0QXl96jNfoy+qHUvhDZatGXL17BEk3zLkkcnzmRUlRq9MXY8AwZMxsEfAT4E3APcH642/nA3eV4/kqPRujr86WTfHo8dZQzXF3cE6kPlaopTwAeNLMVwDKCmvK9wFXASWb2MnBSeD92lU5Y1UiQmuYtUh8qNfpiBfD+LNvbgRP7evxCky0qPRqhGqMfNM1bpD7U/Iy+KPXbSiesaiRI9SgWqQ81n5Sj9DGOe4REIdVKkOpRLFL7aj4p56vfppd1yky6cYyQiCIzQXZ2pnju9bdZt6WDSSMH0dy/H5u271KjIBHZR80n5Vz12wOGN+dNupVaKaSzM8Vdz77OlXc9370uYHoZKjUKEpHear7JfbYZdVefOZON23ZlTbp/2RwMS6vUCImV67Zw5V3P51wXUI2CRCRTzZ8pZ9ZvN2ztYE+X89W7n+NvZ03MmnRfe3MHB48bWrEREukGSJB7XUAtGSUiaTV/pgx767fjhzcz79blrGl/ByDruN3BA4PfQ3H3rMhlwohBPeLQWGIRyacuknJaZkli8VNtzD+h5xp8Xz1lOru7uli1KWhY99H3jmfRvCO44e9ms2jekXz0vePz1nY7O1M8u/Yt7nt+Hc+ufZvOzlTOfdNmTBjOt+cemnddQI0lFsnQx/af/Qc213T70JovX2TKLEms29LBrY+vYd6xU2kZNZghA/tz1X0vsqb9ne5kOLC/cfFtT9OxJ8WBowfxrdPex4B+lnVUROYFu/RFum/PPZS5sybSv3/u3239+zcxd9ZEpo0byvotHUwcOYiT3juezTt2aSyxSDZ9bP+56KKjarp9aF0l5d6TNt7auZuDxw7lXSOaOe8nT+5zgW3esVPp2JNiwohmzmltYd6ty3OOisi8YJc+xpV3Pc+0cUOZNTn/gin9+zcxa/JIZk3eu+3dDCvPmyAiNa2uknKuSRtP/KU96wW29ApLZ8yexILf7TsqInN4XOYFu8xjrN/S0SPZioj0RV0lZcg+qy3XSIt01SDKqIj0Bbt9xkOP0EU6EYlPXV3oyyXXSIuZk0b02Jap96iIzAt26Z9/e+6hzJgwIutzplcBeezVzazatD2WRVpFpEKquNZg3Z0pZ5Ov98WS+cfw5o5dTBs3lMsXr8jZQKj3BbsDRjQzY8KIrBf5yj2FW0TKrIprDTZEUobczXrS22annPdNHJG3gVC2C3bZVGoKt4jUn4ZJyoXE2WEtjhWpRaQxNURNudK0CoiIlEpJuQwqNYVbROqPyhdloFVARKRUSsplolVARKQUKl+IiCSIkrKISIKYe23NNDOzTcCaascRszHA5moHUWZJfo2b3X1Orh9W+DOXxPcpiTFBMuOKGlPOz1zNJeV6ZGbL3b212nGUUyO8xjgk8X1KYkyQzLjiiEnlCxGRBFFSFhFJECXlZFhY7QAqoBFeYxyS+D4lMSZIZlx9jkk1ZRGRBNGZsohIgigpV5CZzTGzP5vZK2Z2RZaff8rMVoRfj5rZrGrE2ReFXmPGfh8wsy4zO6uS8SWFmTWb2ZNm9qyZrTSzb4TbR5nZA2b2cvg9/wKQ5Ymtn5k9bWb3Jiim1Wb2nJk9Y2bLExTX/mb2CzP7k5m9aGZH9jUuJeUKMbN+wPXAx4DpwCfMbHqv3f4CfNjdZwLfIpk1s5wivsb0flcD91c2wkTZBZzg7rOAw4A5ZnYEcAWw1N2nAUvD+5V2KfBixv0kxARwvLsfljHkLAlxXQPc5+6HALMI3rc+xaWkXDmHA6+4+yp33w3cDpyWuYO7P+rub4V3HwcmVTjGvir4GkOXAIuBjZUMLkk8sD28OyD8coL365Zw+y3A3ErGZWaTgL8BfpSxuaox5VHt92o4cCzwYwB33+3ub/c1LiXlypkIrM243xZuy+VC4DdljSh+BV+jmU0ETgduqGBciRSWCZ4h+OX0gLs/AYx393UA4fdxFQ7rB8CXgcxVGqodEwS/sH5rZk+Z2byExDUV2ATcFJZ7fmRmQ/oal5Jy5WTr25l16IuZHU+QlC8va0Txi/IafwBc7u5d5Q8n2dy9y90PI/iL6HAzO7Sa8ZjZKcBGd3+qmnHk8CF3n01QGvuimR1b7YAIumzOBv6Pu78f2EEMJRS17qycNiBzdb9JwBu9dzKzmQR/On7M3dsrFFtcorzGVuB2M4OgT8DJZtbp7ndVJMIEcve3zewhYA6wwcwmuPs6M5tAZUs8HwJONbOTgWZguJn93yrHBIC7vxF+32hmdxKUyqodVxvQFv6FA/ALgqTcp7h0plw5y4BpZnaQmQ0EzgXuydzBzFqAXwLnuftLVYixrwq+Rnc/yN2nuPsUgg/xFxoxIZvZWDPbP7w9CPgI8CeC9+v8cLfzgbsrFZO7/4u7Twr/bc4Ffufuf1fNmADMbIiZDUvfBj4KPF/tuNx9PbDWzN4TbjoReKGvcelMuULcvdPMLiYYcdAP+Im7rzSzz4c/vwH4GjAa+M/wTLIzaQ1X8on4GiUwAbglHInSBNzh7vea2WPAHWZ2IfAa8PFqBhm6iurGNB64M/w/0R+4zd3vM7NlVY4LgovWPwtPQlYBFxD+e5Yal2b0iYgkiMoXIiIJoqQsIpIgSsoiIgmipCwikiBKyiIiCdKQSdnMthfeq/zM7CEzaw1vLwk7Tu1vZl+I8TkOCTtrPW1mB/f6mZnZlWE3q5fM7EEzmxHhmHOzNRqSZDOz8WZ2m5mtCqcrP2Zmp5vZcRkd4T5jZqlwElP6cc+b2ZTw9mozG5Pl2Kdanq6AOeK52Rq0S2A+DZmUk8jdTw6bmewPxJaUCZqh3O3u73f3V3v97IvAUcAsd/8r4N+Ae8ysOcIxlZRriAWDfO8CHnb3qe7+1wQTRLI1vWoDvlLM8d39Hne/qs+BSmMn5fAM4aGMfqg/Cz+8mNlfm9nvwzOK+8Ppkuntz4ZnGd8xs+fD7Z8xs+syjn2vmR0X3v4/ZrbcMvrmZoklfQZyFXBweHb7HTO71cxOy9jvZ2Z2apbHH2Zmj1vQi/lOMxsZTpe9DPicmT2Y5WkvBy5x950A7v5b4FHgU+Exu/+iMLOzwjObo4BTge+EMR5sZu82s/8O35c/htss/f5Y0Af3nIz3/Pdmdkd4dn6VBX2knwz3Ozjcb6yZLTazZeHXh8LtHw6fN332P6zgP7QAnADszpzA4+5r3P3aLPveC8ywvTPVCsr8/IefkwUW9ARflT4bDj8T15nZC2b2azIa9WT7/2ZmIyzozf2ecJ+fm9nfl/bya4i7N9wXsD38fhywheBsoQl4DDiaoI3io8DYcL9zCGanAawg6HkM8B3g+fD2Z4DrMp7jXuC48Pao8Hs/4CFgZnj/IaA1vL2aoBfElPQxw+0fBu4Kb48g6LncP8tryozrm8APwtv/CvxTlv2HA29m2X4p8L3M9ym8fRZwc3j7ZuCsjJ89AZwe3m4GBgNnAg+Er3k8wcymCeF7/nZ4ez/gdeAbGc+djvs24OjwdgvwYnj7VwTNaQCGZnsv9JX1Mz8f+H6Onx0H3Jv5OQY+DdwSbnsemJL5Oc1yjO7Pf/j5+C+C/1PTCdq5ApyR8Zl4V/g5OIv8/99OIvh/eS5B3+Kqv5fl/tI0a3jS3dsALGijOIXgw3Io8EB44twPWGdmI4D93f334WNvJehaVcjZFrQb7E+QjKYTJNGC3P33Zna9mY0j+FAvdvfOzH2yxHULwX+KUhg5utdl3Tk4U53o7neG8XaE248Gfu5BN7gNZvZ74APAVmCZh60NzexV4Lfh4Z4Djg9vfwSYHr7/EDTHGQb8Afiemf0M+GX6306KY2bXE5yA7Ab+OcsutwFfMbODSnyKu9w9BbxgZuPDbcey9zPxhpn9Ltz+HrL8fwNw9wfM7OMEiyfU3Eo8pVBSDlaASOsieE8MWOnuR2buaEEDmVwJq5Oe5aDm8DEHAf8EfMDd3zKzm9M/K8KtBCWFc4HPhse9n+AMdDnwPwsdwIIeC+mWjPe4+9fMbIeZTXX3VRm7zgbSyT3zteaKOVu7znzboed7nsq4n2LvZ7IJONLd3+n12KvCP31PBh43s4+4+5/yPJcEVhL89QKAu38xLJctz7azB31MvkuO9rFm9kUgXUo4Ocsumf/GmZ+FbP9/sv5/C5+nCXgv8A4wiqDeXdcauqacx5+BsWZ2JICZDTCzGR5ciNsSngVCWHsNrQYOM7MmM5tM0FoQgjLBjvBx4yl8Zr0N6F0nvZmgNoy7rwy//w8Plsb5nLtvAd4ys2PC/c9jb2Il3L8r3P8wd/9auPk7wAILupRhZh8hOHu6Lfz5BjN7b/gf4/RsMbr7VqDNzOaGx9jPzAYDDwPnWNDIfSzBWdKTBV57pt8CF6fvmNlh4feD3f05d7+aIKEcUsQxG9nvgGYz+4eMbYMLPOZmgr9Yxvb+gbtfn/F52qcFbQ4PA+eGn4kJ7P2rKOv/t/Bn/0iwxNIngJ+Y2YCIz1WzdKachbvvDi9OLAhLA/0JmrOvJOgC9RMz20nPNeb+QFDvfY6gBvfH8FjPmtnT4WNXhfvle+52M/uDBRcQf+Pu/+zuG8zsRYKr57mcD9wQJsR0t6pCrgVGAs+ZWRewHjgt4+z0CoLa+NrwNQ0Nt98O3Ghm8wlqgucBPzSzbwJ7CLpi3QkcCTxLcHb0ZXdfb2ZRk+h84HozW0Hw/j8MfB64zIJFALoI2iTW2uosVeHuHv7i/L6ZfZlgxYwd5FlIIfx/sIBgHbo43ElwwfE54CXCE4dc/9/MbA/wOeBwd99mZg8DVwJfjymeRFKXuD6wYOzmve5e1hUjwkT7HDA7PCsWkTql8kXChSWFPwHXKiGL1D+dKYuIJIjOlEVEEkRJWUQkQZSURUQSRElZRCRBlJRFRBJESVlEJEH+P3IdDVVC7n4NAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"sns.pairplot(data[['Inequality-of-Outcomes', 'GINI-index']])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"datadropna = data.dropna()"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Country | \n",
" Region | \n",
" Average-Life-Expectancy | \n",
" Average-Wellbeing_(0-10) | \n",
" Happy-Life-Years | \n",
" Footprint_(gha/capita) | \n",
" Inequality-of-Outcomes | \n",
" Inequality-adjusted-Life-Expectancy | \n",
" Inequality-adjusted-Wellbeing | \n",
" Happy-Planet-Index | \n",
" GDP/capita($PPP) | \n",
" Population | \n",
" GINI-index | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" Albania | \n",
" Post-communist | \n",
" 77.3 | \n",
" 5.5 | \n",
" 34.4 | \n",
" 2.2 | \n",
" 0.17 | \n",
" 69.7 | \n",
" 5.1 | \n",
" 36.8 | \n",
" 4247 | \n",
" 2900489 | \n",
" 29.0 | \n",
"
\n",
" \n",
" 3 | \n",
" Argentina | \n",
" Americas | \n",
" 75.9 | \n",
" 6.5 | \n",
" 40.2 | \n",
" 3.1 | \n",
" 0.16 | \n",
" 68.3 | \n",
" 6.0 | \n",
" 35.2 | \n",
" 14357 | \n",
" 42095224 | \n",
" 42.5 | \n",
"
\n",
" \n",
" 4 | \n",
" Armenia | \n",
" Post-communist | \n",
" 74.4 | \n",
" 4.3 | \n",
" 24.0 | \n",
" 2.2 | \n",
" 0.22 | \n",
" 66.9 | \n",
" 3.7 | \n",
" 25.7 | \n",
" 3566 | \n",
" 2978339 | \n",
" 30.5 | \n",
"
\n",
" \n",
" 6 | \n",
" Austria | \n",
" Europe | \n",
" 81.0 | \n",
" 7.4 | \n",
" 54.4 | \n",
" 6.1 | \n",
" 0.07 | \n",
" 78.0 | \n",
" 7.1 | \n",
" 30.5 | \n",
" 48324 | \n",
" 8429991 | \n",
" 30.5 | \n",
"
\n",
" \n",
" 8 | \n",
" Belarus | \n",
" Post-communist | \n",
" 70.9 | \n",
" 5.7 | \n",
" 34.0 | \n",
" 5.1 | \n",
" 0.13 | \n",
" 66.7 | \n",
" 5.3 | \n",
" 21.7 | \n",
" 6722 | \n",
" 9464000 | \n",
" 26.0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 128 | \n",
" Uganda | \n",
" Sub Saharan Africa | \n",
" 57.1 | \n",
" 4.3 | \n",
" 13.8 | \n",
" 1.2 | \n",
" 0.41 | \n",
" 36.8 | \n",
" 3.9 | \n",
" 19.4 | \n",
" 656 | \n",
" 35400620 | \n",
" 42.4 | \n",
"
\n",
" \n",
" 129 | \n",
" Ukraine | \n",
" Post-communist | \n",
" 70.3 | \n",
" 5.0 | \n",
" 28.3 | \n",
" 2.8 | \n",
" 0.17 | \n",
" 64.2 | \n",
" 4.6 | \n",
" 26.4 | \n",
" 3855 | \n",
" 45593300 | \n",
" 24.7 | \n",
"
\n",
" \n",
" 130 | \n",
" United Kingdom | \n",
" Europe | \n",
" 80.4 | \n",
" 6.9 | \n",
" 49.1 | \n",
" 4.9 | \n",
" 0.09 | \n",
" 76.8 | \n",
" 6.6 | \n",
" 31.9 | \n",
" 41295 | \n",
" 63700300 | \n",
" 32.6 | \n",
"
\n",
" \n",
" 132 | \n",
" Uruguay | \n",
" Americas | \n",
" 76.9 | \n",
" 6.4 | \n",
" 39.4 | \n",
" 2.9 | \n",
" 0.18 | \n",
" 69.6 | \n",
" 5.8 | \n",
" 36.1 | \n",
" 15128 | \n",
" 3396753 | \n",
" 41.3 | \n",
"
\n",
" \n",
" 136 | \n",
" Vietnam | \n",
" Asia Pacific | \n",
" 75.5 | \n",
" 5.5 | \n",
" 32.8 | \n",
" 1.7 | \n",
" 0.19 | \n",
" 64.8 | \n",
" 5.2 | \n",
" 40.3 | \n",
" 1755 | \n",
" 88809200 | \n",
" 38.7 | \n",
"
\n",
" \n",
"
\n",
"
65 rows × 13 columns
\n",
"
"
],
"text/plain": [
" Country Region Average-Life-Expectancy \\\n",
"1 Albania Post-communist 77.3 \n",
"3 Argentina Americas 75.9 \n",
"4 Armenia Post-communist 74.4 \n",
"6 Austria Europe 81.0 \n",
"8 Belarus Post-communist 70.9 \n",
".. ... ... ... \n",
"128 Uganda Sub Saharan Africa 57.1 \n",
"129 Ukraine Post-communist 70.3 \n",
"130 United Kingdom Europe 80.4 \n",
"132 Uruguay Americas 76.9 \n",
"136 Vietnam Asia Pacific 75.5 \n",
"\n",
" Average-Wellbeing_(0-10) Happy-Life-Years Footprint_(gha/capita) \\\n",
"1 5.5 34.4 2.2 \n",
"3 6.5 40.2 3.1 \n",
"4 4.3 24.0 2.2 \n",
"6 7.4 54.4 6.1 \n",
"8 5.7 34.0 5.1 \n",
".. ... ... ... \n",
"128 4.3 13.8 1.2 \n",
"129 5.0 28.3 2.8 \n",
"130 6.9 49.1 4.9 \n",
"132 6.4 39.4 2.9 \n",
"136 5.5 32.8 1.7 \n",
"\n",
" Inequality-of-Outcomes Inequality-adjusted-Life-Expectancy \\\n",
"1 0.17 69.7 \n",
"3 0.16 68.3 \n",
"4 0.22 66.9 \n",
"6 0.07 78.0 \n",
"8 0.13 66.7 \n",
".. ... ... \n",
"128 0.41 36.8 \n",
"129 0.17 64.2 \n",
"130 0.09 76.8 \n",
"132 0.18 69.6 \n",
"136 0.19 64.8 \n",
"\n",
" Inequality-adjusted-Wellbeing Happy-Planet-Index GDP/capita($PPP) \\\n",
"1 5.1 36.8 4247 \n",
"3 6.0 35.2 14357 \n",
"4 3.7 25.7 3566 \n",
"6 7.1 30.5 48324 \n",
"8 5.3 21.7 6722 \n",
".. ... ... ... \n",
"128 3.9 19.4 656 \n",
"129 4.6 26.4 3855 \n",
"130 6.6 31.9 41295 \n",
"132 5.8 36.1 15128 \n",
"136 5.2 40.3 1755 \n",
"\n",
" Population GINI-index \n",
"1 2900489 29.0 \n",
"3 42095224 42.5 \n",
"4 2978339 30.5 \n",
"6 8429991 30.5 \n",
"8 9464000 26.0 \n",
".. ... ... \n",
"128 35400620 42.4 \n",
"129 45593300 24.7 \n",
"130 63700300 32.6 \n",
"132 3396753 41.3 \n",
"136 88809200 38.7 \n",
"\n",
"[65 rows x 13 columns]"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"datadropna"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"x = datadropna['Inequality-of-Outcomes'].values\n",
"y = datadropna['GINI-index'].values"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0.17, 0.16, 0.22, 0.07, 0.13, 0.09, 0.27, 0.35, 0.22, 0.19, 0.28,\n",
" 0.24, 0.15, 0.12, 0.09, 0.07, 0.42, 0.3 , 0.22, 0.22, 0.12, 0.06,\n",
" 0.09, 0.2 , 0.16, 0.42, 0.37, 0.31, 0.15, 0.05, 0.27, 0.08, 0.12,\n",
" 0.18, 0.18, 0.14, 0.11, 0.07, 0.17, 0.19, 0.22, 0.16, 0.04, 0.07,\n",
" 0.19, 0.22, 0.21, 0.26, 0.11, 0.16, 0.19, 0.16, 0.13, 0.1 , 0.1 ,\n",
" 0.17, 0.06, 0.06, 0.15, 0.19, 0.41, 0.17, 0.09, 0.18, 0.19])"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([29. , 42.5, 30.5, 30.5, 26. , 27.6, 38.7, 46.7, 52.7, 36. , 30.8,\n",
" 53.5, 48.6, 34.3, 26.1, 29.1, 45.1, 45.7, 46.6, 41.8, 33.2, 27.1,\n",
" 33.1, 41.4, 36.7, 33.7, 60.8, 57.4, 30.6, 26.9, 29.5, 32.5, 35.2,\n",
" 27.4, 27.4, 35.5, 35.2, 34.8, 35.8, 48.1, 33.8, 32.2, 28. , 25.9,\n",
" 51.9, 48.2, 45.1, 43. , 32.4, 36. , 27.3, 41.6, 26.1, 25.6, 35.9,\n",
" 38.6, 27.3, 31.6, 39.3, 40.2, 42.4, 24.7, 32.6, 41.3, 38.7])"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(65,)"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x.shape"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"65"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"n = x.shape[0]\n",
"n"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(65, 2)"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# construct design matrix\n",
"\n",
"X = np.stack([np.ones(n), x]).T\n",
"X.shape"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"# compute linear regression coefficients\n",
"\n",
"c = np.linalg.inv(X.T @ X) @ (X.T) @ y"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([26.88757292, 54.87359863])"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"c"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"def regresion(x, c):\n",
" yhat = c @ np.hstack([np.array([1.]), x])\n",
" return yhat"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"data4 = data.copy()"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Country | \n",
" Region | \n",
" Average-Life-Expectancy | \n",
" Average-Wellbeing_(0-10) | \n",
" Happy-Life-Years | \n",
" Footprint_(gha/capita) | \n",
" Inequality-of-Outcomes | \n",
" Inequality-adjusted-Life-Expectancy | \n",
" Inequality-adjusted-Wellbeing | \n",
" Happy-Planet-Index | \n",
" GDP/capita($PPP) | \n",
" Population | \n",
" GINI-index | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Afghanistan | \n",
" Middle East and North Africa | \n",
" 59.7 | \n",
" 3.8 | \n",
" 12.4 | \n",
" 0.8 | \n",
" 0.43 | \n",
" 38.3 | \n",
" 3.4 | \n",
" 20.2 | \n",
" 691 | \n",
" 29726803 | \n",
" NaN | \n",
"
\n",
" \n",
" 1 | \n",
" Albania | \n",
" Post-communist | \n",
" 77.3 | \n",
" 5.5 | \n",
" 34.4 | \n",
" 2.2 | \n",
" 0.17 | \n",
" 69.7 | \n",
" 5.1 | \n",
" 36.8 | \n",
" 4247 | \n",
" 2900489 | \n",
" 29.0 | \n",
"
\n",
" \n",
" 2 | \n",
" Algeria | \n",
" Middle East and North Africa | \n",
" 74.3 | \n",
" 5.6 | \n",
" 30.5 | \n",
" 2.1 | \n",
" 0.24 | \n",
" 60.5 | \n",
" 5.2 | \n",
" 33.3 | \n",
" 5584 | \n",
" 37439427 | \n",
" NaN | \n",
"
\n",
" \n",
" 3 | \n",
" Argentina | \n",
" Americas | \n",
" 75.9 | \n",
" 6.5 | \n",
" 40.2 | \n",
" 3.1 | \n",
" 0.16 | \n",
" 68.3 | \n",
" 6.0 | \n",
" 35.2 | \n",
" 14357 | \n",
" 42095224 | \n",
" 42.5 | \n",
"
\n",
" \n",
" 4 | \n",
" Armenia | \n",
" Post-communist | \n",
" 74.4 | \n",
" 4.3 | \n",
" 24.0 | \n",
" 2.2 | \n",
" 0.22 | \n",
" 66.9 | \n",
" 3.7 | \n",
" 25.7 | \n",
" 3566 | \n",
" 2978339 | \n",
" 30.5 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 135 | \n",
" Venezuela | \n",
" Americas | \n",
" 73.9 | \n",
" 7.1 | \n",
" 41.5 | \n",
" 3.6 | \n",
" 0.19 | \n",
" 65.5 | \n",
" 6.5 | \n",
" 33.6 | \n",
" 12772 | \n",
" 29854238 | \n",
" NaN | \n",
"
\n",
" \n",
" 136 | \n",
" Vietnam | \n",
" Asia Pacific | \n",
" 75.5 | \n",
" 5.5 | \n",
" 32.8 | \n",
" 1.7 | \n",
" 0.19 | \n",
" 64.8 | \n",
" 5.2 | \n",
" 40.3 | \n",
" 1755 | \n",
" 88809200 | \n",
" 38.7 | \n",
"
\n",
" \n",
" 137 | \n",
" Yemen | \n",
" Middle East and North Africa | \n",
" 63.3 | \n",
" 4.1 | \n",
" 15.2 | \n",
" 1.0 | \n",
" 0.39 | \n",
" 44.7 | \n",
" 3.6 | \n",
" 22.8 | \n",
" 1289 | \n",
" 24882792 | \n",
" NaN | \n",
"
\n",
" \n",
" 138 | \n",
" Zambia | \n",
" Sub Saharan Africa | \n",
" 58.4 | \n",
" 5.0 | \n",
" 16.7 | \n",
" 1.0 | \n",
" 0.41 | \n",
" 38.7 | \n",
" 4.5 | \n",
" 25.2 | \n",
" 1687 | \n",
" 14786581 | \n",
" NaN | \n",
"
\n",
" \n",
" 139 | \n",
" Zimbabwe | \n",
" Sub Saharan Africa | \n",
" 53.7 | \n",
" 5.0 | \n",
" 16.4 | \n",
" 1.4 | \n",
" 0.37 | \n",
" 36.9 | \n",
" 4.6 | \n",
" 22.1 | \n",
" 851 | \n",
" 14565482 | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
140 rows × 13 columns
\n",
"
"
],
"text/plain": [
" Country Region Average-Life-Expectancy \\\n",
"0 Afghanistan Middle East and North Africa 59.7 \n",
"1 Albania Post-communist 77.3 \n",
"2 Algeria Middle East and North Africa 74.3 \n",
"3 Argentina Americas 75.9 \n",
"4 Armenia Post-communist 74.4 \n",
".. ... ... ... \n",
"135 Venezuela Americas 73.9 \n",
"136 Vietnam Asia Pacific 75.5 \n",
"137 Yemen Middle East and North Africa 63.3 \n",
"138 Zambia Sub Saharan Africa 58.4 \n",
"139 Zimbabwe Sub Saharan Africa 53.7 \n",
"\n",
" Average-Wellbeing_(0-10) Happy-Life-Years Footprint_(gha/capita) \\\n",
"0 3.8 12.4 0.8 \n",
"1 5.5 34.4 2.2 \n",
"2 5.6 30.5 2.1 \n",
"3 6.5 40.2 3.1 \n",
"4 4.3 24.0 2.2 \n",
".. ... ... ... \n",
"135 7.1 41.5 3.6 \n",
"136 5.5 32.8 1.7 \n",
"137 4.1 15.2 1.0 \n",
"138 5.0 16.7 1.0 \n",
"139 5.0 16.4 1.4 \n",
"\n",
" Inequality-of-Outcomes Inequality-adjusted-Life-Expectancy \\\n",
"0 0.43 38.3 \n",
"1 0.17 69.7 \n",
"2 0.24 60.5 \n",
"3 0.16 68.3 \n",
"4 0.22 66.9 \n",
".. ... ... \n",
"135 0.19 65.5 \n",
"136 0.19 64.8 \n",
"137 0.39 44.7 \n",
"138 0.41 38.7 \n",
"139 0.37 36.9 \n",
"\n",
" Inequality-adjusted-Wellbeing Happy-Planet-Index GDP/capita($PPP) \\\n",
"0 3.4 20.2 691 \n",
"1 5.1 36.8 4247 \n",
"2 5.2 33.3 5584 \n",
"3 6.0 35.2 14357 \n",
"4 3.7 25.7 3566 \n",
".. ... ... ... \n",
"135 6.5 33.6 12772 \n",
"136 5.2 40.3 1755 \n",
"137 3.6 22.8 1289 \n",
"138 4.5 25.2 1687 \n",
"139 4.6 22.1 851 \n",
"\n",
" Population GINI-index \n",
"0 29726803 NaN \n",
"1 2900489 29.0 \n",
"2 37439427 NaN \n",
"3 42095224 42.5 \n",
"4 2978339 30.5 \n",
".. ... ... \n",
"135 29854238 NaN \n",
"136 88809200 38.7 \n",
"137 24882792 NaN \n",
"138 14786581 NaN \n",
"139 14565482 NaN \n",
"\n",
"[140 rows x 13 columns]"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data4"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
":4: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" data4['GINI-index'][i] = y\n"
]
}
],
"source": [
"for i in range(0, data4.shape[0]):\n",
" if np.isnan(data4['GINI-index'][i]):\n",
" y = regresion(data4['Inequality-of-Outcomes'][i], c)\n",
" data4['GINI-index'][i] = y"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Country | \n",
" Region | \n",
" Average-Life-Expectancy | \n",
" Average-Wellbeing_(0-10) | \n",
" Happy-Life-Years | \n",
" Footprint_(gha/capita) | \n",
" Inequality-of-Outcomes | \n",
" Inequality-adjusted-Life-Expectancy | \n",
" Inequality-adjusted-Wellbeing | \n",
" Happy-Planet-Index | \n",
" GDP/capita($PPP) | \n",
" Population | \n",
" GINI-index | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Afghanistan | \n",
" Middle East and North Africa | \n",
" 59.7 | \n",
" 3.8 | \n",
" 12.4 | \n",
" 0.8 | \n",
" 0.43 | \n",
" 38.3 | \n",
" 3.4 | \n",
" 20.2 | \n",
" 691 | \n",
" 29726803 | \n",
" 50.483220 | \n",
"
\n",
" \n",
" 1 | \n",
" Albania | \n",
" Post-communist | \n",
" 77.3 | \n",
" 5.5 | \n",
" 34.4 | \n",
" 2.2 | \n",
" 0.17 | \n",
" 69.7 | \n",
" 5.1 | \n",
" 36.8 | \n",
" 4247 | \n",
" 2900489 | \n",
" 29.000000 | \n",
"
\n",
" \n",
" 2 | \n",
" Algeria | \n",
" Middle East and North Africa | \n",
" 74.3 | \n",
" 5.6 | \n",
" 30.5 | \n",
" 2.1 | \n",
" 0.24 | \n",
" 60.5 | \n",
" 5.2 | \n",
" 33.3 | \n",
" 5584 | \n",
" 37439427 | \n",
" 40.057237 | \n",
"
\n",
" \n",
" 3 | \n",
" Argentina | \n",
" Americas | \n",
" 75.9 | \n",
" 6.5 | \n",
" 40.2 | \n",
" 3.1 | \n",
" 0.16 | \n",
" 68.3 | \n",
" 6.0 | \n",
" 35.2 | \n",
" 14357 | \n",
" 42095224 | \n",
" 42.500000 | \n",
"
\n",
" \n",
" 4 | \n",
" Armenia | \n",
" Post-communist | \n",
" 74.4 | \n",
" 4.3 | \n",
" 24.0 | \n",
" 2.2 | \n",
" 0.22 | \n",
" 66.9 | \n",
" 3.7 | \n",
" 25.7 | \n",
" 3566 | \n",
" 2978339 | \n",
" 30.500000 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 135 | \n",
" Venezuela | \n",
" Americas | \n",
" 73.9 | \n",
" 7.1 | \n",
" 41.5 | \n",
" 3.6 | \n",
" 0.19 | \n",
" 65.5 | \n",
" 6.5 | \n",
" 33.6 | \n",
" 12772 | \n",
" 29854238 | \n",
" 37.313557 | \n",
"
\n",
" \n",
" 136 | \n",
" Vietnam | \n",
" Asia Pacific | \n",
" 75.5 | \n",
" 5.5 | \n",
" 32.8 | \n",
" 1.7 | \n",
" 0.19 | \n",
" 64.8 | \n",
" 5.2 | \n",
" 40.3 | \n",
" 1755 | \n",
" 88809200 | \n",
" 38.700000 | \n",
"
\n",
" \n",
" 137 | \n",
" Yemen | \n",
" Middle East and North Africa | \n",
" 63.3 | \n",
" 4.1 | \n",
" 15.2 | \n",
" 1.0 | \n",
" 0.39 | \n",
" 44.7 | \n",
" 3.6 | \n",
" 22.8 | \n",
" 1289 | \n",
" 24882792 | \n",
" 48.288276 | \n",
"
\n",
" \n",
" 138 | \n",
" Zambia | \n",
" Sub Saharan Africa | \n",
" 58.4 | \n",
" 5.0 | \n",
" 16.7 | \n",
" 1.0 | \n",
" 0.41 | \n",
" 38.7 | \n",
" 4.5 | \n",
" 25.2 | \n",
" 1687 | \n",
" 14786581 | \n",
" 49.385748 | \n",
"
\n",
" \n",
" 139 | \n",
" Zimbabwe | \n",
" Sub Saharan Africa | \n",
" 53.7 | \n",
" 5.0 | \n",
" 16.4 | \n",
" 1.4 | \n",
" 0.37 | \n",
" 36.9 | \n",
" 4.6 | \n",
" 22.1 | \n",
" 851 | \n",
" 14565482 | \n",
" 47.190804 | \n",
"
\n",
" \n",
"
\n",
"
140 rows × 13 columns
\n",
"
"
],
"text/plain": [
" Country Region Average-Life-Expectancy \\\n",
"0 Afghanistan Middle East and North Africa 59.7 \n",
"1 Albania Post-communist 77.3 \n",
"2 Algeria Middle East and North Africa 74.3 \n",
"3 Argentina Americas 75.9 \n",
"4 Armenia Post-communist 74.4 \n",
".. ... ... ... \n",
"135 Venezuela Americas 73.9 \n",
"136 Vietnam Asia Pacific 75.5 \n",
"137 Yemen Middle East and North Africa 63.3 \n",
"138 Zambia Sub Saharan Africa 58.4 \n",
"139 Zimbabwe Sub Saharan Africa 53.7 \n",
"\n",
" Average-Wellbeing_(0-10) Happy-Life-Years Footprint_(gha/capita) \\\n",
"0 3.8 12.4 0.8 \n",
"1 5.5 34.4 2.2 \n",
"2 5.6 30.5 2.1 \n",
"3 6.5 40.2 3.1 \n",
"4 4.3 24.0 2.2 \n",
".. ... ... ... \n",
"135 7.1 41.5 3.6 \n",
"136 5.5 32.8 1.7 \n",
"137 4.1 15.2 1.0 \n",
"138 5.0 16.7 1.0 \n",
"139 5.0 16.4 1.4 \n",
"\n",
" Inequality-of-Outcomes Inequality-adjusted-Life-Expectancy \\\n",
"0 0.43 38.3 \n",
"1 0.17 69.7 \n",
"2 0.24 60.5 \n",
"3 0.16 68.3 \n",
"4 0.22 66.9 \n",
".. ... ... \n",
"135 0.19 65.5 \n",
"136 0.19 64.8 \n",
"137 0.39 44.7 \n",
"138 0.41 38.7 \n",
"139 0.37 36.9 \n",
"\n",
" Inequality-adjusted-Wellbeing Happy-Planet-Index GDP/capita($PPP) \\\n",
"0 3.4 20.2 691 \n",
"1 5.1 36.8 4247 \n",
"2 5.2 33.3 5584 \n",
"3 6.0 35.2 14357 \n",
"4 3.7 25.7 3566 \n",
".. ... ... ... \n",
"135 6.5 33.6 12772 \n",
"136 5.2 40.3 1755 \n",
"137 3.6 22.8 1289 \n",
"138 4.5 25.2 1687 \n",
"139 4.6 22.1 851 \n",
"\n",
" Population GINI-index \n",
"0 29726803 50.483220 \n",
"1 2900489 29.000000 \n",
"2 37439427 40.057237 \n",
"3 42095224 42.500000 \n",
"4 2978339 30.500000 \n",
".. ... ... \n",
"135 29854238 37.313557 \n",
"136 88809200 38.700000 \n",
"137 24882792 48.288276 \n",
"138 14786581 49.385748 \n",
"139 14565482 47.190804 \n",
"\n",
"[140 rows x 13 columns]"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data4"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAQuElEQVR4nO3df4xlZX3H8ffXXY3LjiwY8Jbsko41hsTstOje2FoSe0fUbIWobWwrQQKGZpq02m27RrGm0f5hurFdq0kbmy1QiFKmFjBaSCxEmVITpM4gOuBiNXaju+KuhLo6dBM69ds/5uxkGObnuefeOY95v5LJnHvuPed87hP4zJkz5z4bmYkkqTzP2+oAkqR6LHBJKpQFLkmFssAlqVAWuCQVavswD3bBBRfk6Oho3/t5+umn2blzZ/+BBsyczTJns0rJCeVkHVTOmZmZJzPzwuc8kZlD+9q3b1824f77729kP4NmzmaZs1ml5MwsJ+ugcgLTuUKneglFkgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFWrdAo+ImyPiVEQ8usJz74mIjIgLBhNPkrSajZyB3wLsX74yIi4G3gB8t+FMkqQNWLfAM/MB4KkVnvpr4L2AE4pL0haI3MA/6BARo8Ddmbm3evxm4PLMPBARx4BuZj65yrYTwARAp9PZNzk5WSvo7InTi8udHXDyTK3d1DK2e1et7ebm5hgZGWk4TfPM2SxzNq+UrIPKOT4+PpOZ3eXrNz0XSkScA3wAeONGXp+ZR4AjAN1uN3u93mYPCcB1N9yzuHxwbJ7Ds8ObxuXY1b1a201NTVH3/Q6TOZtlzuaVknXYOevchfIy4KXA16qz7z3AwxHxc00GkyStbdOnsZk5C7zk7OP1LqFIkgZjI7cR3g48CFwSEccj4vrBx5IkrWfdM/DMvGqd50cbSyNJ2jA/iSlJhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYUa3pR+2rTRJTMwDtLBsflnzfZ47NAVQzmupP54Bi5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBv5V+lvjohTEfHoknV/GRGPR8TXI+IzEXHeQFNKkp5jI2fgtwD7l627D9ibmb8I/Cfw/oZzSZLWsW6BZ+YDwFPL1t2bmfPVwy8DewaQTZK0hsjM9V8UMQrcnZl7V3juX4B/ysxPrbLtBDAB0Ol09k1OTtYKOnvi9OJyZwecPFNrN7WM7d5Va7u5uTlGRkZqH3fpex6k5eNZ9/0OWr/jOSzmbF4pWQeVc3x8fCYzu8vX9zWdbER8AJgHblvtNZl5BDgC0O12s9fr1TrW0ulOD47Nc3h2eDPhHru6V2u7qakp6r5fePZ7HqTl41n3/Q5av+M5LOZsXilZh52zdgtGxLXAlcDluZHTeElSo2oVeETsB94H/Fpm/k+zkSRJG7GR2whvBx4ELomI4xFxPfA3wIuA+yLikYj4uwHnlCQts+4ZeGZetcLqmwaQRZK0CX4SU5IKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQ6xZ4RNwcEaci4tEl614cEfdFxLeq7+cPNqYkabmNnIHfAuxftu4G4AuZ+XLgC9VjSdIQrVvgmfkA8NSy1W8Bbq2WbwXe2mwsSdJ6IjPXf1HEKHB3Zu6tHv8oM89b8vx/Z+aKl1EiYgKYAOh0OvsmJydrBZ09cXpxubMDTp6ptZtaxnbvqrXd3NwcIyMjtY+79D0P0vLxrPt+B63f8RwWczavlKyDyjk+Pj6Tmd3l67c3fqRlMvMIcASg2+1mr9ertZ/rbrhncfng2DyHZwcefdGxq3u1tpuamqLu+4Vnv+dBWj6edd/voPU7nsNizuaVknXYOevehXIyIi4CqL6fai6SJGkj6hb454Brq+Vrgc82E0eStFEbuY3wduBB4JKIOB4R1wOHgDdExLeAN1SPJUlDtO6F5My8apWnLm84iyRpE/wkpiQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCtVXgUfEH0fEYxHxaETcHhEvbCqYJGlttQs8InYDfwh0M3MvsA14e1PBJElr6/cSynZgR0RsB84Bvt9/JEnSRkRm1t844gDwYeAMcG9mXr3CayaACYBOp7NvcnKy1rFmT5xeXO7sgJNnau1mqMzZrEHmHNu9q7F9zc3NMTIy0tj+BqWUnFBO1kHlHB8fn8nM7vL1tQs8Is4H7gR+B/gR8M/AHZn5qdW26Xa7OT09Xet4ozfcs7h8cGyew7Pba+1nmMzZrEHmPHboisb2NTU1Ra/Xa2x/g1JKTign66ByRsSKBd7PJZTXA/+VmT/MzP8F7gJ+tY/9SZI2oZ8C/y7wKxFxTkQEcDlwtJlYkqT11C7wzHwIuAN4GJit9nWkoVySpHX0dUExMz8IfLChLJKkTfCTmJJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmF6qvAI+K8iLgjIh6PiKMR8ZqmgkmS1ra9z+0/Dnw+M98WES8AzmkgkyRpA2oXeEScC7wWuA4gM58BnmkmliRpPZGZ9TaMuBQ4AnwD+CVgBjiQmU8ve90EMAHQ6XT2TU5O1jre7InTi8udHXDyTK3dDJU5mzXInGO7dzW2r7m5OUZGRhrb36CUkhPKyTqonOPj4zOZ2V2+vp8C7wJfBi7LzIci4uPAjzPzz1bbptvt5vT0dK3jjd5wz+LywbF5Ds/2e/Vn8MzZrEHmPHboisb2NTU1Ra/Xa2x/g1JKTign66ByRsSKBd7PHzGPA8cz86Hq8R3Aq/rYnyRpE2oXeGb+APheRFxSrbqchcspkqQh6Pf30XcDt1V3oHwHeGf/kSRJG9FXgWfmI8BzrstIkgbPT2JKUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1Kh2j8FnfQzbulMm8N0y/6dW3JcNcczcEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmF6rvAI2JbRHw1Iu5uIpAkaWOaOAM/ABxtYD+SpE3oq8AjYg9wBXBjM3EkSRvV7xn4x4D3Aj/tP4okaTMiM+ttGHEl8KbM/P2I6AHvycwrV3jdBDAB0Ol09k1OTtY63uyJ04vLnR1w8kyt3QyVOZtlzma9dNc2RkZGtjrGhszNzRWRdVA5x8fHZzKzu3x9PwX+F8A1wDzwQuBc4K7MfMdq23S73Zyenq51vKVzJh8cm+fwbPunMjdns8zZrFv276TX6211jA2ZmpoqIuugckbEigVe+xJKZr4/M/dk5ijwduCLa5W3JKlZ3gcuSYVq5Pe8zJwCpprYlyRpYzwDl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQrV/xh1JAzF74jTXLZkkbpiOHbpiS477s8YzcEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVC1CzwiLo6I+yPiaEQ8FhEHmgwmSVpbP5NZzQMHM/PhiHgRMBMR92XmNxrKJklaQ+0z8Mx8IjMfrpZ/AhwFdjcVTJK0tsjM/ncSMQo8AOzNzB8ve24CmADodDr7Jicnax1j9sTpxeXODjh5pm7a4TFns8zZrK3MObZ716ZePzc3x8jISN/HXdojg7DWmG72PS81Pj4+k5nd5ev7LvCIGAH+DfhwZt611mu73W5OT0/XOs7oknmLD47Nc3i2/VOZm7NZ5mzWVubc7HzgU1NT9Hq9vo87OuD5z9ca037mQI+IFQu8r7tQIuL5wJ3AbeuVtySpWf3chRLATcDRzPxoc5EkSRvRzxn4ZcA1wOsi4pHq600N5ZIkraP2BbDM/BIQDWaRJG2Cn8SUpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKlRfBR4R+yPimxHx7Yi4oalQkqT11S7wiNgG/C3w68ArgKsi4hVNBZMkra2fM/BXA9/OzO9k5jPAJPCWZmJJktYTmVlvw4i3Afsz83erx9cAv5yZ71r2uglgonp4CfDN+nEXXQA82cB+Bs2czTJns0rJCeVkHVTOn8/MC5ev3N7HDmOFdc/5aZCZR4AjfRznuQeOmM7MbpP7HARzNsuczSolJ5STddg5+7mEchy4eMnjPcD3+4sjSdqofgr8K8DLI+KlEfEC4O3A55qJJUlaT+1LKJk5HxHvAv4V2AbcnJmPNZZsbY1ekhkgczbLnM0qJSeUk3WoOWv/EVOStLX8JKYkFcoCl6RCtbrAI+LiiLg/Io5GxGMRcaBa/6GIOBERj1Rfb9rinC+MiP+IiK9VOf+8Wv/iiLgvIr5VfT+/pTlbNZ5nRcS2iPhqRNxdPW7VeJ61Qs62juexiJitMk1X61o3pqvkbN2YRsR5EXFHRDxeddRrhj2erb4GHhEXARdl5sMR8SJgBngr8NvAXGb+1VbmOysiAtiZmXMR8XzgS8AB4DeBpzLzUDVXzPmZ+b4W5txPi8bzrIj4E6ALnJuZV0bER2jReJ61Qs4P0c7xPAZ0M/PJJetaN6ar5PwQLRvTiLgV+PfMvLG6E+8c4E8Z4ni2+gw8M5/IzIer5Z8AR4HdW5vquXLBXPXw+dVXsjC1wK3V+ltZ+OGzZdbI2ToRsQe4ArhxyepWjSesmrMkrRvTEkTEucBrgZsAMvOZzPwRQx7PVhf4UhExCrwSeKha9a6I+HpE3NySX/u2RcQjwCngvsx8COhk5hOw8MMIeMkWRgRWzQktG0/gY8B7gZ8uWde68WTlnNC+8YSFH9b3RsRMLExxAe0c05VyQrvG9BeAHwL/UF0+uzEidjLk8SyiwCNiBLgT+KPM/DHwCeBlwKXAE8DhrUu3IDP/LzMvZeETqa+OiL1bHGlFq+Rs1XhGxJXAqcyc2coc61kjZ6vGc4nLMvNVLMwg+gcR8dqtDrSKlXK2bUy3A68CPpGZrwSeBoY+pXbrC7y6VnsncFtm3gWQmSerIvop8PcszIzYCtWvUVMsXFc+WV3HP3s9/9TWJXu2pTlbOJ6XAW+uroVOAq+LiE/RvvFcMWcLxxOAzPx+9f0U8BkWcrVtTFfM2cIxPQ4cX/Ib7B0sFPpQx7PVBV790e0m4GhmfnTJ+ouWvOw3gEeHnW2piLgwIs6rlncArwceZ2FqgWurl10LfHZLAlZWy9m28czM92fmnswcZWGKhi9m5jto2XiulrNt4wkQETurGwGoftV/Iwu5WjWmq+Vs25hm5g+A70XEJdWqy4FvMOTx7Gc2wmG4DLgGmK2u28LCX3mviohLWbhWdgz4va0It8RFwK2x8I9cPA/4dGbeHREPAp+OiOuB7wK/tZUhWT3nJ1s2nqs5RLvGczUfaeF4doDPLJwTsR34x8z8fER8hXaN6Wo52/jf6LuB26o7UL4DvJPq/6thjWerbyOUJK2u1ZdQJEmrs8AlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSof4fpR50pzE+oW0AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data['GINI-index'].hist()"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAWQ0lEQVR4nO3df4wc9X3G8fcTA6rjA0NK2IChNa0sVMo1Dl6ZVEjRXgjUGBSSiKRYlEACuiQKEVEdFSeVUqoqkpXWtIlAIQ5QOy3hggJWEHYhFuVCkEiCTZ0cxFBc59rYR+0SwHBgCV349I+da5dj17e7M/vry/OSTrcz852Z52bt5/Zmf4wiAjMzS9fbeh3AzMw6y0VvZpY4F72ZWeJc9GZmiXPRm5kl7qheB6jnxBNPjKVLl+baxiuvvMKiRYuKCdRBg5ITBiercxbLOYvVqZw7d+58LiLeWXdhRPTd14oVKyKvhx56KPc2umFQckYMTlbnLJZzFqtTOYEd0aBTferGzCxxLnozs8S56M3MEueiNzNLnIvezCxxLnozs8S56M3MEueiNzNLnIvezCxxffkRCNaapeu2dmU/a4dnuKpL+5rP5PqLeh2hq7p1H9ezaVX/f6yAHZkf0ZuZJc5Fb2aWOBe9mVniXPRmZolz0ZuZJW7eopd0mqSHJO2W9KSk67L575C0XdIz2fcTGqy/StLTkvZIWlf0D2BmZkfWzCP6GWBtRPwB8F7gs5LOBNYBD0bEMuDBbPoNJC0AbgYuBM4E1mTrmplZl8xb9BHxbEQ8nt1+GdgNLAEuATZnwzYDH6qz+kpgT0TsjYjXgLFsPTMz65KWztFLWgq8B/gJUIqIZ6H6ywA4qc4qS4Bf1Uzvy+aZmVmXqHqpwSYGSkPAD4GvRMQ9kl6MiONrlr8QESfMWeejwJ9ExDXZ9BXAyoj4XJ3tjwKjAKVSacXY2FibP1LV9PQ0Q0NDubbRDUXknNh/qKA0R1ZaCAcOd2VXuXQy5/CSxYVtq5X7vlv3cT2nL17wlvm/1A2dyjkyMrIzIsr1ljX1EQiSjgbuBu6IiHuy2QcknRwRz0o6GThYZ9V9wGk106cCU/X2EREbgY0A5XI5KpVKM9EaGh8fJ+82uqGInN36WIK1wzNsmOj/T83oZM7JyyuFbauV+76XHz2xadWit8z/pW7oRc5mXnUj4DZgd0TcWLPoXuDK7PaVwPfrrP4YsEzS6ZKOAS7L1jMzsy5p5hz9ucAVwPsl7cq+VgPrgfMlPQOcn00j6RRJ2wAiYga4FniA6pO4d0XEkx34OczMrIF5/76NiEcANVh8Xp3xU8DqmultwLZ2A5qZWT5+Z6yZWeJc9GZmiXPRm5klzkVvZpY4F72ZWeJc9GZmiXPRm5klzkVvZpY4F72ZWeJc9GZmiXPRm5klzkVvZpY4F72ZWeJc9GZmiXPRm5klzkVvZpa4eS88Iul24GLgYESclc37LnBGNuR44MWIWF5n3UngZeA3wEyjC9eamVnnNHMF5U3ATcC3Z2dExJ/O3pa0ATjSJepHIuK5dgOamVk+zVxK8GFJS+styy4c/jHg/QXnMjOzgigi5h9ULfr7Zk/d1Mx/H3Bjo1Mykn4JvAAE8M2I2HiEfYwCowClUmnF2NhYsz9DXdPT0wwNDeXaRjcUkXNi/5H+oCpOaSEcONyVXeXSyZzDSxYXtq1W7vtu3cf1nL54wVvm/1I3dCrnyMjIzkZd3MypmyNZA9x5hOXnRsSUpJOA7ZKeioiH6w3MfglsBCiXy1GpVHIFGx8fJ+82uqGInFet21pMmHmsHZ5hw0TefzKd18mck5dXCttWK/d9t+7jejatWvSW+b/UDb3I2farbiQdBXwE+G6jMRExlX0/CGwBVra7PzMza0+el1d+AHgqIvbVWyhpkaRjZ28DFwBP5NifmZm1Yd6il3Qn8ChwhqR9kq7OFl3GnNM2kk6RtC2bLAGPSPoZ8FNga0TcX1x0MzNrRjOvulnTYP5VdeZNAauz23uBd+fMZ2ZmOfmdsWZmiXPRm5klzkVvZpY4F72ZWeJc9GZmiXPRm5klzkVvZpY4F72ZWeJc9GZmiXPRm5klzkVvZpY4F72ZWeJc9GZmiXPRm5klzkVvZpY4F72ZWeKaucLU7ZIOSnqiZt4NkvZL2pV9rW6w7ipJT0vaI2ldkcHNzKw5zTyi3wSsqjP/7yNiefa1be5CSQuAm4ELgTOBNZLOzBPWzMxaN2/RR8TDwPNtbHslsCci9kbEa8AYcEkb2zEzsxwUEfMPkpYC90XEWdn0DcBVwEvADmBtRLwwZ51LgVURcU02fQVwTkRc22Afo8AoQKlUWjE2NtbeT5SZnp5maGgo1za6oYicE/sPFZTmyEoL4cDhruwql07mHF6yuLBttXLfd+s+ruf0xQveMv+XuqFTOUdGRnZGRLnesnkvDt7AN4C/ASL7vgH45JwxqrNew98qEbER2AhQLpejUqm0Ga1qfHycvNvohiJyXrVuazFh5rF2eIYNE+3+k+meTuacvLxS2LZaue+7dR/Xs2nVorfM/6Vu6EXOtl51ExEHIuI3EfE68C2qp2nm2gecVjN9KjDVzv7MzKx9bRW9pJNrJj8MPFFn2GPAMkmnSzoGuAy4t539mZlZ++b9+1bSnUAFOFHSPuCvgIqk5VRPxUwCn8rGngLcGhGrI2JG0rXAA8AC4PaIeLITP4SZmTU2b9FHxJo6s29rMHYKWF0zvQ1400svzcyse/zOWDOzxLnozcwS56I3M0uci97MLHH9/+6XFi3N3liydnimp28yadag5DSzweVH9GZmiXPRm5klzkVvZpY4F72ZWeJc9GZmiXPRm5klzkVvZpY4F72ZWeJc9GZmiUvunbFmVqyJ/Yd68u7tyfUXdX2fqZr3Eb2k2yUdlPREzby/lfSUpJ9L2iLp+AbrTkqakLRL0o4Cc5uZWZOaOXWzCVg1Z9524KyI+CPg34EvHmH9kYhY3ujq5GZm1lnzFn1EPAw8P2feDyJiJpv8MdULf5uZWR8q4snYTwL/0mBZAD+QtFPSaAH7MjOzFiki5h8kLQXui4iz5sz/S6AMfCTqbEjSKRExJekkqqd7Ppf9hVBvH6PAKECpVFoxNjbW6s8CVJ84AigthAOH29pEVw1KThicrJ3MObxkcWHbmp6eZmhoqKmxs/+ue6FX93urx7qV49lLnco5MjKys9Ep8rZfdSPpSuBi4Lx6JQ//d7FwIuKgpC3ASqBu0UfERmAjQLlcjkql0lauq2o+j37DRP+/qGhQcsLgZO1kzsnLK4Vta3x8nGb/nffymgW9ut9bPdatHM9e6kXOtk7dSFoFXA98MCJebTBmkaRjZ28DFwBP1BtrZmad08zLK+8EHgXOkLRP0tXATcCxwPbspZO3ZGNPkbQtW7UEPCLpZ8BPga0RcX9HfgozM2to3r/HImJNndm3NRg7BazObu8F3p0rnVmfWVrgKRRfRtK6xR+BYGaWOBe9mVniXPRmZolz0ZuZJc5Fb2aWOBe9mVniXPRmZolz0ZuZJc5Fb2aWOBe9mVniXPRmZolz0ZuZJc5Fb2aWOBe9mVniXPRmZolz0ZuZJa6ZK0zdLumgpCdq5r1D0nZJz2TfT2iw7ipJT0vaI2ldkcHNzKw5zTyi3wSsmjNvHfBgRCwDHsym30DSAuBm4ELgTGCNpDNzpTUzs5bNW/QR8TDw/JzZlwCbs9ubgQ/VWXUlsCci9kbEa8BYtp6ZmXWRImL+QdJS4L6IOCubfjEijq9Z/kJEnDBnnUuBVRFxTTZ9BXBORFzbYB+jwChAqVRaMTY21tYPNLH/EAClhXDgcFub6KpByQmDk9U5i9WrnMNLFrc0fnp6mqGhoQ6lKU6nco6MjOyMiHK9ZfNeHDwH1ZnX8LdKRGwENgKUy+WoVCpt7XT2Ystrh2fYMNHJH68Yg5ITBiercxarVzknL6+0NH58fJx2e6ObepGz3VfdHJB0MkD2/WCdMfuA02qmTwWm2tyfmZm1qd2ivxe4Mrt9JfD9OmMeA5ZJOl3SMcBl2XpmZtZFzby88k7gUeAMSfskXQ2sB86X9AxwfjaNpFMkbQOIiBngWuABYDdwV0Q82Zkfw8zMGpn3xFtErGmw6Lw6Y6eA1TXT24BtbaczM7Pc/M5YM7PEuejNzBLnojczS5yL3swscS56M7PEuejNzBLnojczS5yL3swscS56M7PEuejNzBLnojczS5yL3swscS56M7PEuejNzBLnojczS5yL3swscW0XvaQzJO2q+XpJ0ufnjKlIOlQz5su5E5uZWUvavrR7RDwNLAeQtADYD2ypM/RHEXFxu/sxM7N8ijp1cx7wHxHxnwVtz8zMCqKIyL8R6Xbg8Yi4ac78CnA3sA+YAr7Q6ALhkkaBUYBSqbRibGysrSwT+w8BUFoIBw63tYmuGpScMDhZnbNYvco5vGRxS+Onp6cZGhrqUJridCrnyMjIzogo11uWu+glHUO1xP8wIg7MWXYc8HpETEtaDXwtIpbNt81yuRw7duxoK8/SdVsBWDs8w4aJts9Mdc2g5ITByeqcxepVzsn1F7U0fnx8nEql0pkwBepUTkkNi76IUzcXUn00f2Dugoh4KSKms9vbgKMlnVjAPs3MrElFFP0a4M56CyS9S5Ky2yuz/f26gH2amVmTcv09JuntwPnAp2rmfRogIm4BLgU+I2kGOAxcFkU8KWBmZk3LVfQR8Srw23Pm3VJz+ybgprnrmZlZ9/idsWZmiXPRm5klzkVvZpY4F72ZWeJc9GZmiXPRm5klzkVvZpY4F72ZWeJc9GZmiXPRm5klzkVvZpY4F72ZWeJc9GZmiXPRm5klzkVvZpa4XEUvaVLShKRdkt50kVdVfV3SHkk/l3R2nv2ZmVnrirji70hEPNdg2YXAsuzrHOAb2XczM+uSTp+6uQT4dlT9GDhe0skd3qeZmdVQnku4Svol8AIQwDcjYuOc5fcB6yPikWz6QeD6iKh3mmcUGAUolUorxsbG2so0sf8QAKWFcOBwW5voqkHJCYOT1TmL1aucw0sWtzR+enqaoaGhDqUpTqdyjoyM7IyIcr1leU/dnBsRU5JOArZLeioiHq5Zrjrr1P3Nkv2S2AhQLpejUqm0FeiqdVsBWDs8w4aJIs5Mddag5ITByeqcxepVzsnLKy2NHx8fp93e6KZe5Mx16iYiprLvB4EtwMo5Q/YBp9VMnwpM5dmnmZm1pu2il7RI0rGzt4ELgCfmDLsX+Hj26pv3Aoci4tm205qZWcvy/D1WArZImt3OdyLifkmfBoiIW4BtwGpgD/Aq8Il8cc3MrFVtF31E7AXeXWf+LTW3A/hsu/swM7P8/M5YM7PEuejNzBLnojczS5yL3swscS56M7PEuejNzBLnojczS5yL3swscS56M7PEuejNzBLnojczS5yL3swscS56M7PEuejNzBLnojczS5yL3swscXkuJXiapIck7Zb0pKTr6oypSDokaVf29eV8cc3MrFV5LiU4A6yNiMeza8fulLQ9In4xZ9yPIuLiHPsxM7Mc2n5EHxHPRsTj2e2Xgd3AkqKCmZlZMVS9rGvOjUhLgYeBsyLipZr5FeBuYB8wBXwhIp5ssI1RYBSgVCqtGBsbayvLxP5DAJQWwoHDbW2iqwYlJwxOVucsVq9yDi9Z3NL46elphoaGOpSmOJ3KOTIysjMiyvWW5S56SUPAD4GvRMQ9c5YdB7weEdOSVgNfi4hl822zXC7Hjh072sqzdN1WANYOz7BhIs+Zqe4YlJwwOFmds1i9yjm5/qKWxo+Pj1OpVDoTpkCdyimpYdHnetWNpKOpPmK/Y27JA0TESxExnd3eBhwt6cQ8+zQzs9bkedWNgNuA3RFxY4Mx78rGIWlltr9ft7tPMzNrXZ6/x84FrgAmJO3K5n0J+B2AiLgFuBT4jKQZ4DBwWRTxpICZmTWt7aKPiEcAzTPmJuCmdvdhZm9ds8+3NWvt8AxXtbhOLxwpZ6vPSzTL74w1M0uci97MLHEuejOzxLnozcwS56I3M0uci97MLHEuejOzxLnozcwS56I3M0uci97MLHEuejOzxLnozcwS56I3M0uci97MLHEuejOzxLnozcwSl/easaskPS1pj6R1dZZL0tez5T+XdHae/ZmZWevyXDN2AXAzcCFwJrBG0plzhl0ILMu+RoFvtLs/MzNrT55H9CuBPRGxNyJeA8aAS+aMuQT4dlT9GDhe0sk59mlmZi1Su9fqlnQpsCoirsmmrwDOiYhra8bcB6zPri+LpAeB6yNiR53tjVJ91A9wBvB0W8H+34nAczm30Q2DkhMGJ6tzFss5i9WpnL8bEe+st6Dti4NT/8Lgc39rNDOmOjNiI7AxR5437ljaERHlorbXKYOSEwYnq3MWyzmL1YuceU7d7ANOq5k+FZhqY4yZmXVQnqJ/DFgm6XRJxwCXAffOGXMv8PHs1TfvBQ5FxLM59mlmZi1q+9RNRMxIuhZ4AFgA3B4RT0r6dLb8FmAbsBrYA7wKfCJ/5KYVdhqowwYlJwxOVucslnMWq+s5234y1szMBoPfGWtmljgXvZlZ4pIoekmnSXpI0m5JT0q6Lpt/g6T9knZlX6t7nPO3JP1U0s+ynH+dzX+HpO2Snsm+n9CnOfvqeM6StEDSv2Xv2+i74zmrTs5+PZ6TkiayTDuyeX13TBvk7LtjKul4Sd+T9FTWUX/c7eOZxDn67N22J0fE45KOBXYCHwI+BkxHxN/1Mt8sSQIWRcS0pKOBR4DrgI8Az0fE+uwzg06IiOv7MOcq+uh4zpL050AZOC4iLpb0VfroeM6qk/MG+vN4TgLliHiuZl7fHdMGOW+gz46ppM3AjyLi1uwVim8HvkQXj2cSj+gj4tmIeDy7/TKwG1jS21Rvln0UxHQ2eXT2FVQ/KmJzNn8z1V9SPXOEnH1H0qnARcCtNbP76nhCw5yDpO+O6SCQdBzwPuA2gIh4LSJepMvHM4miryVpKfAe4CfZrGtV/eTM2/vkz80FknYBB4HtEfEToDT7/oLs+0k9jAg0zAl9djyBfwD+Ani9Zl7fHU/q54T+O55Q/aX+A0k7Vf1oEujPY1ovJ/TXMf094H+Af8xO290qaRFdPp5JFb2kIeBu4PMR8RLVT8v8fWA58CywoXfpqiLiNxGxnOq7hFdKOqvHkepqkLOvjqeki4GDEbGzlznmc4ScfXU8a5wbEWdT/fTZz0p6X68DNVAvZ78d06OAs4FvRMR7gFeAN32ke6clU/TZueS7gTsi4h6AiDiQFdbrwLeofuJmX8j+fBunet77QPY8w+zzDQd7l+yNanP24fE8F/hgdq52DHi/pH+m/45n3Zx9eDwBiIip7PtBYAvVXP12TOvm7MNjug/YV/MX8feoFn9Xj2cSRZ89eXgbsDsibqyZX/uRyB8Gnuh2tlqS3inp+Oz2QuADwFNUPyriymzYlcD3exIw0yhnvx3PiPhiRJwaEUupfgTHv0bEn9Fnx7NRzn47ngCSFmUvaCA7xXAB1Vx9dUwb5ey3YxoR/w38StIZ2azzgF/Q5eOZ59Mr+8m5wBXARHZeGarPaq+RtJzqubxJ4FO9CFfjZGCzqhdteRtwV0TcJ+lR4C5JVwP/BXy0lyFpnPOf+ux4NrKe/jqejXy1D49nCdhSfezEUcB3IuJ+SY/RX8e0Uc5+/Df6OeCO7BU3e6l+FMzb6OLxTOLllWZm1lgSp27MzKwxF72ZWeJc9GZmiXPRm5klzkVvZpY4F72ZWeJc9GZmiftfrKni+GnCFY0AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data4['GINI-index'].hist()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## K nearest neighbour imputation"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.impute import KNNImputer"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
"# define imputer\n",
"imputer = KNNImputer(n_neighbors=10, weights='uniform', metric='nan_euclidean')"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"KNNImputer(n_neighbors=10)"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X = data.iloc[:,2:].values\n",
"\n",
"# fit\n",
"imputer.fit(X)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
"# transform the dataset\n",
"Xtrans = imputer.transform(X)"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"data4 = data.copy()\n",
"data4['GINI-index'] = imputer.transform(X)[:,-1]"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Country | \n",
" Region | \n",
" Average-Life-Expectancy | \n",
" Average-Wellbeing_(0-10) | \n",
" Happy-Life-Years | \n",
" Footprint_(gha/capita) | \n",
" Inequality-of-Outcomes | \n",
" Inequality-adjusted-Life-Expectancy | \n",
" Inequality-adjusted-Wellbeing | \n",
" Happy-Planet-Index | \n",
" GDP/capita($PPP) | \n",
" Population | \n",
" GINI-index | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Afghanistan | \n",
" Middle East and North Africa | \n",
" 59.7 | \n",
" 3.8 | \n",
" 12.4 | \n",
" 0.8 | \n",
" 0.43 | \n",
" 38.3 | \n",
" 3.4 | \n",
" 20.2 | \n",
" 691 | \n",
" 29726803 | \n",
" 35.98 | \n",
"
\n",
" \n",
" 1 | \n",
" Albania | \n",
" Post-communist | \n",
" 77.3 | \n",
" 5.5 | \n",
" 34.4 | \n",
" 2.2 | \n",
" 0.17 | \n",
" 69.7 | \n",
" 5.1 | \n",
" 36.8 | \n",
" 4247 | \n",
" 2900489 | \n",
" 29.00 | \n",
"
\n",
" \n",
" 2 | \n",
" Algeria | \n",
" Middle East and North Africa | \n",
" 74.3 | \n",
" 5.6 | \n",
" 30.5 | \n",
" 2.1 | \n",
" 0.24 | \n",
" 60.5 | \n",
" 5.2 | \n",
" 33.3 | \n",
" 5584 | \n",
" 37439427 | \n",
" 37.19 | \n",
"
\n",
" \n",
" 3 | \n",
" Argentina | \n",
" Americas | \n",
" 75.9 | \n",
" 6.5 | \n",
" 40.2 | \n",
" 3.1 | \n",
" 0.16 | \n",
" 68.3 | \n",
" 6.0 | \n",
" 35.2 | \n",
" 14357 | \n",
" 42095224 | \n",
" 42.50 | \n",
"
\n",
" \n",
" 4 | \n",
" Armenia | \n",
" Post-communist | \n",
" 74.4 | \n",
" 4.3 | \n",
" 24.0 | \n",
" 2.2 | \n",
" 0.22 | \n",
" 66.9 | \n",
" 3.7 | \n",
" 25.7 | \n",
" 3566 | \n",
" 2978339 | \n",
" 30.50 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 135 | \n",
" Venezuela | \n",
" Americas | \n",
" 73.9 | \n",
" 7.1 | \n",
" 41.5 | \n",
" 3.6 | \n",
" 0.19 | \n",
" 65.5 | \n",
" 6.5 | \n",
" 33.6 | \n",
" 12772 | \n",
" 29854238 | \n",
" 35.98 | \n",
"
\n",
" \n",
" 136 | \n",
" Vietnam | \n",
" Asia Pacific | \n",
" 75.5 | \n",
" 5.5 | \n",
" 32.8 | \n",
" 1.7 | \n",
" 0.19 | \n",
" 64.8 | \n",
" 5.2 | \n",
" 40.3 | \n",
" 1755 | \n",
" 88809200 | \n",
" 38.70 | \n",
"
\n",
" \n",
" 137 | \n",
" Yemen | \n",
" Middle East and North Africa | \n",
" 63.3 | \n",
" 4.1 | \n",
" 15.2 | \n",
" 1.0 | \n",
" 0.39 | \n",
" 44.7 | \n",
" 3.6 | \n",
" 22.8 | \n",
" 1289 | \n",
" 24882792 | \n",
" 34.81 | \n",
"
\n",
" \n",
" 138 | \n",
" Zambia | \n",
" Sub Saharan Africa | \n",
" 58.4 | \n",
" 5.0 | \n",
" 16.7 | \n",
" 1.0 | \n",
" 0.41 | \n",
" 38.7 | \n",
" 4.5 | \n",
" 25.2 | \n",
" 1687 | \n",
" 14786581 | \n",
" 35.37 | \n",
"
\n",
" \n",
" 139 | \n",
" Zimbabwe | \n",
" Sub Saharan Africa | \n",
" 53.7 | \n",
" 5.0 | \n",
" 16.4 | \n",
" 1.4 | \n",
" 0.37 | \n",
" 36.9 | \n",
" 4.6 | \n",
" 22.1 | \n",
" 851 | \n",
" 14565482 | \n",
" 35.37 | \n",
"
\n",
" \n",
"
\n",
"
140 rows × 13 columns
\n",
"
"
],
"text/plain": [
" Country Region Average-Life-Expectancy \\\n",
"0 Afghanistan Middle East and North Africa 59.7 \n",
"1 Albania Post-communist 77.3 \n",
"2 Algeria Middle East and North Africa 74.3 \n",
"3 Argentina Americas 75.9 \n",
"4 Armenia Post-communist 74.4 \n",
".. ... ... ... \n",
"135 Venezuela Americas 73.9 \n",
"136 Vietnam Asia Pacific 75.5 \n",
"137 Yemen Middle East and North Africa 63.3 \n",
"138 Zambia Sub Saharan Africa 58.4 \n",
"139 Zimbabwe Sub Saharan Africa 53.7 \n",
"\n",
" Average-Wellbeing_(0-10) Happy-Life-Years Footprint_(gha/capita) \\\n",
"0 3.8 12.4 0.8 \n",
"1 5.5 34.4 2.2 \n",
"2 5.6 30.5 2.1 \n",
"3 6.5 40.2 3.1 \n",
"4 4.3 24.0 2.2 \n",
".. ... ... ... \n",
"135 7.1 41.5 3.6 \n",
"136 5.5 32.8 1.7 \n",
"137 4.1 15.2 1.0 \n",
"138 5.0 16.7 1.0 \n",
"139 5.0 16.4 1.4 \n",
"\n",
" Inequality-of-Outcomes Inequality-adjusted-Life-Expectancy \\\n",
"0 0.43 38.3 \n",
"1 0.17 69.7 \n",
"2 0.24 60.5 \n",
"3 0.16 68.3 \n",
"4 0.22 66.9 \n",
".. ... ... \n",
"135 0.19 65.5 \n",
"136 0.19 64.8 \n",
"137 0.39 44.7 \n",
"138 0.41 38.7 \n",
"139 0.37 36.9 \n",
"\n",
" Inequality-adjusted-Wellbeing Happy-Planet-Index GDP/capita($PPP) \\\n",
"0 3.4 20.2 691 \n",
"1 5.1 36.8 4247 \n",
"2 5.2 33.3 5584 \n",
"3 6.0 35.2 14357 \n",
"4 3.7 25.7 3566 \n",
".. ... ... ... \n",
"135 6.5 33.6 12772 \n",
"136 5.2 40.3 1755 \n",
"137 3.6 22.8 1289 \n",
"138 4.5 25.2 1687 \n",
"139 4.6 22.1 851 \n",
"\n",
" Population GINI-index \n",
"0 29726803 35.98 \n",
"1 2900489 29.00 \n",
"2 37439427 37.19 \n",
"3 42095224 42.50 \n",
"4 2978339 30.50 \n",
".. ... ... \n",
"135 29854238 35.98 \n",
"136 88809200 38.70 \n",
"137 24882792 34.81 \n",
"138 14786581 35.37 \n",
"139 14565482 35.37 \n",
"\n",
"[140 rows x 13 columns]"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data4"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAWbklEQVR4nO3df4wc5X3H8fcnBlTHRwwpYQOG1rSyUF2uIXhlUiFFeyGkxqCQRCTFogTnhy6JQpSojoqTSilVFclK67SJiEIcoJCWcEEBKwhcEotyIUj5gU2dHMRQXOI29lG7JMRkiSV08O0fO9cux87temd2b/z485JWtzPzzDPffW71ub3Z+aGIwMzM0vWqhS7AzMwGy0FvZpY4B72ZWeIc9GZmiXPQm5kl7riFLqCTU045JZYvX16oj+eff54lS5aUU9AAHS11wtFTq+ssl+ss16Dq3Llz5zMR8bqOCyOico9Vq1ZFUQ888EDhPobhaKkz4uip1XWWy3WWa1B1AjsiJ1O968bMLHEOejOzxDnozcwS56A3M0ucg97MLHEOejOzxDnozcwS56A3M0ucg97MLHGVvASCVdPU/kOs33hv7vK9my4ZYjVm1it/ojczS5yD3swscQ56M7PEOejNzBLnoDczS1zXoJd0pqQHJO2W9Jikj2fzXytpu6Qns58n56y/RtITkvZI2lj2CzAzs/n18ol+BtgQEX8AvAn4qKSVwEbg/ohYAdyfTb+MpEXAl4CLgZXAumxdMzMbkq5BHxFPR8Qj2fNfA7uBZcBlwK1Zs1uBd3RYfTWwJyKeiogXgIlsPTMzG5Ij2kcvaTnwRuCHQC0inobWHwPg1A6rLAN+3ja9L5tnZmZDotatBntoKI0A3wU+GxF3SfpVRJzUtvzZiDh5zjrvBv4kIj6YTV8FrI6Ij3XofxwYB6jVaqsmJib6fEktzWaTkZGRQn0MQ1XqnNp/qGub2mI4cDh/+eiypSVW1L+qjGk3rrNcx3qdY2NjOyOi3mlZT5dAkHQ8cCdwW0Tclc0+IOm0iHha0mnAwQ6r7gPObJs+A5jutI2I2AJsAajX69FoNHopLdfk5CRF+xiGqtQ536UNZm0YnWHzVP5bZu+VjRIr6l9VxrQb11ku15mvl6NuBNwE7I6Iz7ctuhu4Ont+NfCtDqs/DKyQdJakE4ArsvXMzGxIetlHfwFwFfAWSbuyx1pgE3CRpCeBi7JpJJ0uaRtARMwA1wDfpvUl7h0R8dgAXoeZmeXouusmIh4ClLP4wg7tp4G1bdPbgG39FmhmZsX4zFgzs8Q56M3MEuegNzNLnIPezCxxDnozs8Q56M3MEuegNzNLnIPezCxxDnozs8Q56M3MEuegNzNLnIPezCxxDnozs8Q56M3MEuegNzNLnIPezCxxXW88Iulm4FLgYESck837BnB21uQk4FcRcW6HdfcCvwZeBGbyblxrZmaD08vNwW8Brge+NjsjIv509rmkzcChedYfi4hn+i3QzMyK6eVWgg9KWt5pWXbj8PcAbym5LjMzK4kionujVtDfM7vrpm3+m4HP5+2SkfQz4FkggK9ExJZ5tjEOjAPUarVVExMTvb6GjprNJiMjI4X6GIaq1Dm1f75/ylpqi+HA4fzlo8uWllhR/6oypt24znId63WOjY3tzMviXnbdzGcdcPs8yy+IiGlJpwLbJT0eEQ92apj9EdgCUK/Xo9FoFCpscnKSon0MQ1XqXL/x3q5tNozOsHkq/y2z98pGiRX1rypj2o3rLJfrzNf3UTeSjgPeBXwjr01ETGc/DwJbgdX9bs/MzPpT5PDKtwKPR8S+TgslLZF04uxz4G3AowW2Z2Zmfega9JJuB74PnC1pn6QPZIuuYM5uG0mnS9qWTdaAhyT9GPgRcG9E3Fde6WZm1otejrpZlzN/fYd508Da7PlTwBsK1mdmZgX5zFgzs8Q56M3MEuegNzNLnIPezCxxDnozs8Q56M3MEuegNzNLnIPezCxxDnozs8Q56M3MEuegNzNLnIPezCxxDnozs8Q56M3MEuegNzNLnIPezCxxvdxh6mZJByU92jbvOkn7Je3KHmtz1l0j6QlJeyRtLLNwMzPrTS+f6G8B1nSY//cRcW722DZ3oaRFwJeAi4GVwDpJK4sUa2ZmR65r0EfEg8Av++h7NbAnIp6KiBeACeCyPvoxM7MCFBHdG0nLgXsi4pxs+jpgPfAcsAPYEBHPzlnncmBNRHwwm74KOD8irsnZxjgwDlCr1VZNTEz094oyzWaTkZGRQn0MQ1XqnNp/qGub2mI4cDh/+eiypSVW1L+qjGk3rrNcx3qdY2NjOyOi3mlZ15uD5/gy8DdAZD83A++f00Yd1sv9qxIRW4AtAPV6PRqNRp+ltUxOTlK0j2GoSp3rN97btc2G0Rk2T+W/ZfZe2Sixov5VZUy7cZ3lcp35+jrqJiIORMSLEfES8FVau2nm2gec2TZ9BjDdz/bMzKx/fQW9pNPaJt8JPNqh2cPACklnSToBuAK4u5/tmZlZ/7ruupF0O9AATpG0D/groCHpXFq7YvYCH8rang7cGBFrI2JG0jXAt4FFwM0R8dggXoSZmeXrGvQRsa7D7Jty2k4Da9umtwGvOPTSzMyGx2fGmpklzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpa4fm8laEeR5T3cJnBYeqll76ZLhlCJ2bGj6yd6STdLOijp0bZ5fyvpcUk/kbRV0kk56+6VNCVpl6QdJdZtZmY96mXXzS3AmjnztgPnRMQfAf8OfGqe9cci4ty8u5ObmdlgdQ36iHgQ+OWced+JiJls8ge0bvxtZmYVVMaXse8H/iVnWQDfkbRT0ngJ2zIzsyOkiOjeSFoO3BMR58yZ/5dAHXhXdOhI0ukRMS3pVFq7ez6W/YfQaRvjwDhArVZbNTExcaSv5WWazSYjIyOF+hiGYdQ5tf9QKf3UFsOBw/nLR5ctLaWWXvqZj3/35XKd5RpUnWNjYzvzdpH3fdSNpKuBS4ELO4U8/N/NwomIg5K2AquBjkEfEVuALQD1ej0ajUa/pQEwOTlJ0T6GYRh1ri/pqJsNozNsnsp/y+y9slFKLb30Mx//7svlOsu1EHX2tetG0hrgWuDtEfGbnDZLJJ04+xx4G/Bop7ZmZjY4vRxeeTvwfeBsSfskfQC4HjgR2J4dOnlD1vZ0SduyVWvAQ5J+DPwIuDci7hvIqzAzs1xdd91ExLoOs2/KaTsNrM2ePwW8oVB1ZmZWmC+BYGaWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJa6XO0zdLOmgpEfb5r1W0nZJT2Y/T85Zd42kJyTtkbSxzMLNzKw3vXyivwVYM2feRuD+iFgB3J9Nv4ykRcCXgIuBlcA6SSsLVWtmZkesa9BHxIPAL+fMvgy4NXt+K/CODquuBvZExFMR8QIwka1nZmZDpIjo3khaDtwTEedk07+KiJPalj8bESfPWedyYE1EfDCbvgo4PyKuydnGODAOUKvVVk1MTPT1gmY1m01GRkYK9TEMw6hzav+hUvqpLYYDh0vpal6jy5YWWt+/+3K5znINqs6xsbGdEVHvtKzrzcELUId5uX9VImILsAWgXq9Ho9EotPHJyUmK9jEMw6hz/cZ7S+lnw+gMm6cG+ZZp2Xtlo9D6/t2Xy3WWayHq7PeomwOSTgPIfh7s0GYfcGbb9BnAdJ/bMzOzPvUb9HcDV2fPrwa+1aHNw8AKSWdJOgG4IlvPzMyGqJfDK28Hvg+cLWmfpA8Am4CLJD0JXJRNI+l0SdsAImIGuAb4NrAbuCMiHhvMyzAzszxdd7hGxLqcRRd2aDsNrG2b3gZs67s6MzMrzGfGmpklzkFvZpY4B72ZWeIc9GZmiRv82S9mC2B5DyeJ7d10yRAqMVt4/kRvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmies76CWdLWlX2+M5SZ+Y06Yh6VBbm88UrtjMzI5I3xc1i4gngHMBJC0C9gNbOzT9XkRc2u92zMysmLJ23VwI/EdE/GdJ/ZmZWUkUEcU7kW4GHomI6+fMbwB3AvuAaeCTeTcIlzQOjAPUarVVExMThWpqNpuMjIwU6mMYhlHn1P5DpfRTWwwHDpfS1bxGly0ttH6z2eRnh14c+HaK8nu0XMd6nWNjYzsjot5pWeGgl3QCrRD/w4g4MGfZa4CXIqIpaS3whYhY0a3Per0eO3bsKFTX5OQkjUajUB/DMIw6e7k2ey82jM6weWrwtzAoep34yclJ1t/3/MC3U5Tfo+U61uuUlBv0Zey6uZjWp/kDcxdExHMR0cyebwOOl3RKCds0M7MelRH064DbOy2Q9HpJyp6vzrb3ixK2aWZmPSr0f7ikVwMXAR9qm/dhgIi4Abgc+IikGeAwcEWU8aWAmZn1rFDQR8RvgN+eM++GtufXA9fPXa/qfL9RM0uJz4w1M0ucg97MLHEOejOzxDnozcwS56A3M0ucg97MLHEOejOzxDnozcwS56A3M0ucg97MLHEOejOzxDnozcwS56A3M0ucg97MLHEOejOzxBUKekl7JU1J2iXpFTd5VcsXJe2R9BNJ5xXZnpmZHbky7vQ8FhHP5Cy7GFiRPc4Hvpz9NDOzIRn0rpvLgK9Fyw+AkySdNuBtmplZGxW5hauknwHPAgF8JSK2zFl+D7ApIh7Kpu8Hro2ITrt5xoFxgFqttmpiYqLvugCazSYjIyN9rTu1/1DXNqPLlvbV91xF6pzVS71lqC2GA4cHv52iY9tsNvnZoRcHvp2iyvjdD4PrLNeg6hwbG9sZEfVOy4ruurkgIqYlnQpsl/R4RDzYtlwd1un4lyX7I7EFoF6vR6PRKFTY5OQk/faxvpd7xl7ZX99zFalzVi/1lmHD6Aybp8rY2ze/omM7OTnJ5oeeH/h2iirjdz8MrrNcC1FnoV03ETGd/TwIbAVWz2myDzizbfoMYLrINs3M7Mj0HfSSlkg6cfY58Dbg0TnN7gbemx198ybgUEQ83Xe1ZmZ2xIr8H14Dtkqa7efrEXGfpA8DRMQNwDZgLbAH+A3wvmLlmpnZkeo76CPiKeANHebf0PY8gI/2uw0zMyvOZ8aamSXOQW9mljgHvZlZ4hz0ZmaJG/zZLxWzfEgnF/Vi+cZ72TA6M+8JT3s3XTLEiqqhl99RGeMyrO2YLTR/ojczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS9wxd2bsMFXpLNzUzDe2G0ZnKOut3e136DNn7WjgT/RmZokrcivBMyU9IGm3pMckfbxDm4akQ5J2ZY/PFCvXzMyOVJH/b2eADRHxSHbv2J2StkfET+e0+15EXFpgO2ZmVkDfn+gj4umIeCR7/mtgN7CsrMLMzKwcat3WtWAn0nLgQeCciHiubX4DuBPYB0wDn4yIx3L6GAfGAWq12qqJiYlCNTWbTUZGRl4xf2r/oUL9zhpdtrRrm162VVsMBw4Pfjtl6FZrVQyzzl5+P3ny3qNV4zrLNag6x8bGdkZEvdOywkEvaQT4LvDZiLhrzrLXAC9FRFPSWuALEbGiW5/1ej127NhRqK7JyUkajcYr5pd1JEwvR1v0sq0NozNsnsrfg1bWdsrQrdaqGGadRY66yXuPVo3rLNeg6pSUG/SFjrqRdDytT+y3zQ15gIh4LiKa2fNtwPGSTimyTTMzOzJFjroRcBOwOyI+n9Pm9Vk7JK3OtveLfrdpZmZHrsj/txcAVwFTknZl8z4N/A5ARNwAXA58RNIMcBi4Isr4UsDMzHrWd9BHxEOAurS5Hri+3230Y3Z/dbd7sZoNS953KO3v0W77+of53dKw+Kzj4fGZsWZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiav+pQgralhXjPR9Z48NVXk/lXU26tH0vu2l1jLGpZez9gd1NrA/0ZuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWuKL3jF0j6QlJeyRt7LBckr6YLf+JpPOKbM/MzI5ckXvGLgK+BFwMrATWSVo5p9nFwIrsMQ58ud/tmZlZf4p8ol8N7ImIpyLiBWACuGxOm8uAr0XLD4CTJJ1WYJtmZnaE1O+9uiVdDqyJiA9m01cB50fENW1t7gE2ZfeXRdL9wLURsaNDf+O0PvUDnA080Vdh/+8U4JmCfQzD0VInHD21us5yuc5yDarO342I13VaUOQSCJ1uDD73r0YvbVozI7YAWwrU8/INSzsiol5Wf4NytNQJR0+trrNcrrNcC1FnkV03+4Az26bPAKb7aGNmZgNUJOgfBlZIOkvSCcAVwN1z2twNvDc7+uZNwKGIeLrANs3M7Aj1vesmImYkXQN8G1gE3BwRj0n6cLb8BmAbsBbYA/wGeF/xkntW2m6gATta6oSjp1bXWS7XWa6h19n3l7FmZnZ08JmxZmaJc9CbmSUuiaCXdKakByTtlvSYpI9n86+TtF/SruyxdoHr/C1JP5L046zOv87mv1bSdklPZj9PrmidlRrPWZIWSfq37LyNyo3nrA51VnU890qaymrakc2r3Jjm1Fm5MZV0kqRvSno8y6g/HvZ4JrGPPjvb9rSIeETSicBO4B3Ae4BmRPzdQtY3S5KAJRHRlHQ88BDwceBdwC8jYlN2zaCTI+LaCta5hgqN5yxJfw7UgddExKWSPkeFxnNWhzqvo5rjuReoR8QzbfMqN6Y5dV5HxcZU0q3A9yLixuwIxVcDn2aI45nEJ/qIeDoiHsme/xrYDSxb2KpeKbsURDObPD57BK1LRdyazb+V1h+pBTNPnZUj6QzgEuDGttmVGk/IrfNoUrkxPRpIeg3wZuAmgIh4ISJ+xZDHM4mgbydpOfBG4IfZrGvUunLmzRX5d3ORpF3AQWB7RPwQqM2eX5D9PHUBSwRy64SKjSfwD8BfAC+1zavceNK5TqjeeELrj/p3JO1U69IkUM0x7VQnVGtMfw/4H+Afs912N0pawpDHM6mglzQC3Al8IiKeo3W1zN8HzgWeBjYvXHUtEfFiRJxL6yzh1ZLOWeCSOsqps1LjKelS4GBE7FzIOrqZp85KjWebCyLiPFpXn/2opDcvdEE5OtVZtTE9DjgP+HJEvBF4HnjFJd0HLZmgz/Yl3wncFhF3AUTEgSywXgK+SuuKm5WQ/fs2SWu/94Hse4bZ7xsOLlxlL9deZwXH8wLg7dm+2gngLZL+meqNZ8c6KzieAETEdPbzILCVVl1VG9OOdVZwTPcB+9r+I/4mreAf6ngmEfTZl4c3Absj4vNt89svifxO4NFh19ZO0usknZQ9Xwy8FXic1qUirs6aXQ18a0EKzOTVWbXxjIhPRcQZEbGc1iU4/jUi/oyKjWdenVUbTwBJS7IDGsh2MbyNVl2VGtO8Oqs2phHx38DPJZ2dzboQ+ClDHs8iV6+skguAq4CpbL8ytL7VXifpXFr78vYCH1qI4tqcBtyq1k1bXgXcERH3SPo+cIekDwD/Bbx7IYskv85/qth45tlEtcYzz+cqOJ41YGvrsxPHAV+PiPskPUy1xjSvziq+Rz8G3JYdcfMUrUvBvIohjmcSh1eamVm+JHbdmJlZPge9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZon7X+VrPH8a785cAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data4['GINI-index'].hist(bins=35)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAQh0lEQVR4nO3df4jkd33H8efbu4jxNl5sE4f0It3+ImA9TLzBIgHZjVaiF+wPbDFUUbFs/6gh0pR6Fgr6R+khPamkIk1j2lBPlxANKTmqDZitFTS6G6ObeJHa9FpziXcNV1c3PRpO3/1jZnVzN7Pz3Z0f+17yfMBytzOf+X5f857kdbOfndmNzESSVNcLtjuAJGljFrUkFWdRS1JxFrUkFWdRS1Jxu8dx0Msuuyynp6eHOsYzzzzDnj17RhNojHZKTtg5Wc05WuYcrXHlXFpaejozL+95ZWaO/OPAgQM5rAceeGDoY0zCTsmZuXOymnO0zDla48oJLGafTnXrQ5KKs6glqTiLWpKKs6glqTiLWpKKs6glqbiBRR0RV0XEw+s+fhAR75tANkkSDd7wkpnfBq4GiIhdwEngnvHGkiSt2ezWx+uBf8/M/xxHGEnShSI38YsDIuIO4KHM/Ose180BcwCtVuvA/Pz8UMFWV1eZmpra0m2XT64MXLN/394tHft8w+SctNNnVjh1tv/1o5rJsHbKTM05Ws/3nLOzs0uZ2e51XeOijogXAk8Cv5qZpzZa2263c3FxcdNB11tYWGBmZmZLt50+dGzgmhOHD27p2OcbJuek3Xr0Xo4s99/tGtVMhrVTZmrO0Xq+54yIvkW9ma2PN9F5Nr1hSUuSRmszRX0j8OlxBZEk9daoqCPixcCvA58dbxxJ0vka/TzqzPxf4GfHnEWS1IPvTJSk4ixqSSrOopak4ixqSSrOopak4ixqSSrOopak4ixqSSrOopak4ixqSSrOopak4ixqSSrOopak4ixqSSrOopak4ixqSSrOopak4ixqSSrOopak4ixqSSqu6W8hvzQi7o6IxyLieES8dtzBJEkdjX4LOfBR4HOZ+daIeCHw4jFmkiStM7CoI+IlwOuAdwFk5rPAs+ONJUlaE5m58YKIq4HbgG8BrwKWgJsz85nz1s0BcwCtVuvA/Pz8UMFWV1eZmpra0m2XT64MXLN/394tHft8w+SctNNnVjh1tv/1o5rJsHbKTM05Ws/3nLOzs0uZ2e51XZOibgNfAa7NzAcj4qPADzLzz/rdpt1u5+Li4jCZWVhYYGZmZku3nT50bOCaE4cPbunY5xsm56TdevRejiz3/yJqVDMZ1k6ZqTlH6/meMyL6FnWTbyY+ATyRmQ92P78bePWowkmSNjawqDPze8B3I+Kq7kWvp7MNIkmagKav+rgJONp9xcfjwLvHF0mStF6jos7Mh4GeeyeSpPHynYmSVJxFLUnFWdSSVJxFLUnFWdSSVJxFLUnFWdSSVJxFLUnFWdSSVJxFLUnFWdSSVJxFLUnFWdSSVJxFLUnFWdSSVJxFLUnFWdSSVJxFLUnFWdSSVJxFLUnFWdSSVFyj30IeESeAHwI/As5lpr+RXJImpFFRd81m5tNjSyJJ6smtD0kqLjJz8KKI/wD+B0jgbzLzth5r5oA5gFardWB+fn6oYKurq0xNTW3ptssnVwau2b9v75aOfb5hck7a6TMrnDrb//pRzWRYO2Wm5hyt53vO2dnZpX7byk2L+ucy88mIeBlwP3BTZn6x3/p2u52Li4tbDgywsLDAzMzMlm47fejYwDUnDh/c0rHPN0zOSbv16L0cWe6/2zWqmQxrp8zUnKP1fM8ZEX2LutHWR2Y+2f3zNHAP8JrRxZMkbWRgUUfEnoi4ZO3vwBuBR8YdTJLU0eRVHy3gnohYW/+pzPzcWFNJkn5iYFFn5uPAqyaQRZLUgy/Pk6TiLGpJKs6ilqTiLGpJKs6ilqTiLGpJKs6ilqTiLGpJKs6ilqTiLGpJKs6ilqTiLGpJKs6ilqTiLGpJKs6ilqTiLGpJKs6ilqTiLGpJKs6ilqTiLGpJKq5xUUfEroj4ekTcN85AkqTn2swz6puB4+MKIknqrVFRR8SVwEHg9vHGkSSdLzJz8KKIu4G/AC4B/jgzb+ixZg6YA2i1Wgfm5+eHCra6usrU1NQFly+fXBnquGv279s79DGWT67QuhhOnR3uPKO4T03Oc/rMytBZJ6HfY3++JnMb531qmnO7mXO0xpVzdnZ2KTPbva7bPejGEXEDcDozlyJipt+6zLwNuA2g3W7nzEzfpY0sLCzQ6xjvOnRsqOOuOfF7Fx57s9516Bi37D/HkeX+Y2xynlHcpybnufXovUNnnYR+j/35msxtnPepac7tZs7R2o6cTbY+rgXeEhEngHnguoj45FhTSZJ+YmBRZ+YHMvPKzJwG3gZ8ITPfPvZkkiTA11FLUnkD96jXy8wFYGEsSSRJPfmMWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKG1jUEfGiiPhqRHwjIh6NiA9NIpgkqWN3gzX/B1yXmasRcRHwpYj4p8z8ypizSZJoUNSZmcBq99OLuh85zlCSpJ+KTg8PWBSxC1gCfhn4WGa+v8eaOWAOoNVqHZifnx8q2OrqKlNTUxdcvnxyZajjrtm/b+/ANU3O1boYTp0d/3kGaXKe02dWhs7aRJP7s9G5+j32WznPMDkGaZpzu5lztMaVc3Z2dikz272ua1TUP1kccSlwD3BTZj7Sb1273c7FxcXN5nyOhYUFZmZmLrh8+tCxoY675sThgwPXNDnXLfvPcWS5/xcmozrPIE3Oc+vRe4fO2kST+7PRufo99ls5zzA5Bmmac7uZc7TGlTMi+hb1pl71kZnfBxaA64ePJUlqosmrPi7vPpMmIi4G3gA8NuZckqSuJq/6uAK4s7tP/QLgrsy8b7yxJElrmrzq45vANRPIIknqwXcmSlJxFrUkFWdRS1JxFrUkFWdRS1JxFrUkFWdRS1JxFrUkFWdRS1JxFrUkFWdRS1JxFrUkFWdRS1JxFrUkFWdRS1JxFrUkFWdRS1JxFrUkFWdRS1JxFrUkFTewqCPi5RHxQEQcj4hHI+LmSQSTJHUM/C3kwDnglsx8KCIuAZYi4v7M/NaYs0mSaPCMOjOfysyHun//IXAc2DfuYJKkjk3tUUfENHAN8OBY0kiSLhCZ2WxhxBTwL8CfZ+Zne1w/B8wBtFqtA/Pz81sKtHxyBYDWxXDq7JYO0cj+fXsbZ9nIoJyjOs8ojCJrE03uz0bnWl1dZWpqaiTnGSbHoPOsn+eg44zqMd7KY9R0nps16D5tNuu4co7auHLOzs4uZWa713WNijoiLgLuAz6fmR8ZtL7dbufi4uKmgwJMHzoGwC37z3FkuckW+tacOHywcZaNDMo5qvOMwiiyNtHk/mx0roWFBWZmZkZynmFyDDrP+nkOOs6oHuOtPEZN57lZg+7TZrOOK+eojStnRPQt6iav+gjgE8DxJiUtSRqtJnvU1wLvAK6LiIe7H28ecy5JUtfAvYXM/BIQE8giSerBdyZKUnEWtSQVZ1FLUnEWtSQVZ1FLUnEWtSQVZ1FLUnEWtSQVZ1FLUnEWtSQVZ1FLUnEWtSQVZ1FLUnEWtSQVZ1FLUnEWtSQVZ1FLUnEWtSQVZ1FLUnEWtSQVZ1FLUnEDizoi7oiI0xHxyCQCSZKeq8kz6r8Hrh9zDklSHwOLOjO/CJyZQBZJUg+RmYMXRUwD92XmKzdYMwfMAbRarQPz8/NbCrR8cgWA1sVw6uyWDjFROyUnjCbr/n17B65Zewy3apIzHeb+VHzse92f1dVVpqamNnWcYR/Dflk2spWc0CzrZrNsdJ6NHvdhzjM7O7uUme1e142sqNdrt9u5uLi4qZBrpg8dA+CW/ec4srx7S8eYpJ2SE0aT9cThgwPXrD2GWzXJmQ5zfyo+9r3uz8LCAjMzM5s6zrCPYb8sG9lKTmiWdbNZNjrPRo/7MOeJiL5F7as+JKk4i1qSimvy8rxPA18GroqIJyLiPeOPJUlaM3CDLTNvnEQQSVJvbn1IUnEWtSQVZ1FLUnEWtSQVZ1FLUnEWtSQVZ1FLUnEWtSQVZ1FLUnEWtSQVZ1FLUnEWtSQVZ1FLUnEWtSQVZ1FLUnEWtSQVZ1FLUnEWtSQVZ1FLUnEWtSQVZ1FLUnGNijoiro+Ib0fEdyLi0LhDSZJ+amBRR8Qu4GPAm4BXADdGxCvGHUyS1NHkGfVrgO9k5uOZ+SwwD/zGeGNJktZEZm68IOKtwPWZ+fvdz98B/Fpmvve8dXPAXPfTq4BvD5ntMuDpIY8xCTslJ+ycrOYcLXOO1rhy/nxmXt7rit0Nbhw9Lrug3TPzNuC2TQbrf9KIxcxsj+p447JTcsLOyWrO0TLnaG1HziZbH08AL1/3+ZXAk+OJI0k6X5Oi/hrwKxHxCxHxQuBtwD+ON5Ykac3ArY/MPBcR7wU+D+wC7sjMR8eebITbKGO2U3LCzslqztEy52hNPOfAbyZKkraX70yUpOIsakkqrkRRR8TLI+KBiDgeEY9GxM3dyz8YEScj4uHux5u3OeeLIuKrEfGNbs4PdS//mYi4PyL+rfvnS4vmLDXPNRGxKyK+HhH3dT8vNc81PXJWneeJiFjuZlrsXlZupn1ylptpRFwaEXdHxGPdjnrtpOdZYo86Iq4ArsjMhyLiEmAJ+E3gd4HVzPzL7cy3JiIC2JOZqxFxEfAl4Gbgt4EzmXm4+7NQXpqZ7y+Y83oKzXNNRPwR0AZekpk3RMSHKTTPNT1yfpCa8zwBtDPz6XWXlZtpn5wfpNhMI+JO4F8z8/buK99eDPwpE5xniWfUmflUZj7U/fsPgePAvu1NdaHsWO1+elH3I+m8pf7O7uV30vlHZttskLOciLgSOAjcvu7iUvOEvjl3knIz3Qki4iXA64BPAGTms5n5fSY8zxJFvV5ETAPXAA92L3pvRHwzIu4o8uXaroh4GDgN3J+ZDwKtzHwKOv/oAC/bxohA35xQbJ7AXwF/Avx43WXl5knvnFBvntD5R/mfI2IpOj/aAWrOtFdOqDXTXwT+G/i77rbX7RGxhwnPs1RRR8QU8BngfZn5A+DjwC8BVwNPAUe2L11HZv4oM6+m8w7N10TEK7c5Uk99cpaaZ0TcAJzOzKXtzDHIBjlLzXOdazPz1XR+4uUfRsTrtjtQH71yVpvpbuDVwMcz8xrgGWDiP+q5TFF391I/AxzNzM8CZOapbuH8GPhbOj/Jr4Tulz8LdPZ9T3X32df2209vX7LnWp+z4DyvBd7S3aucB66LiE9Sb549cxacJwCZ+WT3z9PAPXRyVZtpz5wFZ/oE8MS6r0jvplPcE51niaLufvPrE8DxzPzIusuvWLfst4BHJp1tvYi4PCIu7f79YuANwGN03lL/zu6ydwL3bkvArn45q80zMz+QmVdm5jSdH03whcx8O8Xm2S9ntXkCRMSe7jfk6X6J/kY6uUrNtF/OajPNzO8B342Iq7oXvR74FhOeZ5OfnjcJ1wLvAJa7+6rQ+a7qjRFxNZ29rBPAH2xHuHWuAO6Mzi9TeAFwV2beFxFfBu6KiPcA/wX8znaGpH/Ofyg2z34OU2ue/Xy44DxbwD2d5z7sBj6VmZ+LiK9Ra6b9clb8b/Qm4Gj3FR+PA++m+//VpOZZ4uV5kqT+Smx9SJL6s6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKK+3/AALLweM7mxgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data['GINI-index'].hist(bins=35)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}