
Recipes for Scientifi c Computing, Time Series Analysis

and Data Visualization using Python

Cookbook

Pandas

Theodore Petrou

Pandas Cookbook

Recipes for Scientific Computing, Time Series Analysis and

Data Visualization using Python

Theodore Petrou

BIRMINGHAM - MUMBAI

Pandas Cookbook
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2017

Production reference: 1181017

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78439-387-8

www.packtpub.com

http://www.packtpub.com

Credits

Author
Theodore Petrou

Copy Editor
Tasneem Fatehi

Reviewers
Sonali Dayal
Kuntal Ganguly
Shilpi Saxena

Project Coordinator
Manthan Patel

Commissioning Editor
Veena Pagare

Proofreader
Safis Editing

Acquisition Editor
Tushar Gupta

Indexer
Tejal Daruwale Soni

Content Development Editor
Snehal Kolte

Graphics
Tania Dutta

Technical Editor
Sayli Nikalje

Production Coordinator
Deepika Naik

About the Author
Theodore Petrou is a data scientist and the founder of Dunder Data, a professional
educational company focusing on exploratory data analysis. He is also the head of Houston
Data Science, a meetup group with more than 2,000 members that has the primary goal of
getting local data enthusiasts together in the same room to practice data science. Before
founding Dunder Data, Ted was a data scientist at Schlumberger, a large oil services
company, where he spent the vast majority of his time exploring data.

Some of his projects included using targeted sentiment analysis to discover the root cause of
part failure from engineer text, developing customized client/server dashboarding
applications, and real-time web services to avoid the mispricing of sales items. Ted received
his masters degree in statistics from Rice University, and used his analytical skills to play
poker professionally and teach math before becoming a data scientist. Ted is a strong
supporter of learning through practice and can often be found answering questions about
pandas on Stack Overflow.

Acknowledgements
I would first like to thank my wife, Eleni, and two young children, Penelope, and Niko, who
endured extended periods of time without me as I wrote.

I’d also like to thank Sonali Dayal, whose constant feedback helped immensely in
structuring the content of the book to improve its effectiveness. Thank you to Roy Keyes,
who is the most exceptional data scientist I know and whose collaboration made Houston
Data Science possible. Thank you to Scott Boston, an extremely skilled pandas user for
developing ideas for recipes. Thank you very much to Kim Williams, Randolph Adami,
Kevin Higgins, and Vishwanath Avasarala, who took a chance on me during my
professional career when I had little to no experience. Thanks to my fellow coworker at
Schlumberger, Micah Miller, for his critical, honest, and instructive feedback on anything
that we developed together and his constant pursuit to move toward Python.

Thank you to Phu Ngo, who critically challenges and sharpens my thinking more than
anyone. Thank you to my brother, Dean Petrou, for being right by my side as we developed
our analytical skills through poker and again through business. Thank you to my sister,
Stephanie Burton, for always knowing what I’m thinking and making sure that I’m aware of
it. Thank you to my mother, Sofia Petrou, for her ceaseless love, support, and endless math
puzzles that challenged me as a child. And thank you to my father, Steve Petrou, who,
although no longer here, remains close to my heart and continues to encourage me every
day.

About the Reviewers
Sonali Dayal is a masters candidate in biostatistics at the University of California, Berkeley.
Previously, she has worked as a freelance software and data science engineer for early stage
start-ups, where she built supervised and unsupervised machine learning models as well as
data pipelines and interactive data analytics dashboards. She received her bachelor of
science (B.S.) in biochemistry from Virginia Tech in 2011.

Kuntal Ganguly is a big data machine learning engineer focused on building large-scale
data-driven systems using big data frameworks and machine learning. He has around 7
years of experience building several big data and machine learning applications.

Kuntal provides solutions to AWS customers in building real-time analytics systems using
managed cloud services and open source Hadoop ecosystem technologies such as Spark,
Kafka, Storm, Solr, and so on, along with machine learning and deep learning frameworks
such as scikit-learn, TensorFlow, Keras, and BigDL. He enjoys hands-on software
development, and has single-handedly conceived, architectured, developed, and deployed
several large scale distributed applications. He is a machine learning and deep learning
practitioner and very passionate about building intelligent applications.

Kuntal is the author of the books: Learning Generative Adversarial Network and R Data
Analysis Cookbook - Second Edition, Packt Publishing.

Shilpi Saxena is a seasoned professional who leads in management with an edge of being a
technology evangelist--she is an engineer who has exposure to a variety of domains
(machine-to-machine space, healthcare, telecom, hiring, and manufacturing). She has
experience in all aspects of the conception and execution of enterprise solutions. She has
been architecturing, managing, and delivering solutions in the big data space for the last 3
years, handling high performance geographically distributed teams of elite engineers. Shilpi
has around 12+ years (3 years in the big data space) experience in the development and
execution of various facets of enterprise solutions, both in the product/services dimensions
of the software industry. An engineer by degree and profession who has worn various hats-
-developer, technical leader, product owner, tech manager--and has seen all the flavors that
the industry has to offer. She has architectured and worked through some of the pioneer
production implementation in big data on Storm and Impala with auto scaling in AWS.
LinkedIn: http://in.linkedin.com/pub/shilpi-saxena/4/552/a30

http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt Get the most in-demand software skills with Mapt. Mapt
gives you full access to all Packt books and video courses, as well as industry-leading tools
to help you plan your personal development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1784393878. If you'd like to join our team of regular
reviewers, you can email us at customerreviews@packtpub.com. We award our regular
reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be
relentless in improving our products!

https://www.amazon.com/dp/1784393878
https://www.amazon.com/dp/1784393878
https://www.amazon.com/dp/1784393878
https://www.amazon.com/dp/1784393878
https://www.amazon.com/dp/1784393878
https://www.amazon.com/dp/1784393878
https://www.amazon.com/dp/1784393878
https://www.amazon.com/dp/1784393878
https://www.amazon.com/dp/1784393878
https://www.amazon.com/dp/1784393878
https://www.amazon.com/dp/1784393878
https://www.amazon.com/dp/1784393878
https://www.amazon.com/dp/1784393878

Table of Contents
Preface 1

Chapter 1: Pandas Foundations 15

Introduction 15
Dissecting the anatomy of a DataFrame 16

Getting ready 16
How to do it... 16
How it works... 17
There's more... 18
See also 18

Accessing the main DataFrame components 18
Getting ready 18
How to do it... 19
How it works... 20
There's more... 21
See also 21

Understanding data types 22
Getting ready 23
How to do it... 23
How it works... 23
There's more... 24
See also 24

Selecting a single column of data as a Series 24
Getting ready 24
How to do it... 25
How it works... 25
There's more... 26
See also 27

Calling Series methods 27
Getting ready 28
How to do it... 28
How it works... 32
There's more... 33
See also 34

Working with operators on a Series 34

[ii]

Getting ready 35
How to do it... 35
How it works... 37
There's more... 37
See also 38

Chaining Series methods together 38
Getting ready 38
How to do it... 39
How it works... 40
There's more... 41

Making the index meaningful 42
Getting ready 42
How to do it... 42
How it works... 43
There's more... 43
See also 43

Renaming row and column names 43
Getting ready 43
How to do it... 44
How it works... 44
There's more... 45

Creating and deleting columns 45
Getting ready 46
How to do it... 46
How it works... 48
There's more... 49
See also 49

Chapter 2: Essential DataFrame Operations 50

Introduction 50
Selecting multiple DataFrame columns 51

Getting ready 51
How to do it... 51
How it works... 52
There's more... 52

Selecting columns with methods 53
Getting ready 53
How it works... 53
How it works... 56
There's more... 56

[iii]

See also 57
Ordering column names sensibly 58

Getting ready 58
How to do it... 58
How it works... 61
There's more... 61
See also 62

Operating on the entire DataFrame 62
Getting ready 62
How to do it... 62
How it works... 64
There's more... 65

Chaining DataFrame methods together 65
Getting ready 65
How to do it... 65
How it works... 67
There's more... 67
See also 68

Working with operators on a DataFrame 68
Getting ready 69
How to do it... 70
How it works... 71
There's more... 72
See also 72

Comparing missing values 73
Getting ready 73
How to do it... 74
How it works... 76
There's more... 76

Transposing the direction of a DataFrame operation 77
Getting ready 77
How to do it... 77
How it works... 79
There's more... 80
See also 80

Determining college campus diversity 80
Getting ready 81
How to do it... 81
How it works... 85

[iv]

There's more... 85
See also 86

Chapter 3: Beginning Data Analysis 87

Introduction 87
Developing a data analysis routine 88

Getting ready 88
How to do it... 88
How it works... 91
There's more... 92

Data dictionaries 93
See also 94

Reducing memory by changing data types 94
Getting ready 94
How to do it... 94
How it works... 97
There's more... 99
See also 100

Selecting the smallest of the largest 101
Getting ready 101
How to do it... 101
How it works... 102
There's more... 103

Selecting the largest of each group by sorting 103
Getting ready 103
How to do it... 103
How it works... 105
There's more... 105

Replicating nlargest with sort_values 106
Getting ready 106
How to do it... 107
How it works... 108
There's more... 109

Calculating a trailing stop order price 109
Getting ready 110
How to do it... 110
How it works... 111
There's more... 112
See also 112

Chapter 4: Selecting Subsets of Data 113

[v]

Introduction 113
Selecting Series data 114

Getting ready 114
How to do it... 115
How it works... 116
There's more... 117
See also 117

Selecting DataFrame rows 117
Getting ready 118
How to do it... 118
How it works... 120
There's more... 120
See also 120

Selecting DataFrame rows and columns simultaneously 121
Getting ready 121
How to do it... 122
How it works... 123
There's more... 124

Selecting data with both integers and labels 124
Getting ready 124
How to do it... 124
How it works... 125
There's more... 125
See also 126

Speeding up scalar selection 126
Getting ready 126
How to do it... 127
How it works... 128
There's more... 128

Slicing rows lazily 128
Getting ready 128
How to do it... 129
How it works... 130
There's more... 131

Slicing lexicographically 131
Getting ready 132
How to do it... 132
How it works... 133
There's more... 133

[vi]

Chapter 5: Boolean Indexing 135

Introduction 135
Calculating boolean statistics 136

Getting ready 136
How to do it... 136
How it works... 138
There's more... 139
See also 139

Constructing multiple boolean conditions 139
Getting ready 139
How to do it... 139
How it works... 140
There's more... 141
See also 142

Filtering with boolean indexing 142
Getting ready 142
How to do it... 142
How it works... 144
There's more... 145
See also 145

Replicating boolean indexing with index selection 145
Getting ready 145
How to do it... 145
How it works... 147
There's more... 147

Selecting with unique and sorted indexes 148
Getting ready 148
How to do it... 148
How it works... 150
There's more... 150
See also 151

Gaining perspective on stock prices 151
Getting ready 152
How to do it... 152
How it works... 154
There's more... 154
See also 155

Translating SQL WHERE clauses 155
Getting ready 156

[vii]

How to do it... 157
How it works... 158
There's more... 159
See also 160

Determining the normality of stock market returns 160
Getting ready 160
How to do it... 160
How it works... 163
There's more... 163
See also 164

Improving readability of boolean indexing with the query method 165
Getting ready 165
How to do it... 165
How it works... 166
There's more... 166
See also 167

Preserving Series with the where method 167
Getting ready 167
How to do it... 167
How it works... 170
There's more... 171
See also 171

Masking DataFrame rows 171
Getting ready 171
How to do it... 172
How it works... 174
There's more... 175
See also 175

Selecting with booleans, integer location, and labels 175
Getting ready 175
How to do it... 176
How it works... 179
There's more... 179
See also 180

Chapter 6: Index Alignment 181

Introduction 181
Examining the Index object 182

Getting ready 182
How to do it... 182

[viii]

How it works... 183
There's more... 184
See also 184

Producing Cartesian products 185
Getting ready 185
How to do it... 185
How it works... 186
There's more... 187
See also 188

Exploding indexes 188
Getting ready 188
How to do it... 188
How it works... 190
There's more... 191

Filling values with unequal indexes 191
Getting ready 191
How to do it... 192
How it works... 194
There's more... 195

Appending columns from different DataFrames 197
Getting ready 197
How to do it... 198
How it works... 199
There's more... 200
See also 201

Highlighting the maximum value from each column 201
Getting ready 201
How to do it... 201
How it works... 205
There's more... 207
See also 207

Replicating idxmax with method chaining 207
Getting ready 208
How to do it... 208
How it works... 212
There's more... 213

Finding the most common maximum 214
Getting ready 214
How to do it... 214

[ix]

How it works... 215
There's more... 216

Chapter 7: Grouping for Aggregation, Filtration, and Transformation 217

Introduction 217
Defining an aggregation 218

Getting ready 219
How to do it... 219
How it works... 220
There's more... 221
See also 221

Grouping and aggregating with multiple columns and functions 222
Getting ready 222
How to do it... 222
How it works... 224
There's more... 224

Removing the MultiIndex after grouping 225
Getting ready 225
How to do it... 225
How it works... 228
There's more... 228

Customizing an aggregation function 229
Getting ready 230
How to do it... 230
How it works... 231
There's more... 232

Customizing aggregating functions with *args and **kwargs 233
Getting ready 234
How to do it... 234
How it works... 235
There's more... 236
See also 237

Examining the groupby object 238
Getting ready 238
How to do it... 238
How it works... 241
There's more... 242
See also 242

Filtering for states with a minority majority 243
Getting ready 244

[x]

How to do it... 244
How it works... 245
There's more... 246
See also 246

Transforming through a weight loss bet 247
Getting ready 247
How to do it... 247
How it works... 252
There's more... 253
See also 254

Calculating weighted mean SAT scores per state with apply 254
Getting ready 254
How to do it... 255
How it works... 257
There's more... 258
See also 259

Grouping by continuous variables 260
Getting ready 260
How to do it... 260
How it works... 262
There's more... 262
See also 264

Counting the total number of flights between cities 264
Getting ready 264
How to do it... 264
How it works... 266
There's more... 267
See also 268

Finding the longest streak of on-time flights 268
Getting ready 269
How to do it... 269
How it works... 272
There's more... 274
See also 276

Chapter 8: Restructuring Data into a Tidy Form 277

Introduction 277
Tidying variable values as column names with stack 279

Getting ready 280
How to do it... 280

[xi]

How it works... 282
There's more... 283
See also 284

Tidying variable values as column names with melt 284
Getting ready 285
How to do it... 285
How it works... 287
There's more... 287
See also 288

Stacking multiple groups of variables simultaneously 289
Getting ready 289
How to do it... 290
How it works... 291
There's more... 292
See also 293

Inverting stacked data 293
Getting ready 293
How to do it... 294
How it works... 297
There's more... 298
See also 299

Unstacking after a groupby aggregation 299
Getting ready 299
How to do it... 299
How it works... 301
There's more... 301
See also 303

Replicating pivot_table with a groupby aggregation 303
Getting ready 303
How to do it... 303
How it works... 304
There's more... 305

Renaming axis levels for easy reshaping 306
Getting ready 306
How to do it... 306
How it works... 310
There's more... 311

Tidying when multiple variables are stored as column names 312
Getting ready... 312

[xii]

How to do it... 312
How it works... 315
There's more... 316
See also 317

Tidying when multiple variables are stored as column values 317
Getting ready 317
How to do it... 317
How it works... 321
There's more... 322
See also 322

Tidying when two or more values are stored in the same cell 322
Getting ready... 323
How to do it.. 323
How it works... 324
There's more... 325

Tidying when variables are stored in column names and values 326
Getting ready 326
How to do it... 326
How it works... 328
There's more... 329

Tidying when multiple observational units are stored in the same table 329
Getting ready 329
How to do it... 330
How it works... 335
There's more... 336
See also 337

Chapter 9: Combining Pandas Objects 338

Introduction 338
Appending new rows to DataFrames 338

Getting ready 339
How to do it... 339
How it works... 345
There's more... 346

Concatenating multiple DataFrames together 347
Getting ready 347
How to do it... 347
How it works... 350
There's more... 350

Comparing President Trump's and Obama's approval ratings 351

[xiii]

Getting ready 351
How to do it... 351
How it works... 364
There's more... 366
See also 367

Understanding the differences between concat, join, and merge 368
Getting ready 369
How to do it... 369
How it works... 376
There's more... 378
See also 379

Connecting to SQL databases 379
Getting ready 379
How to do it... 380
How it works... 382
There's more... 383
See also 385

Chapter 10: Time Series Analysis 386

Introduction 386
Understanding the difference between Python and pandas date tools 387

Getting ready 387
How to do it... 387
How it works... 392
There's more... 393
See also 393

Slicing time series intelligently 393
Getting ready 394
How to do it... 394
How it works... 397
There's more... 398
See also 399

Using methods that only work with a DatetimeIndex 399
Getting ready 399
How to do it... 399
How it works... 403
There's more... 404
See also 404

Counting the number of weekly crimes 405
Getting ready 405

[xiv]

How to do it... 405
How it works... 407
There's more... 408
See also 408

Aggregating weekly crime and traffic accidents separately 409
Getting ready 409
How to do it... 409
How it works... 411
There's more... 412

Measuring crime by weekday and year 413
Getting ready 413
How to do it... 413
How it works... 420
There's more... 422
See also 424

Grouping with anonymous functions with a DatetimeIndex 424
Getting ready 424
How to do it... 424
How it works... 426
There's more... 427
See also 428

Grouping by a Timestamp and another column 428
Getting ready 428
How to do it... 428
How it works... 432
There's more... 433

Finding the last time crime was 20% lower with merge_asof 434
Getting ready 434
How to do it... 435
How it works... 437
There's more... 438

Chapter 11: Visualization with Matplotlib, Pandas, and Seaborn 440

Introduction 440
Getting started with matplotlib 442

Getting ready 442
Object-oriented guide to matplotlib 443

How to do it... 445
How it works... 449
There's more... 452

[xv]

See also 453
Visualizing data with matplotlib 453

Getting ready 453
How to do it... 453
How it works... 457
There's more... 460
See also 462

Plotting basics with pandas 462
Getting ready 462
How to do it.. 463
How it works... 465
There's more... 466
See also 466

Visualizing the flights dataset 467
Getting ready 467
How to do it... 467
How it works... 475
See also 478

Stacking area charts to discover emerging trends 478
Getting ready 478
How to do it... 478
How it works... 481
There's more... 482

Understanding the differences between seaborn and pandas 483
Getting ready 484
How to do it... 484
How it works... 491
See also 492

Doing multivariate analysis with seaborn Grids 492
Getting ready 493
How to do it... 493
How it works... 496
There's more... 496

Uncovering Simpson's paradox in the diamonds dataset with seaborn 499
How to do it... 500
How it works... 504
There's more... 505

Index 506

Preface
The popularity of data science has skyrocketed since it was called The Sexiest Job of the 21st
Century by the Harvard Review in 2012. It was ranked as the number one job by Glassdoor
in both 2016 and 2017. Fueling this skyrocketing popularity for data science is the demand
from industry. Several applications have made big splashes in the news, such as Netflix
making better movie recommendations, IBM Watson defeating humans at Jeopardy, Tesla
building self-driving cars, Major League Baseball teams finding undervalued prospects, and
Google learning to identify cats on the internet.

Nearly every industry is finding ways to use data science to build new technology or
provide deeper insights. Due to such noteworthy successes, an ever-present aura of hype
seems to encapsulate data science. Most of the scientific progress backing this hype stems
from the field of machine learning, which produces the algorithms that make the
predictions responsible for artificial intelligence.

The fundamental building block for all machine learning algorithms is, of course, data. As
companies have realized this, there is no shortage of it. The business intelligence company,
Domo, estimates that 90% of the world's data has been created in just the last two years.
Although machine learning gets all the attention, it is completely reliant on the quality of
the data that it is fed. Before data ever reaches the input layers of a machine learning
algorithm, it must be prepared, and for data to be prepared properly, it needs to be
explored thoroughly for basic understanding and to identify inaccuracies. Before data can
be explored, it needs to be captured.

To summarize, we can cast the data science pipeline into three stages--data capturing, data
exploration, and machine learning. There are a vast array of tools available to complete each
stage of the pipeline. Pandas is the dominant tool in the scientific Python ecosystem for data
exploration and analysis. It is tremendously capable of inspecting, cleaning, tidying,
filtering, transforming, aggregating, and even visualizing (with some help) all types of data.
It is not a tool for initially capturing the data, nor is it a tool to build machine learning
models.

For many data analysts and scientists who use Python, the vast majority of their work will
be done using pandas. This is likely because the initial data exploration and preparation
tend to take the most time. Some entire projects consist only of data exploration and have
no machine learning component. Data scientists spend so much time on this stage that a
timeless lore has arisen--Data scientists spend 80% of their time cleaning the data and the other
20% complaining about cleaning the data.

Preface

[2]

Although there is an abundance of open source and free programming languages available
to do data exploration, the field is currently dominated by just two players, Python and R.
The two languages have vastly different syntax but are both very capable of doing data
analysis and machine learning. One measure of popularity is the number of questions asked
on the popular Q&A site, Stack Overflow (https://insights.stackoverflow.com/trends):

While this is not a true measure of usage, it is clear that both Python and R have become
increasingly popular, likely due to their data science capabilities. It is interesting to note that
the percentage of Python questions remained constant until the year 2012, when data
science took off. What is probably most astonishing about this graph is that pandas
questions now make up a whopping one percent of all the newest questions on Stack
Overflow.

One of the reasons why Python has become a language of choice for data science is that it is
a fairly easy language to learn and develop, and so it has a low barrier to entry. It is also
free and open source, able to run on a variety of hardware and software, and a breeze to get
up and running. It has a very large and active community with a substantial amount of free
resources online. In my opinion, Python is one of the most fun languages to develop
programs with. The syntax is so clear, concise, and intuitive but like all languages, takes
quite a long time to master.

https://insights.stackoverflow.com/trends
https://insights.stackoverflow.com/trends
https://insights.stackoverflow.com/trends
https://insights.stackoverflow.com/trends
https://insights.stackoverflow.com/trends
https://insights.stackoverflow.com/trends
https://insights.stackoverflow.com/trends
https://insights.stackoverflow.com/trends
https://insights.stackoverflow.com/trends
https://insights.stackoverflow.com/trends
https://insights.stackoverflow.com/trends

Preface

[3]

As Python was not built for data analysis like R, the syntax may not come as naturally as it
does for some other Python libraries. This actually might be part of the reason why there
are so many Stack Overflow questions on it. Despite its tremendous capabilities, pandas
code can often be poorly written. One of the main aims of this book is to show performant
and idiomatic pandas code.

For all its greatness, Stack Overflow, unfortunately perpetuates misinformation and is a
source for lots of poorly written pandas. This is actually not the fault of Stack Overflow or
its community. Pandas is an open source project and has had numerous major changes,
even recently, as it approaches its tenth year of existence in 2018. The upside of open source,
though, is that new features get added to it all the time.

The recipes in this book were formulated through my experience working as a data
scientist, building and hosting several week-long data exploration bootcamps, answering
several hundred questions on Stack Overflow, and building tutorials for my local meetup
group. The recipes not only offer idiomatic solutions to common data problems, but also
take you on journeys through many real-world datasets, where surprising insights are often
discovered. These recipes will also help you master the pandas library, which will give you
a gigantic boost in productivity. There is a huge difference between those who have only
cursory knowledge of pandas and those who have it mastered. There are so many
interesting and fun tricks to solve your data problems that only become apparent if you
truly know the library inside and out. Personally, I find pandas to be a delightful and fun
tool to analyze data with, and I hope you enjoy your journey along with me. If you have
questions, please feel free to reach out to me on Twitter: @TedPetrou.

What this book covers
Chapter 1, Pandas Foundations, covers the anatomy and vocabulary used to identify the
components of the two main pandas data structures, the Series and the DataFrame. Each
column must have exactly one type of data, and each of these data types is covered. You
will learn how to unleash the power of the Series and the DataFrame by calling and
chaining together their methods.

Chapter 2, Essential DataFrame Operations, focuses on the most crucial and common
operations that you will perform during data analysis.

Chapter 3, Beginning Data Analysis, helps you develop a routine to get started after reading
in your data. Other interesting discoveries will be made.

Preface

[4]

Chapter 4, Selecting Subsets of Data, covers the many varied and potentially confusing ways
of selecting different subsets of data.

Chapter 5, Boolean Indexing, covers the process of querying your data to select subsets of it
based on Boolean conditions.

Chapter 6, Index Alignment, targets the very important and often misunderstood index
object. Misuse of the Index is responsible for lots of erroneous results, and these recipes
show you how to use it correctly to deliver powerful results.

Chapter 7, Grouping for Aggregation, Filtration, and Transformation, covers the powerful
grouping capabilities that are almost always necessary during a data analysis. You will
build customized functions to apply to your groups.

Chapter 8, Restructuring Data into Tidy Form, explains what tidy data is and why it’s so
important, and then it shows you how to transform many different forms of messy datasets
into tidy ones.

Chapter 9, Combining Pandas Objects, covers the many available methods to combine
DataFrames and Series vertically or horizontally. We will also do some web-scraping to
compare President Trump's and Obama's approval rating and connect to an SQL relational
database.

Chapter 10, Time Series Analysis, covers advanced and powerful time series capabilities to
dissect by any dimension of time possible.

Chapter 11, Visualization with Matplotlib, Pandas, and Seaborn, introduces the matplotlib
library, which is responsible for all of the plotting in pandas. We will then shift focus to the
pandas plot method and, finally, to the seaborn library, which is capable of producing
aesthetically pleasing visualizations not directly available in pandas.

What you need for this book
Pandas is a third-party package for the Python programming language and, as of the
printing of this book, is on version 0.20. Currently, Python has two major supported
releases, versions 2.7 and 3.6. Python 3 is the future, and it is now highly recommended that
all scientific computing users of Python use it, as Python 2 will no longer be supported in
2020. All examples in this book have been run and tested with pandas 0.20 on Python 3.6.

Preface

[5]

In addition to pandas, you will need to have the matplotlib version 2.0 and seaborn version
0.8 visualization libraries installed. A major dependence for pandas is the NumPy library,
which forms the basis of most of the popular Python scientific computing libraries.

There are a wide variety of ways in which you can install pandas and the rest of the
libraries mentioned on your computer, but by far the simplest method is to install the
Anaconda distribution. Created by Continuum Analytics, it packages together all the
popular libraries for scientific computing in a single downloadable file available on
Windows, Mac OSX, and Linux. Visit the download page to get the Anaconda distribution
(https://www.anaconda.com/download).

In addition to all the scientific computing libraries, the Anaconda distribution comes with
Jupyter Notebook, which is a browser-based program for developing in Python, among
many other languages. All of the recipes for this book were developed inside of a Jupyter
Notebook and all of the individual notebooks for each chapter will be available for you to
use.

It is possible to install all the necessary libraries for this book without the use of the
Anaconda distribution. For those that are interested, visit the pandas Installation page
(http://pandas.pydata.org/pandas-docs/stable/install.html).

Running a Jupyter Notebook
The suggested method to work through the content of this book is to have a Jupyter
Notebook up and running so that you can run the code while reading through the recipes.
This allows you to go exploring on your own and gain a deeper understanding than by just
reading the book alone.

Assuming that you have installed the Anaconda distribution on your machine, you have
two options available to start the Jupyter Notebook:

Use the program Anaconda Navigator
Run the jupyter notebook command from the Terminal/Command Prompt

https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html

Preface

[6]

The Anaconda Navigator is a GUI-based tool that allows you to find all the different
software provided by Anaconda with ease. Running the program will give you a screen like
this:

As you can see, there are many programs available to you. Click Launch to open the Jupyter
Notebook. A new tab will open in your browser, showing you a list of folders and files in
your home directory:

Preface

[7]

Instead of using the Anaconda Navigator, you can launch Jupyter Notebook by opening up
your Terminal/Command Prompt and running the jupyter notebook command like this:

It is not necessary to run this command from your home directory. You can run it from any
location, and the contents in the browser will reflect that location.

Although we have now started the Jupyter Notebook program, we haven't actually
launched a single individual notebook where we can start developing in Python. To do so,
you can click on the New button on the right-hand side of the page, which will drop down
a list of all the possible kernels available for you to use. If you just downloaded Anaconda,
then you will only have a single kernel available to you (Python 3). After selecting the
Python 3 kernel, a new tab will open in the browser, where you can start writing Python
code:

Preface

[8]

You can, of course, open previously created notebooks instead of beginning a new one. To
do so, simply navigate through the filesystem provided in the Jupyter Notebook browser
home page and select the notebook you want to open. All Jupyter Notebook files end in
.ipynb. For instance, when you navigate to the location of the notebook files for this book,
you will see all of them like this:

Who this book is for
This book contains nearly 100 recipes, ranging from very simple to advanced. All recipes
strive to be written in clear, concise, and modern idiomatic pandas code. The How it works...
sections contain extremely detailed descriptions of the intricacies of each step of the recipe.
Often, in the There's more... section, you will get what may seem like an entirely new recipe.
This book is densely packed with an extraordinary amount of pandas code.

As a generalization, the recipes in the first six chapters tend to be simpler and more focused
on the fundamental and essential operations of pandas than the last five chapters, which
focus on more advanced operations and are more project-driven. Due to the wide range of
complexity, this book can be useful to both the novice and everyday user alike. It has been
my experience that even those who use pandas regularly will not master it without being
exposed to idiomatic pandas code. This is somewhat fostered by the breadth that pandas
offers. There are almost always multiple ways of completing the same operation, which can
have users get the result they want but in a very inefficient manner. It is not uncommon to
see an order of magnitude or more performance difference between two sets of pandas
solutions to the same problem.

Preface

[9]

The only real prerequisite for this book is fundamental knowledge of Python. It is assumed
that the reader is familiar with all the common built-in data containers in Python, such as
lists, sets, dictionaries, and tuples.

How to get the most out of this book
There are a couple of things you can do to get the most out of this book. First, and most
importantly, you should download all the code, which will be stored in Jupyter Notebooks.
While reading through each recipe, run each step of code in the notebook. Make sure you
explore on your own as you run through the code. Second, have the pandas official
documentation open (http://pandas.pydata.org/pandas-docs/stable/) in one of your
browser tabs. The pandas documentation is an excellent resource containing over 1,000
pages of material. There are examples for most of the pandas operations in the
documentation, and they will often be directly linked from the See also section. While it
covers the basics of most operations, it does so with trivial examples and fake data that
don't reflect situations that you are likely to encounter when analyzing datasets from the
real world.

Conventions
In this book, you will find a few text styles that distinguish between different kinds of
information. Most commonly you will see blocks of code during each recipe that will look
like this:

>>> employee = pd.read_csv('data/employee')

>>> max_dept_salary = employee.groupby('DEPARTMENT')['BASE_SALARY'].max()

The pandas Series and DataFrames are stylized differently when output in the notebook.
The pandas Series have no special formatting and are just raw text. They will appear
directly preceding the line of code that creates them in the code block itself, like this:

>>> max_dept_salary.head()

DEPARTMENT

Admn. & Regulatory Affairs 140416.0

City Controller's Office 64251.0

City Council 100000.0

Convention and Entertainment 38397.0

Dept of Neighborhoods (DON) 89221.0

Name: BASE_SALARY, dtype: float64

http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/

Preface

[10]

DataFrames, on the other hand, are nicely stylized in the notebooks and appear as images
outside of the code box, like this:

>>> employee.pivot_table(index='DEPARTMENT',

 columns='GENDER',

 values='BASE_SALARY').round(0).head()

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: In order
to find the average BASE_SALARY by GENDER, you can use the pivot_table method.

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In a Jupyter notebook, when
holding down Shift + Tab + Tab with the cursor placed somewhere in the object, a window of
the docsstrings will pop out making the method far easier to use."

Tips and tricks appear like this.

Warnings or important notes appear in a box like this.

Preface

[11]

Assumptions for every recipe
It should be assumed that at the beginning of each recipe, pandas, NumPy, and matplotlib
are imported into the namespace. For plots to be embedded directly within the notebook,
you must also run the magic command %matplotlib inline. Also, all data is stored in
the data directory and is most commonly stored as a CSV file, which can be read directly
with the read_csv function.

>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> %matplotlib inline

>>> my_dataframe = pd.read_csv('data/dataset_name.csv')

Dataset Descriptions
There are about two dozen datasets that are used throughout this book. It can be very
helpful to have background information on each dataset as you complete the steps in the
recipes. A detailed description of each dataset may be found in the
dataset_descriptions Jupyter Notebook found at https://github.com/
PacktPublishing/Pandas-Cookbook. For each datastet, there will be a list of the columns,
information about each column and notes on how the data was procured.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it…, How it works…, There's more…, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook

Preface

[12]

How to do it...
This section contains the steps required to follow the recipe.

How it works...
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important to us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply email feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

[13]

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Pandas-Cookbook. We also have other code bundles from our rich catalog
of books and videos available at https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/Pandas-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[14]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/PandasCookbook_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books--maybe a mistake in the text or the code--
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Pandas Foundations

In this chapter, we will cover the following:

Dissecting the anatomy of a DataFrame
Accessing the main DataFrame components
Understanding data types
Selecting a single column of data as a Series
Calling Series methods
Working with operators on a Series
Chaining Series methods together
Making the index meaningful
Renaming row and column names
Creating and deleting columns

Introduction
The goal of this chapter is to introduce a foundation of pandas by thoroughly inspecting the
Series and DataFrame data structures. It is vital for pandas users to know each component
of the Series and the DataFrame, and to understand that each column of data in pandas
holds precisely one data type.

In this chapter, you will learn how to select a single column of data from a DataFrame,
which is returned as a Series. Working with this one-dimensional object makes it easy to
show how different methods and operators work. Many Series methods return another
Series as output. This leads to the possibility of calling further methods in succession, which
is known as method chaining.

Pandas Foundations

[16]

The Index component of the Series and DataFrame is what separates pandas from most
other data analysis libraries and is the key to understanding how many operations work.
We will get a glimpse of this powerful object when we use it as a meaningful label for Series
values. The final two recipes contain simple tasks that frequently occur during a data
analysis.

Dissecting the anatomy of a DataFrame
Before diving deep into pandas, it is worth knowing the components of the DataFrame.
Visually, the outputted display of a pandas DataFrame (in a Jupyter Notebook) appears to
be nothing more than an ordinary table of data consisting of rows and columns. Hiding
beneath the surface are the three components--the index, columns, and data (also known as
values) that you must be aware of in order to maximize the DataFrame's full potential.

Getting ready
This recipe reads in the movie dataset into a pandas DataFrame and provides a labeled
diagram of all its major components.

How to do it...
Use the read_csv function to read in the movie dataset, and display the first five1.
rows with the head method:

>>> movie = pd.read_csv('data/movie.csv')

>>> movie.head()

Pandas Foundations

[17]

Analyze the labeled anatomy of the DataFrame:2.

How it works...
Pandas first reads the data from disk into memory and into a DataFrame using the excellent
and versatile read_csv function. The output for both the columns and the index is in bold
font, which makes them easy to identify. By convention, the terms index label and column
name refer to the individual members of the index and columns, respectively. The term
index refers to all the index labels as a whole just as the term columns refers to all the column
names as a whole.

The columns and the index serve a particular purpose, and that is to provide labels for the
columns and rows of the DataFrame. These labels allow for direct and easy access to
different subsets of data. When multiple Series or DataFrames are combined, the indexes
align first before any calculation occurs. Collectively, the columns and the index are known
as the axes.

A DataFrame has two axes--a vertical axis (the index) and a horizontal
axis(the columns). Pandas borrows convention from NumPy and uses the
integers 0/1 as another way of referring to the vertical/horizontal axis.

DataFrame data (values) is always in regular font and is an entirely separate component
from the columns or index. Pandas uses NaN (not a number) to represent missing values.
Notice that even though the color column has only string values, it uses NaN to represent
a missing value.

Pandas Foundations

[18]

The three consecutive dots in the middle of the columns indicate that there is at least one
column that exists but is not displayed due to the number of columns exceeding the
predefined display limits.

The Python standard library contains the csv module, which can be used
to parse and read in data. The pandas read_csv function offers a
powerful increase in performance and functionality over this module.

There's more...
The head method accepts a single parameter, n, which controls the number of rows
displayed. Similarly, the tail method returns the last n rows.

See also
Pandas official documentation of the read_csv function (http://bit.ly/
2vtJQ9A)

Accessing the main DataFrame components
Each of the three DataFrame components--the index, columns, and data--may be accessed
directly from a DataFrame. Each of these components is itself a Python object with its own
unique attributes and methods. It will often be the case that you would like to perform
operations on the individual components and not on the DataFrame as a whole.

Getting ready
This recipe extracts the index, columns, and the data of the DataFrame into separate
variables, and then shows how the columns and index are inherited from the same object.

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

Pandas Foundations

[19]

How to do it...
Use the DataFrame attributes index, columns, and values to assign the index,1.
columns, and data to their own variables:

>>> movie = pd.read_csv('data/movie.csv')

>>> index = movie.index

>>> columns = movie.columns

>>> data = movie.values

Display each component's values:2.

>>> index

RangeIndex(start=0, stop=5043, step=1)

>>> columns

Index(['color', 'director_name', 'num_critic_for_reviews',

 ...

 'imdb_score', 'aspect_ratio', 'movie_facebook_likes'],

 dtype='object')

>>> data

array([['Color', 'James Cameron', 723.0, ..., 7.9, 1.78, 33000],

 ...,

 ['Color', 'Jon Gunn', 43.0, ..., 6.6, 1.85, 456]],

 dtype=object)

Output the type of each DataFrame component. The name of the type is the word3.
following the last dot of the output:

>>> type(index)

pandas.core.indexes.range.RangeIndex

>>> type(columns)

pandas.core.indexes.base.Index

>>> type(data)

numpy.ndarray

Pandas Foundations

[20]

Interestingly, both the types for both the index and the columns appear to be4.
closely related. The built-in issubclass method checks whether RangeIndex is
indeed a subclass of Index:

>>> issubclass(pd.RangeIndex, pd.Index)

True

How it works...
You may access the three main components of a DataFrame with the index, columns, and
values attributes. The output of the columns attribute appears to be just a sequence of the
column names. This sequence of column names is technically an Index object. The output
of the function type is the fully qualified class name of the object.

The fully qualified class name of the object for the variable columns is
pandas.core.indexes.base.Index. It begins with the package name,
which is followed by a path of modules and ends with the name of the
type. A common way of referring to objects is to include the package name
followed by the name of the object type. In this instance, we would refer to
the columns as a pandas Index object.

The built-in subclass function checks whether the first argument inherits from the second.
The Index and RangeIndex objects are very similar, and in fact, pandas has a number of
similar objects reserved specifically for either the index or the columns. The index and the
columns must both be some kind of Index object. Essentially, the index and the columns
represent the same thing, but along different axes. They’re occasionally referred to as the
row index and column index.

In this context, the Index objects refer to all the possible objects that can be
used for the index or columns. They are all subclasses of pd.Index. Here
is the complete list of the Index objects: CategoricalIndex,
MultiIndex, IntervalIndex, Int64Index, UInt64Index,
Float64Index, RangeIndex, TimedeltaIndex, DatetimeIndex,
PeriodIndex.

A RangeIndex is a special type of Index object that is analogous to Python's range object.
Its entire sequence of values is not loaded into memory until it is necessary to do so, thereby
saving memory. It is completely defined by its start, stop, and step values.

Pandas Foundations

[21]

There's more...
When possible, Index objects are implemented using hash tables that allow for very fast
selection and data alignment. They are similar to Python sets in that they support
operations such as intersection and union, but are dissimilar because they are ordered with
duplicates allowed.

Python dictionaries and sets are also implemented with hash tables that
allow for membership checking to happen very fast in constant time,
regardless of the size of the object.

Notice how the values DataFrame attribute returned a NumPy n-dimensional array, or
ndarray. Most of pandas relies heavily on the ndarray. Beneath the index, columns, and
data are NumPy ndarrays. They could be considered the base object for pandas that many
other objects are built upon. To see this, we can look at the values of the index and
columns:

>>> index.values

array([0, 1, 2, ..., 4913, 4914, 4915])

>>> columns.values

array(['color', 'director_name', 'num_critic_for_reviews',

 ...

 'imdb_score', 'aspect_ratio', 'movie_facebook_likes'],

 dtype=object)

See also
Pandas official documentation of Indexing and Selecting data (http://bit.ly/
2vm8f12)
A look inside pandas design and development slide deck from pandas author, Wes
McKinney (http://bit.ly/2u4YVLi)

https://pandas.pydata.org/pandas-docs/stable/indexing.html
https://pandas.pydata.org/pandas-docs/stable/indexing.html
https://pandas.pydata.org/pandas-docs/stable/indexing.html
https://pandas.pydata.org/pandas-docs/stable/indexing.html
https://pandas.pydata.org/pandas-docs/stable/indexing.html
https://pandas.pydata.org/pandas-docs/stable/indexing.html
https://pandas.pydata.org/pandas-docs/stable/indexing.html
https://pandas.pydata.org/pandas-docs/stable/indexing.html
http://wesmckinney.com/blog/nycpython-1102012-a-look-inside-pandas-design-and-development/
http://wesmckinney.com/blog/nycpython-1102012-a-look-inside-pandas-design-and-development/
http://wesmckinney.com/blog/nycpython-1102012-a-look-inside-pandas-design-and-development/
http://wesmckinney.com/blog/nycpython-1102012-a-look-inside-pandas-design-and-development/
http://wesmckinney.com/blog/nycpython-1102012-a-look-inside-pandas-design-and-development/
http://wesmckinney.com/blog/nycpython-1102012-a-look-inside-pandas-design-and-development/
http://wesmckinney.com/blog/nycpython-1102012-a-look-inside-pandas-design-and-development/
http://wesmckinney.com/blog/nycpython-1102012-a-look-inside-pandas-design-and-development/
http://wesmckinney.com/blog/nycpython-1102012-a-look-inside-pandas-design-and-development/

Pandas Foundations

[22]

Understanding data types
In very broad terms, data may be classified as either continuous or categorical. Continuous
data is always numeric and represents some kind of measurement, such as height, wage, or
salary. Continuous data can take on an infinite number of possibilities. Categorical data, on
the other hand, represents discrete, finite amounts of values such as car color, type of poker
hand, or brand of cereal.

Pandas does not broadly classify data as either continuous or categorical. Instead, it has
precise technical definitions for many distinct data types. The following table contains all
pandas data types, with their string equivalents, and some notes on each type:

Common data
type name

NumPy/pandas object Pandas string
name

Notes

Boolean np.bool bool Stored as a single byte.

Integer np.int int Defaulted to 64 bits. Unsigned
ints are also available -
np.uint.

Float np.float float Defaulted to 64 bits.

Complex np.complex complex Rarely seen in data analysis.

Object np.object O, object Typically strings but is a catch-
all for columns with multiple
different types or other Python
objects (tuples, lists, dicts, and
so on).

Datetime np.datetime64,

pd.Timestamp

datetime64 Specific moment in time with
nanosecond precision.

Timedelta np.timedelta64,

pd.Timedelta

timedelta64 An amount of time, from days
to nanoseconds.

Categorical pd.Categorical category Specific only to pandas. Useful
for object columns with
relatively few unique values.

Pandas Foundations

[23]

Getting ready
In this recipe, we display the data type of each column in a DataFrame. It is crucial to know
the type of data held in each column as it fundamentally changes the kind of operations that
are possible with it.

How to do it...
Use the dtypes attribute to display each column along with its data type:1.

>>> movie = pd.read_csv('data/movie.csv')

>>> movie.dtypes

color object

director_name object

num_critic_for_reviews float64

duration float64

director_facebook_likes float64

 ...

title_year float64

actor_2_facebook_likes float64

imdb_score float64

aspect_ratio float64

movie_facebook_likes int64

Length: 28, dtype: object

Use the get_dtype_counts method to return the counts of each data type:2.

>>> movie.get_dtype_counts()

float64 13

int64 3

object 12

How it works...
Each DataFrame column must be exactly one type. For instance, every value in the column
aspect_ratio is a 64-bit float, and every value in movie_facebook_likes is a 64-bit
integer. Pandas defaults its core numeric types, integers, and floats to 64 bits regardless of
the size necessary for all data to fit in memory. Even if a column consists entirely of the
integer value 0, the data type will still be int64. get_dtype_counts is a convenience
method for directly returning the count of all the data types in the DataFrame.

Pandas Foundations

[24]

Homogeneous data is another term for referring to columns that all have
the same type. DataFrames as a whole may contain heterogeneous data of
different data types for different columns.

The object data type is the one data type that is unlike the others. A column that is of object
data type may contain values that are of any valid Python object. Typically, when a column
is of the object data type, it signals that the entire column is strings. This isn't necessarily the
case as it is possible for these columns to contain a mixture of integers, booleans, strings, or
other, even more complex Python objects such as lists or dictionaries. The object data type is
a catch-all for columns that pandas doesn’t recognize as any other specific type.

There's more...
Almost all of pandas data types are built directly from NumPy. This tight integration makes
it easier for users to integrate pandas and NumPy operations. As pandas grew larger and
more popular, the object data type proved to be too generic for all columns with string
values. Pandas created its own categorical data type to handle columns of strings (or
numbers) with a fixed number of possible values.

See also
Pandas official documentation for dtypes (http://bit.ly/2vxe8ZI)
NumPy official documentation for Data types (http://bit.ly/2wq0qEH)

Selecting a single column of data as a Series
A Series is a single column of data from a DataFrame. It is a single dimension of
data, composed of just an index and the data.

Getting ready
This recipe examines two different syntaxes to select a Series, one with the indexing
operator and the other using dot notation.

http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
https://docs.scipy.org/doc/numpy/user/basics.types.html
https://docs.scipy.org/doc/numpy/user/basics.types.html
https://docs.scipy.org/doc/numpy/user/basics.types.html
https://docs.scipy.org/doc/numpy/user/basics.types.html
https://docs.scipy.org/doc/numpy/user/basics.types.html
https://docs.scipy.org/doc/numpy/user/basics.types.html
https://docs.scipy.org/doc/numpy/user/basics.types.html
https://docs.scipy.org/doc/numpy/user/basics.types.html
https://docs.scipy.org/doc/numpy/user/basics.types.html

Pandas Foundations

[25]

How to do it...
Pass a column name as a string to the indexing operator to select a Series of data:1.

>>> movie = pd.read_csv('data/movie.csv')

>>> movie['director_name']

Alternatively, you may use the dot notation to accomplish the same task:2.

>>> movie.director_name

Inspect the Series anatomy:3.

Verify that the output is a Series:4.

>>> type(movie['director_name'])

pandas.core.series.Series

How it works...
Python has several built-in objects for containing data, such as lists, tuples, and dictionaries.
All three of these objects use the indexing operator to select their data. DataFrames are more
powerful and complex containers of data, but they too use the indexing operator as the
primary means to select data. Passing a single string to the DataFrame indexing operator
returns a Series.

Pandas Foundations

[26]

The visual output of the Series is less stylized than the DataFrame. It represents a single
column of data. Along with the index and values, the output displays the name, length, and
data type of the Series.

Alternatively, while not recommended and subject to error, a column of data may be
accessed using the dot notation with the column name as an attribute. Although it works
with this particular example, it is not best practice and is prone to error and misuse.
Column names with spaces or special characters cannot be accessed in this manner. This
operation would have failed if the column name was director name. Column names that
collide with DataFrame methods, such as count, also fail to be selected correctly using the
dot notation. Assigning new values or deleting columns with the dot notation might give
unexpected results. Because of this, using the dot notation to access columns should be
avoided with production code.

There's more...
Why would anyone ever use the dot notation syntax if it causes trouble? Programmers are
lazy, and there are fewer characters to type. But mainly, it is extremely handy when you
want to have the autocomplete intelligence available. For this reason, column selection by
dot notation will sometimes be used in this book. The autocomplete intelligence is fantastic
for helping you become aware of all the possible attributes and methods available to an
object.

The intelligence will fail to work when attempting to chain an operation after use of the
indexing operator from step 1 but will continue to work with the dot notation from step 2.
The following screenshot shows the pop-up window that appears after the selection of
the director_name with the dot notation. All the possible attributes and methods will
appear in a list after pressing Tab following the dot:

Pandas Foundations

[27]

In a Jupyter notebook, when holding down Shift + Tab + Tab with the
cursor placed somewhere in the object, a window of the docsstrings will
pop out making the method far easier to use. This intelligence again
disappears if you try to chain an operation after selecting a column with
the indexing operator.

Yet another reason to be aware of the dot notation is the proliferation of its use online at the
popular question and answer site Stack Overflow. Also, notice that the old column name is
now the name of the Series and has actually become an attribute:

>>> director = movie['director_name']

>>> director.name

'director_name'

It is possible to turn this Series into a one-column DataFrame with the to_frame method.
This method will use the Series name as the new column name:

>>> director.to_frame()

See also
To understand how Python objects gain the capability to use the indexing
operator, see the Python documentation on the __getitem__ special method
(http://bit.ly/2u5ISN6)
Refer to the Selecting multiple DataFrame columns recipe from Chapter 2, Essential
DataFrame operations

Calling Series methods
Utilizing the single-dimensional Series is an integral part of all data analysis with pandas. A
typical workflow will have you going back and forth between executing statements on
Series and DataFrames. Calling Series methods is the primary way to use the abilities that
the Series offers.

https://docs.python.org/3/reference/datamodel.html#object.__getitem__
https://docs.python.org/3/reference/datamodel.html#object.__getitem__
https://docs.python.org/3/reference/datamodel.html#object.__getitem__
https://docs.python.org/3/reference/datamodel.html#object.__getitem__
https://docs.python.org/3/reference/datamodel.html#object.__getitem__
https://docs.python.org/3/reference/datamodel.html#object.__getitem__
https://docs.python.org/3/reference/datamodel.html#object.__getitem__
https://docs.python.org/3/reference/datamodel.html#object.__getitem__
https://docs.python.org/3/reference/datamodel.html#object.__getitem__

Pandas Foundations

[28]

Getting ready
Both Series and DataFrames have a tremendous amount of power. We can use the dir
function to uncover all the attributes and methods of a Series. Additionally, we can find the
number of attributes and methods common to both Series and DataFrames. Both of these
objects share the vast majority of attribute and method names:

>>> s_attr_methods = set(dir(pd.Series))

>>> len(s_attr_methods)

442

>>> df_attr_methods = set(dir(pd.DataFrame))

>>> len(df_attr_methods)

445

>>> len(s_attr_methods & df_attr_methods)

376

This recipe covers the most common and powerful Series methods. Many of the methods
are nearly equivalent for DataFrames.

How to do it...
After reading in the movies dataset, let's select two Series with different data1.
types. The director_name column contains strings, formally an object data type,
and the column actor_1_facebook_likes contains numerical data, formally
float64:

>>> movie = pd.read_csv('data/movie.csv')

>>> director = movie['director_name']

>>> actor_1_fb_likes = movie['actor_1_facebook_likes']

Inspect the head of each Series:2.

>>> director.head()

0 James Cameron

1 Gore Verbinski

2 Sam Mendes

3 Christopher Nolan

4 Doug Walker

Name: director_name, dtype: object

>>> actor_1_fb_likes.head()

0 1000.0

Pandas Foundations

[29]

1 40000.0

2 11000.0

3 27000.0

4 131.0

Name: actor_1_facebook_likes, dtype: float64

The data type of the Series usually determines which of the methods will be the3.
most useful. For instance, one of the most useful methods for the object data type
Series is value_counts, which counts all the occurrences of each unique value:

>>> director.value_counts()

Steven Spielberg 26

Woody Allen 22

Martin Scorsese 20

Clint Eastwood 20

 ..

Fatih Akin 1

Analeine Cal y Mayor 1

Andrew Douglas 1

Scott Speer 1

Name: director_name, Length: 2397, dtype: int64

The value_counts method is typically more useful for Series with object data4.
types but can occasionally provide insight into numeric Series as well. Used with
actor_1_fb_likes, it appears that higher numbers have been rounded to the
nearest thousand as it is unlikely that so many movies received exactly 1,000
likes:

>>> actor_1_fb_likes.value_counts()

1000.0 436

11000.0 206

2000.0 189

3000.0 150

 ...

216.0 1

859.0 1

225.0 1

334.0 1

Name: actor_1_facebook_likes, Length: 877, dtype: int64

Counting the number of elements in the Series may be done with the size or5.
shape parameter or the len function:

>>> director.size

4916

>>> director.shape

Pandas Foundations

[30]

(4916,)

>>> len(director)

4916

Additionally, there is the useful but confusing count method that returns the6.
number of non-missing values:

>>> director.count()

4814

>>> actor_1_fb_likes.count()

4909

Basic summary statistics may be yielded with the min, max, mean, median, std,7.
and sum methods:

>>> actor_1_fb_likes.min(), actor_1_fb_likes.max(), \

 actor_1_fb_likes.mean(), actor_1_fb_likes.median(), \

 actor_1_fb_likes.std(), actor_1_fb_likes.sum()

(0.0, 640000.0, 6494.488490527602, 982.0, 15106.98, 31881444.0)

To simplify step 7, you may use the describe method to return both the8.
summary statistics and a few of the quantiles at once. When describe is used
with an object data type column, a completely different output is returned:

>>> actor_1_fb_likes.describe()

count 4909.000000

mean 6494.488491

std 15106.986884

min 0.000000

25% 607.000000

50% 982.000000

75% 11000.000000

max 640000.000000

Name: actor_1_facebook_likes, dtype: float64

>>> director.describe()

count 4814

unique 2397

top Steven Spielberg

freq 26

Name: director_name, dtype: object

The quantile method exists to calculate an exact quantile of numeric data:9.

>>> actor_1_fb_likes.quantile(.2)

510

Pandas Foundations

[31]

>>> actor_1_fb_likes.quantile([.1, .2, .3, .4, .5,

 .6, .7, .8, .9])

0.1 240.0

0.2 510.0

0.3 694.0

0.4 854.0

 ...

0.6 1000.0

0.7 8000.0

0.8 13000.0

0.9 18000.0

Name: actor_1_facebook_likes, Length: 9, dtype: float64

Since the count method in step 6 returned a value less than the total number of10.
Series elements found in step 5, we know that there are missing values in each
Series. The isnull method may be used to determine whether each individual
value is missing or not. The result will be a Series of booleans the same length as
the original Series:

>>> director.isnull()

0 False

1 False

2 False

3 False

 ...

4912 True

4913 False

4914 False

4915 False

Name: director_name, Length: 4916, dtype: bool

It is possible to replace all missing values within a Series with the fillna11.
method:

>>> actor_1_fb_likes_filled = actor_1_fb_likes.fillna(0)

>>> actor_1_fb_likes_filled.count()

4916

To remove the Series elements with missing values, use dropna:12.

>>> actor_1_fb_likes_dropped = actor_1_fb_likes.dropna()

>>> actor_1_fb_likes_dropped.size

4909

Pandas Foundations

[32]

How it works...
Passing a string to the indexing operator of a DataFrame selects a single column as a Series.
The methods used in this recipe were chosen because of how frequently they are used in
data analysis.

The steps in this recipe should be straightforward with easily interpretable output. Even
though the output is easy to read, you might lose track of the returned object. Is it a scalar
value, a tuple, another Series, or some other Python object? Take a moment, and look at the
output returned after each step. Can you name the returned object?

The result from the head method in step 1 is another Series. The value_counts method
also produces a Series but has the unique values from the original Series as the index and
the count as its values. In step 5, size and count return scalar values, but shape returns a
one-item tuple.

It seems odd that the shape attribute returns a one-item tuple, but this is
convention borrowed from NumPy, which allows for arrays of any
number of dimensions.

In step 7, each individual method returns a scalar value, and is outputted as a tuple. This is
because Python treats an expression composed of only comma-separated values without
parentheses as a tuple.

In step 8, describe returns a Series with all the summary statistic names as the index and
the actual statistic as the values.

In step 9, quantile is flexible and returns a scalar value when passed a single value but
returns a Series when given a list.

From steps 10, 11, and 12, isnull, fillna, and dropna all return a Series.

Pandas Foundations

[33]

There's more...
The value_counts method is one of the most informative Series methods and heavily used
during exploratory analysis, especially with categorical columns. It defaults to returning the
counts, but by setting the normalize parameter to True, the relative frequencies are
returned instead, which provides another view of the distribution:

>>> director.value_counts(normalize=True)

Steven Spielberg 0.005401

Woody Allen 0.004570

Martin Scorsese 0.004155

Clint Eastwood 0.004155

 ...

Fatih Akin 0.000208

Analeine Cal y Mayor 0.000208

Andrew Douglas 0.000208

Scott Speer 0.000208

Name: director_name, Length: 2397, dtype: float64

In this recipe, we determined that there were missing values in the Series by observing that
the result from the count method did not match the size attribute. A more direct approach
is to use the hasnans attribute:

>>> director.hasnans

True

There exists a complement of isnull: the notnull method, which returns True for all the
non-missing values:

>>> director.notnull()

0 True

1 True

2 True

3 True

 ...

4912 False

4913 True

4914 True

4915 True

Name: director_name, Length: 4916, dtype: bool

Pandas Foundations

[34]

See also
To call many Series methods in succession, refer to the Chaining Series methods
together recipe in this chapter

Working with operators on a Series
There exist a vast number of operators in Python for manipulating objects. Operators are
not objects themselves, but rather syntactical structures and keywords that force an
operation to occur on an object. For instance, when the plus operator is placed between two
integers, Python will add them together. See more examples of operators in the following
code:

>>> 5 + 9 # plus operator example adds 5 and 9

14

>>> 4 ** 2 # exponentiation operator raises 4 to the second power

16

>>> a = 10 # assignment operator assigns 10 to a

>>> 5 <= 9 # less than or equal to operator returns a boolean

True

Operators can work for any type of object, not just numerical data. These examples show
different objects being operated on:

>>> 'abcde' + 'fg'

'abcdefg'

>>> not (5 <= 9)

False

>>> 7 in [1, 2, 6]

False

>>> set([1,2,3]) & set([2,3,4])

set([2,3])

Pandas Foundations

[35]

Visit tutorials point (http://bit.ly/2u5g5Io) to see a table of all the basic Python
operators. Not all operators are implemented for every object. These examples all produce
errors when using an operator:

>>> [1, 2, 3] - 3

TypeError: unsupported operand type(s) for -: 'list' and 'int'

>>> a = set([1,2,3])

>>> a[0]

TypeError: 'set' object does not support indexing

Series and DataFrame objects work with most of the Python operators.

Getting ready
In this recipe, a variety of operators will be applied to different Series objects to produce a
new Series with completely different values.

How to do it...
Select the imdb_score column as a Series:1.

>>> movie = pd.read_csv('data/movie.csv')

>>> imdb_score = movie['imdb_score']

>>> imdb_score

0 7.9

1 7.1

2 6.8

 ...

4913 6.3

4914 6.3

4915 6.6

Name: imdb_score, Length: 4916, dtype: float64

Use the plus operator to add one to each Series element:2.

>>> imdb_score + 1

0 8.9

1 8.1

2 7.8

 ...

4913 7.3

4914 7.3

https://www.tutorialspoint.com/python/python_basic_operators.htm
https://www.tutorialspoint.com/python/python_basic_operators.htm
https://www.tutorialspoint.com/python/python_basic_operators.htm
https://www.tutorialspoint.com/python/python_basic_operators.htm
https://www.tutorialspoint.com/python/python_basic_operators.htm
https://www.tutorialspoint.com/python/python_basic_operators.htm
https://www.tutorialspoint.com/python/python_basic_operators.htm
https://www.tutorialspoint.com/python/python_basic_operators.htm
https://www.tutorialspoint.com/python/python_basic_operators.htm

Pandas Foundations

[36]

4915 7.6

Name: imdb_score, Length: 4916, dtype: float64

The other basic arithmetic operators minus (-), multiplication (*), division (/),3.
and exponentiation (**) work similarly with scalar values. In this step, we will
multiply the series by 2.5:

>>> imdb_score * 2.5

0 19.75

1 17.75

2 17.00

 ...

4913 15.75

4914 15.75

4915 16.50

Name: imdb_score, Length: 4916, dtype: float64

Python uses two consecutive division operators (//) for floor division and the4.
percent sign (%) for the modulus operator, which returns the remainder after a
division. Series use these the same way:

>>> imdb_score // 7

0 1.0

1 1.0

2 0.0

 ...

4913 0.0

4914 0.0

4915 0.0

Name: imdb_score, Length: 4916, dtype: float64

There exist six comparison operators, greater than (>), less than (<), greater than5.
or equal to (>=), less than or equal to (<=), equal to (==), and not equal to (!=).
Each comparison operator turns each value in the Series to True or False based
on the outcome of the condition:

>>> imdb_score > 7

0 True

1 True

2 False

 ...

4913 False

4914 False

4915 False

Name: imdb_score, Length: 4916, dtype: bool

Pandas Foundations

[37]

>>> director = movie['director_name']

>>> director == 'James Cameron'

0 True

1 False

2 False

 ...

4913 False

4914 False

4915 False

Name: director_name, Length: 4916, dtype: bool

How it works...
All the operators used in this recipe apply the same operation to each element in the Series.
In native Python, this would require a for-loop to iterate through each of the items in the
sequence before applying the operation. Pandas relies heavily on the NumPy library, which
allows for vectorized computations, or the ability to operate on entire sequences of data
without the explicit writing of for loops. Each operation returns a Series with the same
index, but with values that have been modified by the operator.

There's more...
All of the operators used in this recipe have method equivalents that produce the exact
same result. For instance, in step 1, imdb_score + 1 may be reproduced with the add
method. Check the following code to see the method version of each step in the recipe:

>>> imdb_score.add(1) # imdb_score + 1

>>> imdb_score.mul(2.5) # imdb_score * 2.5

>>> imdb_score.floordiv(7) # imdb_score // 7

>>> imdb_score.gt(7) # imdb_score > 7

>>> director.eq('James Cameron') # director == 'James Cameron'

Why does pandas offer a method equivalent to these operators? By its nature, an operator
only operates in exactly one manner. Methods, on the other hand, can have parameters that
allow you to alter their default functionality:

Operator Group Operator Series method name

Arithmetic +, -, *, /, //, %, ** add, sub, mul, div, floordiv, mod, pow

Comparison <, >, <=, >=, ==, != lt, gt, le, ge, eq, ne

Pandas Foundations

[38]

You may be curious as to how a Python Series object, or any object for that matter, knows
what to do when it encounters an operator. For example, how does the expression
imdb_score * 2.5 know to multiply each element in the Series by 2.5? Python has a
built-in, standardized way for objects to communicate with operators using special
methods.

Special methods are what objects call internally whenever they encounter an operator.
Special methods are defined in the Python data model, a very important part of the official
documentation, and are the same for every object throughout the language. Special
methods always begin and end with two underscores. For instance, the special method
__mul__ is called whenever the multiplication operator is used. Python interprets the
imdb_score * 2.5 expression as imdb_score.__mul__(2.5).

There is no difference between using the special method and using an operator as they are
doing the exact same thing. The operator is just syntactic sugar for the special method.

See also
Python official documentation on operators (http://bit.ly/2wpOId8)
Python official documentation on the data model (http://bit.ly/2v0LrDd)

Chaining Series methods together
In Python, every variable is an object, and all objects have attributes and methods that refer
to or return more objects. The sequential invocation of methods using the dot notation is
referred to as method chaining. Pandas is a library that lends itself well to method
chaining, as many Series and DataFrame methods return more Series and DataFrames,
upon which more methods can be called.

Getting ready
To motivate method chaining, let's take a simple English sentence and translate the chain of
events into a chain of methods. Consider the sentence, A person drives to the store to buy food,
then drives home and prepares, cooks, serves, and eats the food before cleaning the dishes.

https://docs.python.org/3/library/operator.html
https://docs.python.org/3/library/operator.html
https://docs.python.org/3/library/operator.html
https://docs.python.org/3/library/operator.html
https://docs.python.org/3/library/operator.html
https://docs.python.org/3/library/operator.html
https://docs.python.org/3/library/operator.html
https://docs.python.org/3/library/operator.html
https://docs.python.org/3/library/operator.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html

Pandas Foundations

[39]

A Python version of this sentence might take the following form:

>>> person.drive('store')\

 .buy('food')\

 .drive('home')\

 .prepare('food')\

 .cook('food')\

 .serve('food')\

 .eat('food')\

 .cleanup('dishes')

In the preceding code, the person is the object calling each of the methods, just as the
person is performing all of the actions in the original sentence. The parameter passed to
each of the methods specifies how the method operates.

Although it is possible to write the entire method chain in a single unbroken line, it is far
more palatable to write a single method per line. Since Python does not normally allow a
single expression to be written on multiple lines, you need to use the backslash line
continuation character. Alternatively, you may wrap the whole expression in parentheses.
To improve readability even more, place each method directly under the dot above it. This
recipe shows similar method chaining with pandas Series.

How to do it...
Load in the movie dataset, and select two columns as a distinct Series:1.

>>> movie = pd.read_csv('data/movie.csv')

>>> actor_1_fb_likes = movie['actor_1_facebook_likes']

>>> director = movie['director_name']

One of the most common methods to append to the chain is the head method.2.
This suppresses long output. For shorter chains, there isn't as great a need to
place each method on a different line:

>>> director.value_counts().head(3)

Steven Spielberg 26

Woody Allen 22

Clint Eastwood 20

Name: director_name, dtype: int64

Pandas Foundations

[40]

A common way to count the number of missing values is to chain the sum3.
method after isnull:

>>> actor_1_fb_likes.isnull().sum()

7

All the non-missing values of actor_1_fb_likes should be integers as it is4.
impossible to have a partial Facebook like. Any numeric columns with missing
values must have their data type as float. If we fill missing values from
actor_1_fb_likes with zeros, we can then convert it to an integer with the
astype method:

>>> actor_1_fb_likes.dtype

dtype('float64')

>>> actor_1_fb_likes.fillna(0)\

 .astype(int)\

 .head()

0 1000

1 40000

2 11000

3 27000

4 131

Name: actor_1_facebook_likes, dtype: int64

How it works...
Method chaining is possible with all Python objects since each object method must return
another object that itself will have more methods. It is not necessary for the method to
return the same type of object.

Step 2 first uses value_counts to return a Series and then chains the head method to select
the first three elements. The final returned object is a Series, which could also have had
more methods chained on it.

In step 3, the isnull method creates a boolean Series. Pandas numerically evaluates
False/True as 0/1, so the sum method returns the number of missing values.

Each of the three chained methods in step 4 returns a Series. It may not seem intuitive, but
the astype method returns an entirely new Series with a different data type

Pandas Foundations

[41]

There's more...
Instead of summing up the booleans in step 3 to find the total number of missing values, we
can take the mean of the Series to get the percentage of values that are missing:

>>> actor_1_fb_likes.isnull().mean()

0.0014

As was mentioned at the beginning of the recipe, it is possible to use parentheses instead of
the backslash for multi-line code. Step 4 may be rewritten this way:

>>> (actor_1_fb_likes.fillna(0)

 .astype(int)

 .head())

Not all programmers like the use of method chaining, as there are some downsides. One
such downside is that debugging becomes difficult. None of the intermediate objects
produced during the chain are stored in a variable, so if there is an unexpected result, it will
be difficult to trace the exact location in the chain where it occurred.

The example at the start of the recipe may be rewritten so that the result of each method
gets preserved as/in a unique variable. This makes tracking bugs much easier, as you can
inspect the object at each step:

>>> person1 = person.drive('store')

>>> person2 = person1.buy('food')

>>> person3 = person2.drive('home')

>>> person4 = person3.prepare('food')

>>> person5 = person4.cook('food')

>>> person6 = person5.serve('food')

>>> person7 = person6.eat('food')

>>> person8 = person7.cleanup('dishes')

Pandas Foundations

[42]

Making the index meaningful
The index of a DataFrame provides a label for each of the rows. If no index is explicitly
provided upon DataFrame creation, then by default, a RangeIndex is created with labels as
integers from 0 to n-1, where n is the number of rows.

Getting ready
This recipe replaces the meaningless default row index of the movie dataset with the movie
title, which is much more meaningful.

How to do it...
Read in the movie dataset, and use the set_index method to set the title of each1.
movie as the new index:

>>> movie = pd.read_csv('data/movie.csv')

>>> movie2 = movie.set_index('movie_title')

>>> movie2

Alternatively, it is possible to choose a column as the index upon initial read with2.
the index_col parameter of the read_csv function:

>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')

Pandas Foundations

[43]

How it works...
A meaningful index is one that clearly identifies each row. The default RangeIndex is not
very helpful. Since each row identifies data for exactly one movie, it makes sense to use the
movie title as the label. If you know ahead of time which column will make a good index,
you can specify this upon import with the index_col parameter of the read_csv function.

By default, both set_index and read_csv drop the column used as the index from the
DataFrame. With set_index, it is possible to keep the column in the DataFrame by setting
the drop parameter to False.

There's more...
Conversely, it is possible to turn the index into a column with the reset_index method.
This will make movie_title a column again and revert the index back to a RangeIndex.
reset_index always puts the column as the very first one in the DataFrame, so the
columns may not be in their original order:

>>> movie2.reset_index()

See also
Pandas official documentation on RangeIndex (http://bit.ly/2hs6DNL)

Renaming row and column names
One of the most basic and common operations on a DataFrame is to rename the row or
column names. Good column names are descriptive, brief, and follow a common
convention with respect to capitalization, spaces, underscores, and other features.

Getting ready
In this recipe, both the row and column names are renamed.

https://pandas.pydata.org/pandas-docs/stable/advanced.html#int64index-and-rangeindex
https://pandas.pydata.org/pandas-docs/stable/advanced.html#int64index-and-rangeindex
https://pandas.pydata.org/pandas-docs/stable/advanced.html#int64index-and-rangeindex
https://pandas.pydata.org/pandas-docs/stable/advanced.html#int64index-and-rangeindex
https://pandas.pydata.org/pandas-docs/stable/advanced.html#int64index-and-rangeindex
https://pandas.pydata.org/pandas-docs/stable/advanced.html#int64index-and-rangeindex
https://pandas.pydata.org/pandas-docs/stable/advanced.html#int64index-and-rangeindex
https://pandas.pydata.org/pandas-docs/stable/advanced.html#int64index-and-rangeindex
https://pandas.pydata.org/pandas-docs/stable/advanced.html#int64index-and-rangeindex

Pandas Foundations

[44]

How to do it...
Read in the movie dataset, and make the index meaningful by setting it as the1.
movie title:

>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')

The rename DataFrame method accepts dictionaries that map the old value to the2.
new value. Let's create one for the rows and another for the columns:

>>> idx_rename = {'Avatar':'Ratava', 'Spectre': 'Ertceps'}

>>> col_rename = {'director_name':'Director Name',

 'num_critic_for_reviews': 'Critical Reviews'}

Pass the dictionaries to the rename method, and assign the result to a new3.
variable:

>>> movie_renamed = movie.rename(index=idx_rename,

 columns=col_rename)

>>> movie_renamed.head()

How it works...
The rename DataFrame method allows for both row and column labels to be renamed at the
same time with the index and columns parameters. Each of these parameters may be set to
a dictionary that maps old labels to their new values.

Pandas Foundations

[45]

There's more...
There are multiple ways to rename row and column labels. It is possible to reassign the
index and column attributes directly to a Python list. This assignment works when the list
has the same number of elements as the row and column labels. The following code uses the
tolist method on each Index object to create a Python list of labels. It then modifies a
couple values in the list and reassigns the list to the attributes index and columns:

>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')

>>> index = movie.index

>>> columns = movie.columns

>>> index_list = index.tolist()

>>> column_list = columns.tolist()

rename the row and column labels with list assignments

>>> index_list[0] = 'Ratava'

>>> index_list[2] = 'Ertceps'

>>> column_list[1] = 'Director Name'

>>> column_list[2] = 'Critical Reviews'

>>> print(index_list)

['Ratava', "Pirates of the Caribbean: At World's End", 'Ertceps', 'The Dark

Knight Rises', ...]

>>> print(column_list)

['color', 'Director Name', 'Critical Reviews', 'duration', ...]

finally reassign the index and columns

>>> movie.index = index_list

>>> movie.columns = column_list

Creating and deleting columns
During a data analysis, it is extremely likely that you will need to create new columns to
represent new variables. Commonly, these new columns will be created from previous
columns already in the dataset. Pandas has a few different ways to add new columns to a
DataFrame.

Pandas Foundations

[46]

Getting ready
In this recipe, we create new columns in the movie dataset by using the assignment and
then delete columns with the drop method.

How to do it...
The simplest way to create a new column is to assign it a scalar value. Place the1.
name of the new column as a string into the indexing operator. Let's create the
has_seen column in the movie dataset to indicate whether or not we have seen
the movie. We will assign zero for every value. By default, new columns are
appended to the end:

>>> movie = pd.read_csv('data/movie.csv')

>>> movie['has_seen'] = 0

There are several columns that contain data on the number of Facebook likes.2.
Let's add up all the actor and director Facebook likes and assign them to the
actor_director_facebook_likes column:

>>> movie['actor_director_facebook_likes'] = \

 (movie['actor_1_facebook_likes'] +

 movie['actor_2_facebook_likes'] +

 movie['actor_3_facebook_likes'] +

 movie['director_facebook_likes'])

From the Calling Series method recipe in this chapter, we know that this dataset3.
contains missing values. When numeric columns are added to one another as in
the preceding step, pandas defaults missing values to zero. But, if all values for a
particular row are missing, then pandas keeps the total as missing as well. Let's
check if there are missing values in our new column and fill them with 0:

>>> movie['actor_director_facebook_likes'].isnull().sum()

122

>>> movie['actor_director_facebook_likes'] = \

 movie['actor_director_facebook_likes'].fillna(0)

Pandas Foundations

[47]

There is another column in the dataset named cast_total_facebook_likes. It4.
would be interesting to see what percentage of this column comes from our
newly created column, actor_director_facebook_likes. Before we create
our percentage column, let's do some basic data validation. Let's ensure that
cast_total_facebook_likes is greater than or equal to
actor_director_facebook_likes:

>>> movie['is_cast_likes_more'] = \

 (movie['cast_total_facebook_likes'] >=

 movie['actor_director_facebook_likes'])

is_cast_likes_more is now a column of boolean values. We can check5.
whether all the values of this column are True with the all Series method:

>>> movie['is_cast_likes_more'].all()

False

It turns out that there is at least one movie with more6.
actor_director_facebook_likes than cast_total_facebook_likes. It
could be that director Facebook likes are not part of the cast total likes. Let's
backtrack and delete column actor_director_facebook_likes:

>>> movie = movie.drop('actor_director_facebook_likes',

 axis='columns')

Let's recreate a column of just the total actor likes:7.

>>> movie['actor_total_facebook_likes'] = \

 (movie['actor_1_facebook_likes'] +

 movie['actor_2_facebook_likes'] +

 movie['actor_3_facebook_likes'])

>>> movie['actor_total_facebook_likes'] = \

 movie['actor_total_facebook_likes'].fillna(0)

Check again whether all the values in cast_total_facebook_likes are greater8.
than the actor_total_facebook_likes:

>>> movie['is_cast_likes_more'] = \

 (movie['cast_total_facebook_likes'] >=

 movie['actor_total_facebook_likes'])

>>> movie['is_cast_likes_more'].all()

True

Pandas Foundations

[48]

Finally, let's calculate the percentage of the cast_total_facebook_likes that9.
come from actor_total_facebook_likes:

>>> movie['pct_actor_cast_like'] = \

 (movie['actor_total_facebook_likes'] /

 movie['cast_total_facebook_likes'])

Let's validate that the min and max of this column fall between 0 and 1:10.

>>> (movie['pct_actor_cast_like'].min(),

 movie['pct_actor_cast_like'].max())

(0.0, 1.0)

We can then output this column as a Series. First, we need to set the index to the11.
movie title so we can properly identify each value.

>>> movie.set_index('movie_title')['pct_actor_cast_like'].head()

movie_title

Avatar 0.577369

Pirates of the Caribbean: At World's End 0.951396

Spectre 0.987521

The Dark Knight Rises 0.683783

Star Wars: Episode VII - The Force Awakens 0.000000

Name: pct_actor_cast_like, dtype: float64

How it works...
Many pandas operations are flexible, and column creation is one of them. This recipe
assigns both a scalar value, as seen in Step 1, and a Series, as seen in step 2, to create a new
column.

Step 2 adds four different Series together with the plus operator. Step 3 uses method
chaining to find and fill missing values. Step 4 uses the greater than or equal comparison
operator to return a boolean Series, which is then evaluated with the all method in step 5
to check whether every single value is True or not.

The drop method accepts the name of the row or column to delete. It defaults to dropping
rows by the index names. To drop columns you must set the axis parameter to either 1 or
columns. The default value for axis is 0 or the string index.

Steps 7 and 8 redo the work of step 3 to step 5 without the director_facebook_likes
column. Step 9 finally calculates the desired column we wanted since step 4. Step 10
validates that the percentages are between 0 and 1.

Pandas Foundations

[49]

There's more...
It is possible to insert a new column into a specific place in a DataFrame besides the end
with the insert method. The insert method takes the integer position of the new column
as its first argument, the name of the new column as its second, and the values as its third.
You will need to use the get_loc Index method to find the integer location of the column
name.

The insert method modifies the calling DataFrame in-place, so there won't be an
assignment statement. The profit of each movie may be calculated by subtracting budget
from gross and inserting it directly after gross with the following:

>>> profit_index = movie.columns.get_loc('gross') + 1

>>> profit_index

9

>>> movie.insert(loc=profit_index,

 column='profit',

 value=movie['gross'] - movie['budget'])

An alternative to deleting columns with the drop method is to use the del statement:

>>> del movie['actor_director_facebook_likes']

See also
Refer to the Appending new rows to DataFrames recipe from Chapter 9,
Combining Pandas Objects for adding and deleting rows, which is a less common
operation
Refer to the Developing a data analysis routine recipe from Chapter 3, Beginning
Data Analysis

2
Essential DataFrame

Operations
In this chapter, we will cover the following topics:

Selecting multiple DataFrame columns
Selecting columns with methods
Ordering column names sensibly
Operating on the entire DataFrame
Chaining DataFrame methods together
Working with operators on a DataFrame
Comparing missing values
Transposing the direction of a DataFrame operation
Determining college campus diversity

Introduction
This chapter covers many fundamental operations of the DataFrame. Many of the recipes
will be similar to those in Chapter 1, Pandas Foundations which primarily covered
operations on a Series.

Essential DataFrame Operations

[51]

Selecting multiple DataFrame columns
Selecting a single column is accomplished by passing the desired column name as a string
to the indexing operator of a DataFrame. This was covered in the Selecting a Series recipe in
Chapter 1, Pandas Foundations. It is often necessary to focus on a subset of the current
working dataset, which is accomplished by selecting multiple columns.

Getting ready
In this recipe, all the actor and director columns will be selected from the movie dataset.

How to do it...
Read in the movie dataset, and pass in a list of the desired columns to the1.
indexing operator:

>>> movie_actor_director = movie[['actor_1_name', 'actor_2_name',

 'actor_3_name', 'director_name']]

>>> movie_actor_director.head()

There are instances when one column of a DataFrame needs to be selected. This is2.
done by passing a single element list to the indexing operator:

>>> movie[['director_name']].head()

Essential DataFrame Operations

[52]

How it works...
The DataFrame indexing operator is very flexible and capable of accepting a number of
different objects. If a string is passed, it will return a single-dimensional Series. If a list is
passed to the indexing operator, it returns a DataFrame of all the columns in the list in the
specified order

Step 2 shows how to select a single column as a DataFrame rather than as a Series. Most
commonly, a single column is selected with a string, resulting in a Series. When a
DataFrame is the desired output, simply put the column name in a single-element list.

There's more...
Passing a long list inside the indexing operator might cause readability issues. To help with
this, you may save all your column names to a list variable first. The following code
achieves the same result as step 1:

>>> cols = ['actor_1_name', 'actor_2_name',

 'actor_3_name', 'director_name']

>>> movie_actor_director = movie[cols]

One of the most common exceptions raised when working with pandas is KeyError. This
error is mainly due to mistyping of a column or index name. This same error is raised
whenever a multiple column selection is attempted without the use of a list:

>>> movie['actor_1_name', 'actor_2_name',

 'actor_3_name', 'director_name']

KeyError: ('actor_1_name', 'actor_2_name',

 'actor_3_name', 'director_name')

Essential DataFrame Operations

[53]

This is a common error to encounter, as it is easy to forget to place the desired columns in a
list. You might be wondering what exactly is going on here. The four string names
separated by commas are technically a tuple object. Normally, tuples are written with open
and closing parentheses, but it isn't necessary:

>>> tuple1 = 1, 2, 3, 'a', 'b'

>>> tuple2 = (1, 2, 3, 'a', 'b')

>>> tuple1 == tuple2

True

Pandas is trying to find a column name exactly equal to the tuple, ('actor_1_name',
'actor_2_name', 'actor_3_name', 'director_name'). It fails and raises a
KeyError.

Selecting columns with methods
Although column selection is usually done directly with the indexing operator, there are
some DataFrame methods that facilitate their selection in an alternative manner.
select_dtypes and filter are two useful methods to do this.

Getting ready
You need to be familiar with all pandas data types and how to access them. The
Understanding data types recipe in Chapter 1, Pandas Foundations, has a table with all pandas
data types.

How it works...
Read in the movie dataset, and use the title of the movie to label each row. Use1.
the get_dtype_counts method to output the number of columns with each
specific data type:

>>> movie = pd.read_csv('data/movie.csv',

 index_col='movie_title')

>>> movie.get_dtype_counts()

float64 13

int64 3

object 11

dtype: int64

Essential DataFrame Operations

[54]

Use the select_dtypes method to select only the integer columns:2.

>>> movie.select_dtypes(include=['int']).head()

If you would like to select all the numeric columns, you may simply pass the3.
string number to the include parameter:

>>> movie.select_dtypes(include=['number']).head()

Essential DataFrame Operations

[55]

An alternative method to select columns is with the filter method. This method4.
is flexible and searches column names (or index labels) based on which
parameter is used. Here, we use the like parameter to search for all column
names that contain the exact string, facebook:

>>> movie.filter(like='facebook').head()

The filter method allows columns to be searched through regular expressions5.
with the regex parameter. Here, we search for all columns that have a digit
somewhere in their name:

>>> movie.filter(regex='\d').head()

Essential DataFrame Operations

[56]

How it works...
Step 1 lists the frequencies of all the different data types. Alternatively, you may use the
dtypes attribute to get the exact data type for each column. The select_dtypes method
takes a list of data types in its include parameter and returns a DataFrame with columns
of just those given data types. The list values may be either the string name of the data type
or the actual Python object.

The filter method selects columns by only inspecting the column names and not the
actual data values. It has three mutually exclusive parameters, items, like, and regex,
only one of which can be used at a time. The like parameter takes a string and attempts to
find all the column names that contain that exact string somewhere in the name. To gain
more flexibility, you may use the regex parameter instead to select column names through
a regular expression. This particular regular expression, \d, represents all digits from zero
to nine and matches any string with at least a single digit in it.

Regular expressions are character sequences that represent search patterns
to be used to select different parts of the text. They allow for very complex
and highly specific pattern matching.

There's more...
The filter method comes with another parameter, items, which takes a list of exact
column names. This is nearly an exact duplication of the indexing operator, except that a
KeyError will not be raised if one of the strings does not match a column name. For
instance, movie.filter(items=['actor_1_name', 'asdf']) runs without error and
returns a single column DataFrame.

One confusing aspect of select_dtypes is its flexibility to take both strings and Python
objects. The following table should clarify all the possible ways to select the many different
column data types. There is no standard or preferred method of referring to data types in
pandas, so it's good to be aware of both ways:

Python object String Notes

np.number number Selects both integers and floats
regardless of size

np.float64, np.float_,

float

float64, float_,
float

Selects only 64-bit floats

Essential DataFrame Operations

[57]

np.float16, np.float32,

np.float128

float16, float32,
float128

Respectively selects exactly 16,
32, and 128-bit floats

np.floating floating Selects all floats regardless of
size

np.int0, np.int64,

np.int_, int

int0, int64, int_, int Selects only 64-bit integers

np.int8, np.int16,

np.int32

int8, int16, int32 Respectively selects exactly 8,
16, and 32-bit integers

np.integer integer Selects all integers regardless
of size

np.object object, O Select all object data types

np.datetime64 datetime64, datetime All datetimes are 64 bits

np.timedelta64 timedelta64,
timedelta

All timedeltas are 64 bits

pd.Categorical category Unique to pandas; no NumPy
equivalent

Because all integers and floats default to 64 bits, you may select them by simply using the
string, int, or float as you can see from the preceding table. If you want to select all integers
and floats regardless of their specific size use the string number.

See also
Refer to the Understanding data types recipe from Chapter 1, Pandas Foundations
The rarely used select method may also select columns based on their
names (http://bit.ly/2fchzhu)

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.select.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.select.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.select.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.select.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.select.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.select.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.select.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.select.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.select.html

Essential DataFrame Operations

[58]

Ordering column names sensibly
One of the first tasks to consider after initially importing a dataset as a DataFrame is to
analyze the order of the columns. This basic task is often overlooked but can make a big
difference in how an analysis proceeds. Computers have no preference for column order
and computations are not affected either. As human beings, we naturally view and read
columns left to right, which directly impacts our interpretations of the data. Haphazard
column arrangement is similar to haphazard clothes arrangement in a closet. It does no
good to place suits next to shirts and pants on top of shorts. It's far easier to find and
interpret information when column order is given consideration.

There are no standardized set of rules that dictate how columns should be organized within
a dataset. However, it is good practice to develop a set of guidelines that you consistently
follow in order to ease the analysis. This is especially true if you work with a group of
analysts who share lots of datasets.

Getting ready
The following is a simple guideline to order columns:

Classify each column as either discrete or continuous
Group common columns within the discrete and continuous columns
Place the most important groups of columns first with categorical columns before
continuous ones

This recipe shows you how to order the columns with this guideline. There are many
possible orderings that are sensible.

How to do it...
Read in the movie dataset, and scan the data:1.

>>> movie = pd.read_csv('data/movie.csv')

>>> movie.head()

Essential DataFrame Operations

[59]

Output all the column names and scan for similar discrete and continuous2.
columns:

>>> movie.columns

Index(['color', 'director_name', 'num_critic_for_reviews',

 'duration', 'director_facebook_likes',

 'actor_3_facebook_likes', 'actor_2_name',

 'actor_1_facebook_likes', 'gross', 'genres',

 'actor_1_name', 'movie_title', 'num_voted_users',

 'cast_total_facebook_likes', 'actor_3_name',

 'facenumber_in_poster', 'plot_keywords',

 'movie_imdb_link', 'num_user_for_reviews', 'language',

 'country', 'content_rating', 'budget', 'title_year',

 'actor_2_facebook_likes', 'imdb_score', 'aspect_ratio',

 'movie_facebook_likes'], dtype='object')

The columns don't appear to have any logical ordering to them. Organize the3.
names sensibly into lists so that the guideline from the previous section is
followed:

>>> disc_core = ['movie_title', 'title_year',

 'content_rating', 'genres']

>>> disc_people = ['director_name', 'actor_1_name',

 'actor_2_name', 'actor_3_name']

>>> disc_other = ['color', 'country', 'language',

 'plot_keywords', 'movie_imdb_link']

>>> cont_fb = ['director_facebook_likes', 'actor_1_facebook_likes',

 'actor_2_facebook_likes', 'actor_3_facebook_likes',

 'cast_total_facebook_likes', 'movie_facebook_likes']

>>> cont_finance = ['budget', 'gross']

>>> cont_num_reviews = ['num_voted_users', 'num_user_for_reviews',

 'num_critic_for_reviews']

Essential DataFrame Operations

[60]

>>> cont_other = ['imdb_score', 'duration',

 'aspect_ratio', 'facenumber_in_poster']

Concatenate all the lists together to get the final column order. Also, ensure that4.
this list contains all the columns from the original:

>>> new_col_order = disc_core + disc_people + \

 disc_other + cont_fb + \

 cont_finance + cont_num_reviews + \

 cont_other

>>> set(movie.columns) == set(new_col_order)

True

Pass the list with the new column order to the indexing operator of the5.
DataFrame to reorder the columns:

>>> movie2 = movie[new_col_order]

>>> movie2.head()

Essential DataFrame Operations

[61]

How it works...
To select a subset of columns from a DataFrame, use a list of specific column names. For
instance, movie[['movie_title', 'director_name']] creates a new DataFrame with
only the movie_title and director_name columns. Selecting columns by name is the
default behavior of the indexing operator for a pandas DataFrame.

Step 3 neatly organizes all of the column names into separate lists based on their type
(discrete or continuous) and by how similar their data is. The most important columns, such
as the title of the movie, are placed first.

Step 4 concatenates all of the lists of column names and validates that this new list contains
the same exact values as the original column names. Python sets are unordered and the
equality statement checks whether each member of one set is a member of the other.
Manually ordering columns in this recipe is susceptible to human error as it's easy to
mistakenly forget a column in the new column list.

Step 5 completes the reordering by passing the new column order as a list to the indexing
operator. This new order is now much more sensible than the original.

There's more...
There are alternative guidelines for ordering columns besides the simple suggestion
mentioned earlier. Hadley Wickham's seminal paper on Tidy Data suggests placing the
fixed variables first, followed by measured variables. As this data does not emanate from a
controlled experiment, there is some flexibility in determining which variables are fixed and
which ones are measured. Good candidates for measured variables are those that we would
like to predict such as gross, the total revenue, or the imdb_score. For instance, in this
ordering, we can mix discrete and continuous variables. It might make more sense to place
the column for the number of Facebook likes directly after the name of that actor. You can,
of course, come up with your own guidelines for column order as the computational parts
are unaffected by it.

Quite often, you will be pulling data directly from a relational database. A very common
practice for relational databases is to have the primary key (if it exists) as the first column
and any foreign keys directly following it.

Primary keys uniquely identify rows in the current table. Foreign keys
uniquely identify rows in other tables.

Essential DataFrame Operations

[62]

See also
Hadley Wickham's paper on Tidy Data (http://bit.ly/2v1hvH5)

Operating on the entire DataFrame
In the Calling Series methods recipe in Chapter 1, Pandas Foundations, a variety of methods
operated on a single column or Series of data. When these same methods are called from a
DataFrame, they perform that operation for each column at once.

Getting ready
In this recipe, we explore a variety of the most common DataFrame attributes and methods
with the movie dataset.

How to do it...
Read in the movie dataset, and grab the basic descriptive attributes, shape, size,1.
and ndim, along with running the len function:

>>> movie = pd.read_csv('data/movie.csv')

>>> movie.shape

(4916, 28)

>>> movie.size

137648

>>> movie.ndim

2

>>> len(movie)

4916

Use the count method to find the number of non-missing values for each2.
column. The output is a Series that now has the old column names as its index:

>>> movie.count()

color 4897

director_name 4814

http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf

Essential DataFrame Operations

[63]

num_critic_for_reviews 4867

duration 4901

 ...

actor_2_facebook_likes 4903

imdb_score 4916

aspect_ratio 4590

movie_facebook_likes 4916

Length: 28, dtype: int64

The other methods that compute summary statistics such as min, max, mean,3.
median, and std all return similar Series, with column names in the index and
their computational result as the values:

>>> movie.min()

num_critic_for_reviews 1.00

duration 7.00

director_facebook_likes 0.00

actor_3_facebook_likes 0.00

 ...

actor_2_facebook_likes 0.00

imdb_score 1.60

aspect_ratio 1.18

movie_facebook_likes 0.00

Length: 16, dtype: float64

The describe method is very powerful and calculates all the descriptive4.
statistics and quartiles in the preceding steps all at once. The end result is a
DataFrame with the descriptive statistics as its index:

>>> movie.describe()

It is possible to specify exact quantiles in the describe method using the5.
percentiles parameter:

Essential DataFrame Operations

[64]

>>> movie.describe(percentiles=[.01, .3, .99])

How it works...
Step 1 gives basic information on the size of the dataset. The shape attribute returns a two-
element tuple of the number of rows and columns. The size attribute returns the total
number of elements in the DataFrame, which is just the product of the number of rows and
columns. The ndim attribute returns the number of dimensions, which is two for all
DataFrames. Pandas defines the built-in len function to return the number of rows.

The methods in step 2 and step 3 aggregate each column down to a single number. Each
column name is now the index label in a Series with its aggregated result as the
corresponding value.

If you look closely, you will notice that the output from step 3 is missing all the object
columns from step 2. The reason for this is that there are missing values in the object
columns and pandas does not know how to compare a string value with a missing value. It
silently drops all of the columns for which it is unable to compute a minimum.

In this context, silently means that no error was raised and no warning
thrown. This is a bit dangerous and requires users to have a good
familiarity with pandas.

The numeric columns have missing values as well but have a result returned. By default,
pandas handles missing values in numeric columns by skipping them. It is possible to
change this behavior by setting the skipna parameter to False. This will cause pandas to
return NaN for all these aggregation methods if there exists at least a single missing value.

Essential DataFrame Operations

[65]

The describe method displays the main summarizations all at once and can expand its
summary to include more quantiles by passing a list of numbers between 0 and 1 to the
percentiles parameter. It defaults to showing information on just the numeric columns.
See the Developing a data analysis routine recipe for more on the describe method.

There's more...
To see how the skipna parameter affects the outcome, we can set its value to False and
rerun step 3 from the preceding recipe. Only numeric columns without missing values will
calculate a result:

>>> movie.min(skipna=False)

num_critic_for_reviews NaN

duration NaN

director_facebook_likes NaN

actor_3_facebook_likes NaN

 ...

actor_2_facebook_likes NaN

imdb_score 1.6

aspect_ratio NaN

movie_facebook_likes 0.0

Length: 16, dtype: float64

Chaining DataFrame methods together
Whether you believe method chaining is a good practice or not, it is quite common to
encounter it during data analysis with pandas. The Chaining Series methods together recipe in
Chapter 1, Pandas Foundations, showcased several examples of chaining Series methods
together. All the method chains in this chapter will begin from a DataFrame. One of the
keys to method chaining is to know the exact object being returned during each step of the
chain. In pandas, this will nearly always be a DataFrame, Series, or scalar value.

Getting ready
In this recipe, we count all the missing values in each column of the move dataset.

Essential DataFrame Operations

[66]

How to do it...
To get a count of the missing values, the isnull method must first be called to1.
change each DataFrame value to a boolean. Let's call this method on the movie
dataset:

>>> movie = pd.read_csv('data/movie.csv')

>>> movie.isnull().head()

We will chain the sum method that interprets True/False booleans as 1/0. Notice2.
that a Series is returned:

>>> movie.isnull().sum().head()

color 19

director_name 102

num_critic_for_reviews 49

duration 15

director_facebook_likes 102

dtype: int64

We can go one step further and take the sum of this Series and return the count of3.
the total number of missing values in the entire DataFrame as a scalar value:

>>> movie.isnull().sum().sum()

2654

Essential DataFrame Operations

[67]

A slight deviation is to determine whether there are any missing values in the4.
DataFrame. We use the any method here twice in succession to do this:

>>> movie.isnull().any().any()

True

How it works...
The isnull method returns a DataFrame the same size as the calling DataFrame but with
all values transformed to booleans. See the counts of the following data types to verify this:

>>> movie.isnull().get_dtype_counts()

bool 28

dtype: int64

As booleans evaluate numerically as 0/1, it is possible to sum them by column, as done in
step 2. The resulting Series itself also has a sum method, which gets us the grand total of
missing values in the DataFrame.

In step 4, the any DataFrame method returns a Series of booleans indicating if there exists at
least one True for each column. The any method is chained again on this resulting Series of
booleans to determine if any of the columns have missing values. If step 4 evaluates as
True, then there is at least one missing value in the entire DataFrame.

There's more...
Most of the columns in the movie dataset with object data type contain missing values. By
default, the aggregation methods, min, max, and sum, do not return anything, as seen in the
following code snippet, which selects three object columns and attempts to find the
maximum value of each one:

>>> movie[['color', 'movie_title', 'color']].max()

Series([], dtype: float64)

To force pandas to return something for each column, we must fill in the missing values.
Here, we choose an empty string:

>>> movie.select_dtypes(['object']).fillna('').min()

color Color

director_name Etienne Faure

actor_2_name Zubaida Sahar

genres Western

actor_1_name Oscar Jaenada

Essential DataFrame Operations

[68]

movie_title Æon Flux
actor_3_name Oscar Jaenada

plot_keywords zombie|zombie spoof

movie_imdb_link http://www.imdb.com/title/tt5574490/?ref_=fn_t...

language Zulu

country West Germany

content_rating X

dtype: object

For purposes of readability, method chains are often written as one method call per line
with the backslash character at the end to escape new lines. This makes it easier to read and
insert comments on what is returned at each step of the chain:

>>> # rewrite the above chain on multiple lines

>>> movie.select_dtypes(['object']) \

 .fillna('') \

 .min()

It is atypical to aggregate a column of all strings, as the minimum and
maximum values are not universally defined. Attempting to call methods
that clearly have no string interpretation, such as finding the mean or
variance, will not work.

See also
Refer to the Chaining Series methods together recipe in Chapter 1, Pandas
Foundations

Working with operators on a DataFrame
A primer on operators was given in the Working with operators on a Series recipe from
Chapter 1, Pandas Foundations, which will be helpful here. The Python arithmetic and
comparison operators work directly on DataFrames, as they do on Series.

Essential DataFrame Operations

[69]

Getting ready
When a DataFrame operates directly with one of the arithmetic or comparison operators,
each value of each column gets the operation applied to it. Typically, when an operator is
used with a DataFrame, the columns are either all numeric or all object (usually strings). If
the DataFrame does not contain homogeneous data, then the operation is likely to fail. Let's
see an example of this failure with the college dataset, which contains both numeric and
object data types. Attempting to add 5 to each value of the DataFrame raises a TypeError
as integers cannot be added to strings:

>>> college = pd.read_csv('data/college.csv')

>>> college + 5

TypeError: Could not operate 5 with block values must be str, not int

To successfully use an operator with a DataFrame, first select homogeneous data. For this
recipe, we will select all the columns that begin with UGDS_. These columns represent the
fraction of undergraduate students by race. To get started, we import the data and use the
institution name as the label for our index, and then select the columns we desire with the
filter method:

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college_ugds_ = college.filter(like='UGDS_')

>>> college_ugds_.head()

This recipe uses multiple operators with a DataFrame to round the undergraduate columns
to the nearest hundredth. We will then see how this result is equivalent to the round
method.

Essential DataFrame Operations

[70]

How to do it...
To begin our rounding adventure with operators, we will first add .00501 to1.
each value of college_ugds_:

>>> college_ugds_ + .00501

Use the floor division operator, //, to round to the nearest whole number2.
percentage:

>>> (college_ugds_ + .00501) // .01

To complete the rounding exercise, divide by 100:3.

>>> college_ugds_op_round = (college_ugds_ + .00501) // .01 / 100

>>> college_ugds_op_round.head()

Essential DataFrame Operations

[71]

Now use the round DataFrame method to do the rounding automatically for us.4.
NumPy rounds numbers that are exactly halfway between either side to the even
side. Due to this, we add a small fraction before rounding:

>>> college_ugds_round = (college_ugds_ + .00001).round(2)

Use the equals DataFrame method to test the equality of two DataFrames:5.

>>> college_ugds_op_round.equals(college_ugds_round)

True

How it works...
Step 1 uses the plus operator, which attempts to add a scalar value to each value of each
column of the DataFrame. As the columns are all numeric, this operation works as
expected. There are some missing values in each of the columns but they stay missing after
the operation.

Mathematically, adding .005 should be enough so that the floor division in the next step
correctly rounds to the nearest whole percentage. The trouble appears because of the
inexactness of floating point numbers:

>>> .045 + .005

0.049999999999999996

There is an extra .00001 added to each number to ensure that the floating point
representation has the first four digits the same as the actual value. This works because the
maximum precision of all the points in the dataset is four decimal places.

Essential DataFrame Operations

[72]

Step 2 applies the floor division operator, //, to all the values in the DataFrame. As we are
dividing by a fraction, in essence, it is multiplying each value by 100 and truncating any
decimals. Parentheses are needed around the first part of the expression, as floor division
has higher precedence than addition. Step 3 uses the division operator to return the decimal
to the correct position.

In step 4, we reproduce the previous steps with the round method. Before we can do this,
we must again add an extra .00001 to each DataFrame value for a different reason from
step 1. NumPy and Python 3 round numbers that are exactly halfway between either side to
the even number. This ties to the even (http://bit.ly/2x3V5TU) technique is not usually what is
formally taught in schools. It does not consistently bias numbers to the higher side
(http://bit.ly/2zhsPy8).

It is necessary here to round up so that both DataFrame values are equal. The equals
method determines if all the elements and indexes between two DataFrames are exactly the
same and returns a boolean.

There's more...
Just as with Series, DataFrames have method equivalents of the operators. You may replace
the operators with their method equivalents:

>>> college_ugds_op_round_methods = college_ugds_.add(.00501) \

 .floordiv(.01) \

 .div(100)

>>> college_ugds_op_round_methods.equals(college_ugds_op_round)

True

See also
What every computer scientist should know about floating-point arithmetic
(http://bit.ly/2vmYZKi)

http://bit.ly/2vmYZKi
http://bit.ly/2vmYZKi
http://bit.ly/2vmYZKi
http://bit.ly/2vmYZKi
http://bit.ly/2vmYZKi
http://bit.ly/2vmYZKi
http://bit.ly/2vmYZKi
http://bit.ly/2vmYZKi
http://bit.ly/2vmYZKi

Essential DataFrame Operations

[73]

Comparing missing values
Pandas uses the NumPy NaN (np.nan) object to represent a missing value. This is an
unusual object, as it is not equal to itself. Even Python's None object evaluates as True when
compared to itself:

>>> np.nan == np.nan

False

>>> None == None

True

All other comparisons against np.nan also return False, except not equal to:

>>> np.nan > 5

False

>>> 5 > np.nan

False

>>> np.nan != 5

True

Getting ready
Series and DataFrames use the equals operator, ==, to make element-by-element
comparisons that return an object of the same size. This recipe shows you how to use the
equals operator, which is very different from the equals method.

As in the previous recipe, the columns representing the fraction of each race of
undergraduate students from the college dataset will be used:

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college_ugds_ = college.filter(like='UGDS_')

Essential DataFrame Operations

[74]

How to do it...
To get an idea of how the equals operator works, let's compare each element to a1.
scalar value:

>>> college_ugds_ == .0019

This works as expected but becomes problematic whenever you attempt to2.
compare DataFrames with missing values. This same equals operator may be
used to compare two DataFrames with one another on an element-by-element
basis. Take, for instance, college_ugds_ compared against itself, as follows:

>>> college_self_compare = college_ugds_ == college_ugds_

>>> college_self_compare.head()

Essential DataFrame Operations

[75]

At first glance, all the values appear to be equal, as you would expect. However,3.
using the all method to determine if each column contains only True values
yields an unexpected result:

>>> college_self_compare.all()

UGDS_WHITE False

UGDS_BLACK False

UGDS_HISP False

UGDS_ASIAN False

UGDS_AIAN False

UGDS_NHPI False

UGDS_2MOR False

UGDS_NRA False

UGDS_UNKN False

dtype: bool

This happens because missing values do not compare equally with one another. If4.
you tried to count missing values using the equal operator and summing up the
boolean columns, you would get zero for each one:

>>> (college_ugds_ == np.nan).sum()

UGDS_WHITE 0

UGDS_BLACK 0

UGDS_HISP 0

UGDS_ASIAN 0

UGDS_AIAN 0

UGDS_NHPI 0

UGDS_2MOR 0

UGDS_NRA 0

UGDS_UNKN 0

dtype: int64

The primary way to count missing values uses the isnull method:5.

>>> college_ugds_.isnull().sum()

UGDS_WHITE 661

UGDS_BLACK 661

UGDS_HISP 661

UGDS_ASIAN 661

UGDS_AIAN 661

UGDS_NHPI 661

UGDS_2MOR 661

UGDS_NRA 661

UGDS_UNKN 661

dtype: int64

Essential DataFrame Operations

[76]

The correct way to compare two entire DataFrames with one another is not with6.
the equals operator but with the equals method:

>>> college_ugds_.equals(college_ugds_)

True

How it works...
Step 1 compares a DataFrame to a scalar value while step 2 compares a DataFrame with
another DataFrame. Both operations appear to be quite simple and intuitive at first glance.
The second operation is actually checking whether the DataFrames are identically labeled
indexes and thus the same number of elements. The operation will fail if this isn't the case.
See the Producing Cartesian products recipe from Chapter 6, Index Alignment, for more
information.

Step 3 verifies that none of the columns in the DataFrames are equivalent to each other. Step
4 further shows the non-equivalence of np.nan and itself. Step 5 verifies that there are
indeed missing values in the DataFrame. Finally, step 6 shows the correct way to compare
DataFrames with equals method, which always returns a boolean scalar value.

There's more...
All the comparison operators have method counterparts that allow for more functionality.
Somewhat confusingly, the eq DataFrame method does element-by-element comparison,
just like the equals operator.The eq method is not at all the same as the equals method. It
merely does a similar task as the equals operator. The following code duplicates step 1:

>>> college_ugds_.eq(.0019) # same as college_ugds_ == .0019

Inside the pandas.testing sub-package, a function exists that developers must use when
creating unit tests. The assert_frame_equal function raises an AssertionError if two
DataFrames are not equal. It returns None if the two passed frames are equal:

>>> from pandas.testing import assert_frame_equal

>>> assert_frame_equal(college_ugds_, college_ugds_)

Essential DataFrame Operations

[77]

Unit tests are a very important part of software development and ensure
that the code is running correctly. Pandas contains many thousands of unit
tests that help ensure that it is running properly. To read more on how
pandas runs its unit tests, see the Contributing to pandas section in the
documentation (http://bit.ly/2vmCSU6).

Transposing the direction of a DataFrame
operation
Many DataFrame methods have an axis parameter. This important parameter controls the
direction in which the operation takes place. Axis parameters can only be one of two values,
either 0 or 1, and are aliased respectively as the strings index and columns.

Getting ready
Nearly all DataFrame methods default the axis parameter to 0/index. This recipe shows
you how to invoke the same method, but with the direction of its operation transposed. To
simplify the exercise, only the columns that reference the percentage race of each school
from the college dataset will be used.

How to do it...
Read in the college dataset; the columns that begin with UGDS_ represent the1.
percentage of the undergraduate students of a particular race. Use the filter
method to select these columns:

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college_ugds_ = college.filter(like='UGDS_')

>>> college_ugds_.head()

Essential DataFrame Operations

[78]

Now that the DataFrame contains homogenous column data, operations can be2.
sensibly done both vertically and horizontally. The count method returns the
number of non-missing values. By default, its axis parameter is set to 0:

>>> college_ugds_.count()

UGDS_WHITE 6874

UGDS_BLACK 6874

UGDS_HISP 6874

UGDS_ASIAN 6874

UGDS_AIAN 6874

UGDS_NHPI 6874

UGDS_2MOR 6874

UGDS_NRA 6874

UGDS_UNKN 6874

As the axis parameter is almost always set to 0, it is not necessary to do
the following, but for purposes of understanding, Step 2 is equivalent to
both college_ugds_.count(axis=0) and
college_ugds_.count(axis='index').

Changing the axis parameter to 1/columns transposes the operation so that each3.
row of data has a count of its non-missing values:

>>> college_ugds_.count(axis='columns').head()

INSTNM

Alabama A & M University 9

University of Alabama at Birmingham 9

Amridge University 9

University of Alabama in Huntsville 9

Alabama State University 9

Essential DataFrame Operations

[79]

Instead of counting non-missing values, we can sum all the values in each row.4.
Each row of percentages should add up to 1. The sum method may be used to
verify this:

>>> college_ugds_.sum(axis='columns').head()

INSTNM

Alabama A & M University 1.0000

University of Alabama at Birmingham 0.9999

Amridge University 1.0000

University of Alabama in Huntsville 1.0000

Alabama State University 1.0000

To get an idea of the distribution of each column, the median method can be5.
used:

>>> college_ugds_.median(axis='index')

UGDS_WHITE 0.55570

UGDS_BLACK 0.10005

UGDS_HISP 0.07140

UGDS_ASIAN 0.01290

UGDS_AIAN 0.00260

UGDS_NHPI 0.00000

UGDS_2MOR 0.01750

UGDS_NRA 0.00000

UGDS_UNKN 0.01430

How it works...
The direction of operation is one of the more confusing aspects of pandas, and threads
abound on the internet to discuss its interpretation. Many novice pandas users have
difficulty remembering the meaning of the axis parameter. Luckily, there are only two
potential directions that an operation can complete in pandas. A simple brute force solution
of trying both directions until achieving the desired result is one possibility. I remember the
meaning of the axis parameter by thinking of 1 as looking like a column, and any
operation with axis=1 returns a new column of data (has the same number of items that a
column does).

This is confirmed in step 3, where the result (without the head method) returns a new
column of data and could be easily appended as a column to the DataFrame, if necessary.
The other steps with axis equal to 1/index return a new row of data.

Essential DataFrame Operations

[80]

There's more...
The cumsum method with axis=1 accumulates the race percentages across each row. It
gives a slightly different view of the data. For example, it is very easy to see the exact
percentage of white, black, and Hispanic together for each school:

>> college_ugds_cumsum = college_ugds_.cumsum(axis=1)

>>> college_ugds_cumsum.head()

See also
Pandas official documentation for cumsum (http://bit.ly/2v3B6EZ)

Determining college campus diversity
Many articles are written every year on the different aspects and impacts of diversity on
college campuses. Various organizations have developed metrics attempting to measure
diversity. US News is a leader in providing rankings for many different categories of
colleges, with diversity being one of them. Their top 10 diverse colleges with Diversity
Index are given as follows:

>> pd.read_csv('data/college_diversity.csv', index_col='School')

http://bit.ly/2v3B6EZ
http://bit.ly/2v3B6EZ
http://bit.ly/2v3B6EZ
http://bit.ly/2v3B6EZ
http://bit.ly/2v3B6EZ
http://bit.ly/2v3B6EZ
http://bit.ly/2v3B6EZ
http://bit.ly/2v3B6EZ
http://bit.ly/2v3B6EZ

Essential DataFrame Operations

[81]

Getting ready
Our college dataset classifies race into nine different categories. When trying to quantify
something without an obvious definition, such as diversity, it helps to start with something
very simple. In this recipe, our diversity metric will equal the count of the number of races
having greater than 15% of the student population.

How to do it...
 Read in the college dataset, and filter for just the undergraduate race columns:1.

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college_ugds_ = college.filter(like='UGDS_')

Essential DataFrame Operations

[82]

Many of these colleges have missing values for all their race columns. We can2.
count all the missing values for each row and sort the resulting Series from the
highest to lowest. This will reveal the colleges that have missing values:

>>> college_ugds_.isnull()\

 .sum(axis=1)\

 .sort_values(ascending=False)\

 .head()

INSTNM

Excel Learning Center-San Antonio South 9

Philadelphia College of Osteopathic Medicine 9

Assemblies of God Theological Seminary 9

Episcopal Divinity School 9

Phillips Graduate Institute 9

dtype: int64

Now that we have seen the colleges that are missing all their race columns, we3.
can use the dropna method to drop all rows that have all nine race percentages
missing. We can then count the remaining missing values:

>>> college_ugds_ = college_ugds_.dropna(how='all')

>>> college_ugds_.isnull().sum()

UGDS_WHITE 0

UGDS_BLACK 0

UGDS_HISP 0

UGDS_ASIAN 0

UGDS_AIAN 0

UGDS_NHPI 0

UGDS_2MOR 0

UGDS_NRA 0

UGDS_UNKN 0

dtype: int64

There are no missing values left in the dataset. We can now calculate our4.
diversity metric. To get started, we will use the greater than or equal DataFrame
method, ge, to convert each value to a boolean:

>>> college_ugds_.ge(.15)

Essential DataFrame Operations

[83]

From here, we can use the sum method to count the True values for each college.5.
Notice that a Series is returned:

>>> diversity_metric = college_ugds_.ge(.15).sum(axis='columns')

>>> diversity_metric.head()

INSTNM

Alabama A & M University 1

University of Alabama at Birmingham 2

Amridge University 3

University of Alabama in Huntsville 1

Alabama State University 1

dtype: int64

To get an idea of the distribution, let's use the value_counts method on this6.
Series:

>>> diversity_metric.value_counts()

1 3042

2 2884

3 876

4 63

0 7

5 2

dtype: int64

Essential DataFrame Operations

[84]

Amazingly, two schools have more than 15% in five different race categories.7.
Let's sort the diversity_metric Series to find out which ones they are:

>>> diversity_metric.sort_values(ascending=False).head()

INSTNM

Regency Beauty Institute-Austin 5

Central Texas Beauty College-Temple 5

Sullivan and Cogliano Training Center 4

Ambria College of Nursing 4

Berkeley College-New York 4

dtype: int64

It seems a little suspicious that schools can be that diverse. Let's look at the raw8.
percentages from these top two schools. The .loc indexer is used to specifically
select based on the index label:

>>> college_ugds_.loc[['Regency Beauty Institute-Austin',

 'Central Texas Beauty College-Temple']]

It appears that several categories were aggregated into the unknown and two or9.
more races column. Regardless of this, they both appear to be quite diverse. We
can see how the top 10 US News schools fared with this basic diversity metric:

>>> us_news_top = ['Rutgers University-Newark',

 'Andrews University',

 'Stanford University',

 'University of Houston',

 'University of Nevada-Las Vegas']

>>> diversity_metric.loc[us_news_top]

INSTNM

Rutgers University-Newark 4

Andrews University 3

Stanford University 3

University of Houston 3

University of Nevada-Las Vegas 3

dtype: int64

Essential DataFrame Operations

[85]

How it works...
Step 2 counts and then displays the schools with the highest number of missing values. As
there are nine columns in the DataFrame, the maximum number of missing values per
school is nine. Many schools are missing values for each column. Step 3 removes rows that
have all their values missing. The dropna method in step 3 has the how parameter, which is
defaulted to the string any but may also be changed to all. When set to any, it drops rows
that contain one or more missing values. When set to all, it only drops rows where all
values are missing.

In this case, we conservatively drop rows that are missing all values. This is because it's
possible that some missing values simply represent 0 percent. This did not happen to be the
case here, as there were no missing values after the dropna was performed. If there were
still missing values, we could have run the fillna(0) method to fill all the remaining
values with 0.

Step 4 begins our diversity metric calculation using the greater than or equal to method, ge.
This results in a DataFrame of all booleans, which is summed horizontally by setting
axis='columns'.

The value_counts method is used in step 5 to produce a distribution of our diversity
metric. It is quite rare for schools to have three races with 15% or more of the
undergraduate student population. Step 7 and step 8 find two schools that are the most
diverse based on our metric. Although they are diverse, it appears that many of the races
are not fully accounted for and are defaulted into the unknown and two or more categories.

Step 9 selects the top five schools from the US News article. It then selects their diversity
metric from our newly created Series. It turns out that these schools also score highly with
our simple ranking system.

There's more...
Alternatively, we can find the schools that are least diverse by ordering them by their
maximum race percentage:

>>> college_ugds_.max(axis=1).sort_values(ascending=False).head(10)

INSTNM

Dewey University-Manati 1.0

Yeshiva and Kollel Harbotzas Torah 1.0

Mr Leon's School of Hair Design-Lewiston 1.0

Dewey University-Bayamon 1.0

Shepherds Theological Seminary 1.0

Essential DataFrame Operations

[86]

Yeshiva Gedolah Kesser Torah 1.0

Monteclaro Escuela de Hoteleria y Artes Culinarias 1.0

Yeshiva Shaar Hatorah 1.0

Bais Medrash Elyon 1.0

Yeshiva of Nitra Rabbinical College 1.0

dtype: float64

We can also determine if any school has all nine race categories exceeding 1%:

>>> (college_ugds_ > .01).all(axis=1).any()

True

See also
US News Campus Ethnic Diversity 2015-2016 (http://bit.ly/2vmDhWC)

http://bit.ly/2vmDhWC
http://bit.ly/2vmDhWC
http://bit.ly/2vmDhWC
http://bit.ly/2vmDhWC
http://bit.ly/2vmDhWC
http://bit.ly/2vmDhWC
http://bit.ly/2vmDhWC
http://bit.ly/2vmDhWC
http://bit.ly/2vmDhWC

3
Beginning Data Analysis

In this chapter, we will cover the following topics:

Developing a data analysis routine
Reducing memory by changing data types
Selecting the smallest of the largest
Selecting the largest of each group by sorting
Replicating nlargest with sort_values
Calculating a trailing stop order price

Introduction
It is important to consider the steps that you, as an analyst, take when you first encounter a
dataset after importing it into your workspace as a DataFrame. Is there a set of tasks that
you usually undertake to first examine the data? Are you aware of all the possible data
types? This chapter begins by covering the tasks you might want to undertake when first
encountering a new dataseset. The chapter proceeds by answering common questions that
are not that trivial to do in pandas.

Beginning Data Analysis

[88]

Developing a data analysis routine
Although there is no standard approach when beginning a data analysis, it is typically a
good idea to develop a routine for yourself when first examining a dataset. Similar to
common routines that we have for waking up, showering, going to work, eating, and so on,
a beginning data analysis routine helps one quickly get acquainted with a new dataset. This
routine can manifest itself as a dynamic checklist of tasks that evolves as your familiarity
with pandas and data analysis expands.

Exploratory Data Analysis (EDA) is a term used to encompass the entire process of
analyzing data without the formal use of statistical testing procedures. Much of EDA
involves visually displaying different relationships among the data to detect interesting
patterns and develop hypotheses.

Getting ready
This recipe covers a small but fundamental part of EDA: the collection of metadata and
univariate descriptive statistics in a routine and systematic way. It outlines a common set
of tasks that can be undertaken when first importing any dataset as a pandas DataFrame.
This recipe may help form the basis of the routine that you can implement when first
examining a dataset.

Metadata describes the dataset, or more aptly, data about the data.
Examples of metadata include the number of columns/rows, column
names, data types of each column, the source of the dataset, the date of
collection, the acceptable values for different columns, and so on.
Univariate descriptive statistics are summary statistics about individual
variables (columns) of the dataset, independent of all other variables.

How to do it...
First, some metadata on the college dataset will be collected, followed by basic summary
statistics of each column:

Read in the dataset, and view the first five rows with the head method:1.

>>> college = pd.read_college('data/college.csv')

>>> college.head()

Beginning Data Analysis

[89]

Get the dimensions of the DataFrame with the shape attribute:2.

>>> college.shape

>>> (7535, 27)

List the data type of each column, number of non-missing values, and memory3.
usage with the info method:

>>> college.info()

Beginning Data Analysis

[90]

Get summary statistics for the numerical columns and transpose the DataFrame4.
for more readable output:

>>> college.describe(include=[np.number]).T

Get summary statistics for the object and categorical columns:5.

>>> college.describe(include=[np.object, pd.Categorical]).T

Beginning Data Analysis

[91]

How it works...
After importing your dataset, a common task is to print out the first few rows of the
DataFrame for manual inspection with the head method. The shape attribute returns the
first piece of metadata, a tuple containing the number of rows and columns.

The primary method to get the most metadata at once is the info method. It provides each
column name, the number of non-missing values, the data type of each column, and the
approximate memory usage of the DataFrame. For all DataFrames, columns values are
always one data type. The same holds for relational databases. DataFrames, as a whole,
might be composed of columns with different data types.

Internally, pandas stores columns of the same data type together in blocks.
For a deeper dive into pandas internals, see Jeff Tratner's slides
(http://bit.ly/2xHIv1g).

Step 4 and step 5 produce univariate descriptive statistics on different types of columns.
The powerful describe method produces different output based on the data types
provided to the include parameter. By default, describe outputs a summary for all the
numeric (mostly continuous) columns and silently drops any categorical columns. You
may use np.number or the string number to include both integers and floats in the
summary. Technically, the data types are part of a hierarchy where number resides above
integers and floats. Take a look at the following diagram to understand the NumPy data
type hierarchy better:

Beginning Data Analysis

[92]

Broadly speaking, we can classify data as being either continuous or
categorical. Continuous data is always numeric and can usually take on an
infinite number of possibilities such as height, weight, and salary.
Categorical data represents discrete values that take on a finite number of
possibilities such as ethnicity, employment status, and car color.
Categorical data can be represented numerically or with characters.

Categorical columns are usually going to be either of type np.object or pd.Categorical.
Step 5 ensures that both of these types are represented. In both step 4 and step 5, the output
DataFrame is transposed with the T attribute. This eases readability for DataFrames with
many columns.

There's more...
It is possible to specify the exact quantiles returned from the describe method when used
with numeric columns:

>>> college.describe(include=[np.number],

 percentiles=[.01, .05, .10, .25, .5,

 .75, .9, .95, .99]).T

Beginning Data Analysis

[93]

Data dictionaries
A crucial part of a data analysis involves creating and maintaining a data dictionary. A data
dictionary is a table of metadata and notes on each column of data. One of the primary
purposes of a data dictionary is to explain the meaning of the column names. The college
dataset uses a lot of abbreviations that are likely to be unfamiliar to an analyst who is
inspecting it for the first time.

A data dictionary for the college dataset is provided in the following
college_data_dictionary.csv file:

>>> pd.read_csv('data/collge_data_dictionaray.csv')

Beginning Data Analysis

[94]

As you can see, it is immensely helpful in deciphering the abbreviated column names.
DataFrames are actually not the best place to store data dictionaries. A platform such as
Excel or Google Sheets with easy ability to edit values and append columns is a better
choice. Minimally, a column to keep track of notes on the data should be included in a data
dictionary. A data dictionary is one of the first things that you can share as an analyst to
collaborators.

It will often be the case that the dataset you are working with originated from a database
whose administrators you will have to contact in order to get more information. Formal
electronic databases generally have more formal representations of their data, called
schemas. If possible, attempt to investigate your dataset with people who have expert
knowledge on its design.

See also
NumPy data hierarchy documentation (http://bit.ly/2yqsg7p)

Reducing memory by changing data types
Pandas does not broadly classify data as either continuous or categorical but has precise
technical definitions for many distinct data types.

Getting ready
This recipe changes the data type of one of the object columns from the college dataset to
the special pandas Categorical data type to drastically reduce its memory usage.

How to do it...
After reading in our college dataset, we select a few columns of different data1.
types that will clearly show how much memory may be saved:

>>> college = pd.read_csv('data/college.csv')

>>> different_cols = ['RELAFFIL', 'SATMTMID', 'CURROPER',

 'INSTNM', 'STABBR']

>>> col2 = college.loc[:, different_cols]

>>> col2.head()

http://bit.ly/2yqsg7p
http://bit.ly/2yqsg7p
http://bit.ly/2yqsg7p
http://bit.ly/2yqsg7p
http://bit.ly/2yqsg7p
http://bit.ly/2yqsg7p
http://bit.ly/2yqsg7p
http://bit.ly/2yqsg7p
http://bit.ly/2yqsg7p

Beginning Data Analysis

[95]

Inspect the data types of each column:2.

>>> col2.dtypes

RELAFFIL int64

SATMTMID float64

CURROPER int64

INSTNM object

STABBR object

dtype: object

Find the memory usage of each column with the memory_usage method:3.

>>> original_mem = col2.memory_usage(deep=True)

>>> original_mem

Index 80

RELAFFIL 60280

SATMTMID 60280

CURROPER 60280

INSTNM 660240

STABBR 444565

dtype: int64

There is no need to use 64 bits for the RELAFFIL column as it contains only 0/14.
values. Let's convert this column to an 8-bit (1 byte) integer with the astype
method:

>>> col2['RELAFFIL'] = col2['RELAFFIL'].astype(np.int8)

Beginning Data Analysis

[96]

Use the dtypes attribute to confirm the data type change:5.

>>> col2.dtypes

RELAFFIL int8

SATMTMID float64

CURROPER int64

INSTNM object

STABBR object

dtype: object

Find the memory usage of each column again and note the large reduction:6.

>>> college[different_cols].memory_usage(deep=True)

Index 80

RELAFFIL 7535

SATMTMID 60280

CURROPER 60280

INSTNM 660240

STABBR 444565

To save even more memory, you will want to consider changing object data types7.
to categorical if they have a reasonably low cardinality (number of unique
values). Let's first check the number of unique values for both the object columns:

>>> col2.select_dtypes(include=['object']).nunique()

INSTNM 7535

STABBR 59

dtype: int64

The STABBR column is a good candidate to convert to Categorical as less than one8.
percent of its values are unique:

>>> col2['STABBR'] = col2['STABBR'].astype('category')

>>> col2.dtypes

RELAFFIL int8

SATMTMID float64

CURROPER int64

INSTNM object

STABBR category

dtype: object

Beginning Data Analysis

[97]

Compute the memory usage again:9.

>>> new_mem = col2.memory_usage(deep=True)

>>> new_mem

Index 80

RELAFFIL 7535

SATMTMID 60280

CURROPER 60280

INSTNM 660699

STABBR 13576

dtype: int64

Finally, let's compare the original memory usage with our updated memory10.
usage. The RELAFFIL column is, as expected, an eighth of its original, while the
STABBR column has shrunk to just three percent of its original size:

>>> new_mem / original_mem

Index 1.000000

RELAFFIL 0.125000

SATMTMID 1.000000

CURROPER 1.000000

INSTNM 1.000695

STABBR 0.030538

dtype: float64

How it works...
Pandas defaults integer and float data types to 64 bits regardless of the maximum
necessary size for the particular DataFrame. Integers, floats, and even booleans may be
coerced to a different data type with the astype method and passing it the exact type,
either as a string or specific object, as done in step 4.

The RELAFFIL column is a good choice to cast to a smaller integer type as the data
dictionary explains that its values must be 0/1. The memory for RELAFFIL is now an eighth
of CURROPER, which remains as its former type.

The memory units displayed are in bytes and not bits. One byte is
equivalent to 8 bits, so when RELAFFIL was changed to an 8-bit integer, it
uses one 1 byte of memory and as there are 7,535 rows, its memory
footprint is equivalent to 7,535 bytes.

Beginning Data Analysis

[98]

Columns that are object data type, such as INSTNM, are not like the other pandas data types.
For all the other pandas data types, each value in that column is the same data type. For
instance, when a column has the int64 type, every individual column value is also int64.
This is not true for columns that are object data type. Each individual column value can be
of any type. Object data types can have a mix of strings, numerics, datetimes, or even other
Python objects such as lists or tuples. For this reason, the object data type is sometimes
referred to as a catch-all for a column of data that doesn't match any of the other data types.
The vast majority of the time, though, object data type columns will all be strings.

Relational database management systems such as Microsoft's SQL Server
or PostgreSQL have specific data types for characters such as varchar,
text, or nchar that also usually specify a maximum number of
characters. Pandas object data type is a much broader data type. Every
value in an object column can be of any data type.

Therefore, the memory of each individual value in an object data type column is
inconsistent. There is no predefined amount of memory for each value like the other data
types. For pandas to extract the exact amount of memory of an object data type column, the
deep parameter must be set to True in the memory_usage method.

Object columns are targets for the largest memory savings. Pandas has an additional
categorical data type that is not available in NumPy. When converting to category, pandas
internally creates a mapping from integers to each unique string value. Thus, each string
only needs to be kept a single time in memory. As you can see, this simple change of data
type reduced memory usage by 97%.

You might also have noticed that the index uses an extremely low amount of memory. If no
index is specified during DataFrame creation, as is the case in this recipe, pandas defaults
the index to a RangeIndex. The RangeIndex is very similar to the built-in range function.
It produces values on demand and only stores the minimum amount of information needed
to create an index.

Beginning Data Analysis

[99]

There's more...
To get a better idea of how object data type columns differ from integers and floats, a single
value from each one of these columns can be modified and the resulting memory usage
displayed. The CURROPER and INSTNM columns are of int64 and object types, respectively:

>>> college.loc[0, 'CURROPER'] = 10000000

>>> college.loc[0, 'INSTNM'] = college.loc[0, 'INSTNM'] + 'a'

>>> college[['CURROPER', 'INSTNM']].memory_usage(deep=True)

Index 80

CURROPER 60280

INSTNM 660345

Memory usage for CURROPER remained the same since a 64-bit integer is more than enough
space for the larger number. On the other hand, the memory usage for INSTNM increased by
105 bytes by just adding a single letter to one value.

Python 3 uses Unicode, a standardized character representation intended
to encode all the world's writing systems. Unicode uses up to 4 bytes per
character. It seems that pandas has some overhead (100 bytes) when
making the first modification to a character value. Afterward, increments
of 5 bytes per character are sustained.

Not all columns can be coerced to the desired type. Take a look at the MENONLY column,
which from the data dictionary appears to contain only 0/1 values. The actual data type of
this column upon import unexpectedly turns out to be float64. The reason for this is that
there happen to be missing values, denoted by np.nan. There is no integer representation
for missing values. Any numeric column with even a single missing value must be a float.
Furthermore, any column of an integer data type will automatically be coerced to a float if
one of the values becomes missing:

>>> college['MENONLY'].dtype

dtype('float64')

>>> college['MENONLY'].astype(np.int8)

ValueError: Cannot convert non-finite values (NA or inf) to integer

Beginning Data Analysis

[100]

Additionally, it is possible to substitute string names in place of Python objects when
referring to data types. For instance, when using the include parameter in the describe
DataFame method, it is possible to pass a list of either the formal object NumPy/pandas
object or their equivalent string representation. These are available in the table at the
beginning of the Selecting columns with methods recipe in Chapter 2, Essential DataFrame
Operations,. For instance, each of the following produces the same result:

>>> college.describe(include=['int64', 'float64']).T

>>> college.describe(include=[np.int64, np.float64]).T

>>> college.describe(include=['int', 'float']).T

>>> college.describe(include=['number']).T

These strings can be similarly used when changing types:

>>> college['MENONLY'] = college['MENONLY'].astype('float16')

>>> college['RELAFFIL'] = college['RELAFFIL'].astype('int8')

The equivalence of a string and the outright pandas or NumPy object
occurs elsewhere in the pandas library and can be a source of confusion as
there are two different ways to access the same thing.

Lastly, it is possible to see the enormous memory difference between the minimal
RangeIndex and Int64Index, which stores every row index in memory:

>>> college.index = pd.Int64Index(college.index)

>>> college.index.memory_usage() # previously was just 80

60280

See also
Pandas official documentation on data types (http://bit.ly/2vxe8ZI)

http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes

Beginning Data Analysis

[101]

Selecting the smallest of the largest
This recipe can be used to create catchy news headlines such as Out of the top 100 best
universities, these 5 have the lowest tuition or From the top 50 cities to live, these 10 are the most
affordable. During an analysis, it is possible that you will first need to find a grouping of data
that contains the top n values in a single column and, from this subset, find the bottom m
values based on a different column.

Getting ready
In this recipe, we find the five lowest budget movies from the top 100 scoring movies by
taking advantage of the convenience methods, nlargest and nsmallest.

How to do it...
Read in the movie dataset, and select the columns, movie_title, imdb_score,1.
and budget:

>>> movie = pd.read_csv('data/movie.csv')

>>> movie2 = movie[['movie_title', 'imdb_score', 'budget']]

>>> movie2.head()

Beginning Data Analysis

[102]

Use the nlargest method to select the top 100 movies by imdb_score:2.

>>> movie2.nlargest(100, 'imdb_score').head()

Chain the nsmallest method to return the five lowest budget films among those3.
with a top 100 score:

>>> movie2.nlargest(100, 'imdb_score').nsmallest(5, 'budget')

How it works...
The first parameter of the nlargest method, n, must be an integer and selects the number
of rows to be returned. The second parameter, columns, takes a column name as a string.
Step 2 returns the 100 highest scoring movies. We could have saved this intermediate result
as its own variable but instead, we chain the nsmallest method to it in step 3, which
returns exactly five rows, sorted by budget.

Beginning Data Analysis

[103]

There's more...
It is possible to pass a list of column names to the columns parameter of the
nlargest/nsmallest methods. This would only be useful to break ties in the event that
there were duplicate values sharing the nth ranked spot in the first column in the list.

Selecting the largest of each group by
sorting
One of the most basic and common operations to perform during a data analysis is to select
rows containing the largest value of some column within a group. For instance, this would
be like finding the highest rated film of each year or the highest grossing film by content
rating. To accomplish this task, we need to sort the groups as well as the column used to
rank each member of the group, and then extract the highest member of each group.

Getting ready
In this recipe, we will find the highest rated film of each year.

How to do it...
Read in the movie dataset and slim it down to just the three columns we care1.
about, movie_title, title_year, and imdb_score:

>>> movie = pd.read_csv('data/movie.csv')

>>> movie2 = movie[['movie_title', 'title_year', 'imdb_score']]

Use the sort_values method to sort the DataFrame by title_year. The2.
default behavior sorts from the smallest to largest. Use the ascending parameter
to invert this behavior by setting it equal to True:

>>> movie2.sort_values('title_year', ascending=False).head()

Beginning Data Analysis

[104]

Notice how only the year was sorted. To sort multiple columns at once, use a list.3.
Let's look at how to sort both year and score:

>>> movie3 = movie2.sort_values(['title_year','imdb_score'],

 ascending=False)

>>> movie3.head()

Now, we use the drop_duplicates method to keep only the first row of every4.
year:

>>> movie_top_year = movie3.drop_duplicates(subset='title_year')

>>> movie_top_year.head()

Beginning Data Analysis

[105]

How it works...
In step 1, we slim the dataset down to concentrate on only the columns of importance. This
recipe would work the same with the entire DataFrame. Step 2 shows how to sort a
DataFrame by a single column, which is not exactly what we wanted. Step 3 sorts multiple
columns at the same time. It works by first sorting all of title_year and then, within each
distinct value of title_year, sorts by imdb_score.

The default behavior of the drop_duplicates method is to keep the first occurrence of
each unique row, which would not drop any rows as each row is unique. However, the
subset parameter alters it to only consider the column (or list of columns) given to it. In
this example, only one row for each year will be returned. As we sorted by year and score in
the last step, the highest scoring movie for each year is what we get.

There's more...
It is possible to sort one column in ascending order while simultaneously sorting another
column in descending order. To accomplish this, pass in a list of booleans to the ascending
parameter that corresponds to how you would like each column sorted. The following sorts
title_year and content_rating in descending order and budget in ascending order. It
then finds the lowest budget film for each year and content rating group:

>>> movie4 = movie[['movie_title', 'title_year',

 'content_rating', 'budget']]

>>> movie4_sorted = movie4.sort_values(['title_year',

 'content_rating', 'budget'],

 ascending=[False, False, True])

>>> movie4_sorted.drop_duplicates(subset=['title_year',

 'content_rating']).head(10)

Beginning Data Analysis

[106]

By default, drop_duplicates keeps the very first appearance, but this behavior may be
modified by passing the keep parameter last to select the last row of each group or False to
drop all duplicates entirely.

Replicating nlargest with sort_values
The previous two recipes work similarly by sorting values in slightly different manners.
Finding the top n values of a column of data is equivalent to sorting the entire column
descending and taking the first n values. Pandas has many operations that are capable of
doing this in a variety of ways.

Getting ready
In this recipe, we will replicate the Selecting the smallest from the largest recipe with the
sort_values method and explore the differences between the two.

Beginning Data Analysis

[107]

How to do it...
Let's recreate the result from the final step of the Selecting the smallest from the1.
largest recipe:

>>> movie = pd.read_csv('data/movie.csv')

>>> movie2 = movie[['movie_title', 'imdb_score', 'budget']]

>>> movie_smallest_largest = movie2.nlargest(100, 'imdb_score') \

 .nsmallest(5, 'budget')

>>> movie_smallest_largest

Use sort_values to replicate the first part of the expression and grab the first2.
100 rows with the head method:

>>> movie2.sort_values('imdb_score', ascending=False).head(100)

Now that we have the top 100 scoring movies, we can use sort_values with3.
head again to grab the lowest five by budget:

>>> movie2.sort_values('imdb_score', ascending=False).head(100) \

 .sort_values('budget').head()

Beginning Data Analysis

[108]

How it works...
The sort_values method can nearly replicate nlargest by chaining the head method
after the operation, as seen in step 2. Step 3 replicates nsmallest by chaining another
sort_values and completes the query by taking just the first five rows with the head
method.

Take a look at the output from the first DataFrame from step 1 and compare it with the
output from step 3. Are they the same? No! What happened? To understand why the two
results are not equivalent, let's look at the tail of the intermediate steps of each recipe:

>>> movie2.nlargest(100, 'imdb_score').tail()

>>> movie2.sort_values('imdb_score', ascending=False) \

 .head(100).tail()

Beginning Data Analysis

[109]

The issue arises because more than 100 movies exist with a rating of at least 8.4. Each of the
methods, nlargest and sort_values, breaks ties differently, which results in a slightly
different 100-row DataFrame.

There's more...
If you look at the nlargest documentation, you will see that the keep parameter has three
possible values, first, last, and False. From my knowledge of other pandas methods,
keep=False should allow all ties to remain part of the result. Unfortunately, pandas raises
an error when attempting to do this. I created an issue with pandas development team on
GitHub to make this enhancement (http://bit.ly/2fGrCMa).

Calculating a trailing stop order price
There is essentially an infinite number of strategies to trade stocks. One basic type of trade
that many investors employ is the stop order. A stop order is an order placed by an investor
to buy or sell a stock that executes whenever the market price reaches a certain point. Stop
orders are useful to both prevent huge losses and protect gains.

For the purposes of this recipe, we will only be examining stop orders used to sell currently
owned stocks. In a typical stop order, the price does not change throughout the lifetime of
the order. For instance, if you purchased a stock for $100 per share, you might want to set a
stop order at $90 per share to limit your downside to 10%.

A more advanced strategy would be to continually modify the sale price of the stop order to
track the value of the stock if it increases in value. This is called a trailing stop order.
Concretely, if the same $100 stock increases to $120, then a trailing stop order 10% below the
current market value would move the sale price to $108.

The trailing stop order never moves down and is always tied to the maximum value since
the time of purchase. If the stock fell from $120 to $110, the stop order would still remain at
$108. It would only increase if the price moved above $120.

https://github.com/pandas-dev/pandas/issues/16818
https://github.com/pandas-dev/pandas/issues/16818
https://github.com/pandas-dev/pandas/issues/16818
https://github.com/pandas-dev/pandas/issues/16818
https://github.com/pandas-dev/pandas/issues/16818
https://github.com/pandas-dev/pandas/issues/16818
https://github.com/pandas-dev/pandas/issues/16818
https://github.com/pandas-dev/pandas/issues/16818
https://github.com/pandas-dev/pandas/issues/16818

Beginning Data Analysis

[110]

Getting ready
This recipe requires the use of the third party package pandas-datareader which fetches
stock market prices online. It does not come pre-installed with the Anaconda distribution.
To install this package simply visit the command line and run conda install pandas-
datareader. If you don't have Anaconda, you can install it by running pip install
pandas-datareader. This recipe determines the trailing stop order price given an initial
purchase price for any stock.

How to do it...
To get started, we will work with Tesla Motors (TSLA) stock and presume a1.
purchase on the first trading day of 2017:

>>> import pandas_datareader as pdr

>>> tsla = pdr.DataReader('tsla', data_source='google',

 start='2017-1-1')

>>> tsla.head(8)

For simplicity, we will work with the closing price of each trading day:2.

>>> tsla_close = tsla['Close']

Beginning Data Analysis

[111]

Use the cummax method to track the highest closing price until the current date:3.

>>> tsla_cummax = tsla_close.cummax()

>>> tsla_cummax.head(8)

Date

2017-01-03 216.99

2017-01-04 226.99

2017-01-05 226.99

2017-01-06 229.01

2017-01-09 231.28

2017-01-10 231.28

2017-01-11 231.28

2017-01-12 231.28

Name: Close, dtype: float64

To limit the downside to 10%, we multiply tsla_cummax by 0.9. This creates the4.
trailing stop order:

>>> tsla_trailing_stop = tsla_cummax * .9

>>> tsla_trailing_stop.head(8)

Date

2017-01-03 195.291

2017-01-04 204.291

2017-01-05 204.291

2017-01-06 206.109

2017-01-09 208.152

2017-01-10 208.152

2017-01-11 208.152

2017-01-12 208.152

Name: Close, dtype: float64

How it works...
The cummax method works by retaining the maximum value encountered up to and
including the current value. Multiplying this series by 0.9, or whatever cushion you would
like to use, creates the trailing stop order. In this particular example, TSLA increased in
value and thus, its trailing stop has also increased.

Beginning Data Analysis

[112]

There's more...
This recipe gives just a taste of how useful pandas may be used to trade securities and stops
short of calculating a return for if and when the stop order triggers. It is possible to turn this
recipe into a function that accepts the ticker symbol, purchase date, and stop percentage
and returns the trailing stop prices:

>>> def set_trailing_loss(symbol, purchase_date, perc):

 close = pdr.DataReader(symbol, 'google',

 start=purchase_date)['Close']

 return close.cummax() * perc

>>> msft_trailing_stop = set_trailing_loss('msft', '2017-6-1', .85)

>>> msft_trailing_stop.head()

Date

2017-06-01 59.585

2017-06-02 60.996

2017-06-05 61.438

2017-06-06 61.642

2017-06-07 61.642

Name: Close, dtype: float64

A very similar strategy may be used during a weight-loss program. You can set a warning
any time you have strayed too far away from your minimum weight. Pandas provides you
with the cummin method to track the minimum value. If you keep track of your daily
weight in a series, the following code provides a trailing weight loss of 5% above your
lowest recorded weight to date:

>>> weight.cummin() * 1.05

See also
Pandas official documentation of the two other accumulation methods, cumsum
(http://bit.ly/2v3B6EZ) and cumprod (http://bit.ly/2uHBWGt)

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumsum.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumsum.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumsum.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumsum.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumsum.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumsum.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumsum.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumsum.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumsum.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumprod.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumprod.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumprod.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumprod.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumprod.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumprod.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumprod.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumprod.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.cumprod.html

4
Selecting Subsets of Data

In this chapter, we will cover the following topics:

Selecting Series data
Selecting DataFrame rows
Selecting DataFrame rows and columns simultaneously
Selecting data with both integers and labels
Speeding up scalar selection
Slicing rows lazily
Slicing lexicographically

Introduction
Every dimension of data in a Series or DataFrame is labeled through an Index object. It is
this Index that separates pandas data structures from NumPy's n-dimensional array.
Indexes provide meaningful labels for each row and column of data, and pandas users have
the ability to select data through the use of these labels. Additionally, pandas allows its
users to select data by the integer location of the rows and columns. This dual selection
capability, one using labels and the other using integer location, makes for powerful yet
confusing syntax to select subsets of data.

Selecting Subsets of Data

[114]

Selecting data through the use of labels or integer location is not unique to pandas. Python
dictionaries and lists are built-in data structures that select their data in exactly one of these
ways. Both dictionaries and lists have precise instructions and limited use-cases for what
may be passed to the indexing operator. A dictionary's key (its label) must be an immutable
object, such as a string, integer, or tuple. Lists must either use integers or slice objects for
selection. Dictionaries can only select one object at a time by passing the key to the indexing
operator. In some sense, pandas is combining the ability to select data using integers, as
with lists, and labels, as with dictionaries.

Selecting Series data
Series and DataFrames are complex data containers that have multiple attributes that use
the indexing operator to select data in different ways. In addition to the indexing operator
itself, the .iloc and .loc attributes are available and use the indexing operator in their
own unique ways. Collectively, these attributes are called the indexers.

The indexing terminology can get confusing. The term indexing operator
is used here to distinguish it from the other indexers. It refers to the
brackets, [] directly after a Series or DataFrame. For instance, given a
Series s, you can select data in the following ways: s[item] and
s.loc[item]. The first uses the indexing operator. The second uses the
.loc indexer.

Series and DataFrame indexers allow selection by integer location (like Python lists) and by
label (like Python dictionaries). The .iloc indexer selects only by integer location and
works similarly to Python lists. The .loc indexer selects only by index label, which is
similar to how Python dictionaries work.

Getting ready
Both .loc and .iloc work with Series and DataFrames. This recipe shows how to select
Series data by integer location with .iloc and by label with .loc. These indexers not only
take scalar values, but also lists and slices.

Selecting Subsets of Data

[115]

How to do it...
Read in the college dataset with the institution name as the index, and select a1.
single column as a Series with the indexing operator:

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> city = college['CITY']

>>> city.head()

INSTNM

Alabama A & M University Normal

University of Alabama at Birmingham Birmingham

Amridge University Montgomery

University of Alabama in Huntsville Huntsville

Alabama State University Montgomery

Name: CITY, dtype: object

The .iloc indexer makes selections only by integer location. Passing an integer2.
to it returns a scalar value:

>>> city.iloc[3]

Huntsville

To select several different integer locations, pass a list to .iloc. This returns a3.
Series:

>>> city.iloc[[10,20,30]]

INSTNM

Birmingham Southern College Birmingham

George C Wallace State Community College-Hanceville Hanceville

Judson College Marion

Name: CITY, dtype: object

To select an equally spaced partition of data, use slice notation:4.

>>> city.iloc[4:50:10]

INSTNM

Alabama State University Montgomery

Enterprise State Community College Enterprise

Heritage Christian University Florence

Marion Military Institute Marion

Reid State Technical College Evergreen

Name: CITY, dtype: object

Selecting Subsets of Data

[116]

Now we turn to the .loc indexer, which selects only with index labels. Passing a5.
single string returns a scalar value:

>>> city.loc['Heritage Christian University']

Florence

To select several disjoint labels, use a list:6.

>>> np.random.seed(1)

>>> labels = list(np.random.choice(city.index, 4))

>>> labels

['Northwest HVAC/R Training Center',

 'California State University-Dominguez Hills',

 'Lower Columbia College',

 'Southwest Acupuncture College-Boulder']

>>> city.loc[labels]

INSTNM

Northwest HVAC/R Training Center Spokane

California State University-Dominguez Hills Carson

Lower Columbia College Longview

Southwest Acupuncture College-Boulder Boulder

Name: CITY, dtype: object

To select an equally spaced partition of data, use slice notation. Make sure that7.
the start and stop values are strings. You can use an integer to specify the step
size of the slice:

>>> city.loc['Alabama State University':

 'Reid State Technical College':10]

INSTNM

Alabama State University Montgomery

Enterprise State Community College Enterprise

Heritage Christian University Florence

Marion Military Institute Marion

Reid State Technical College Evergreen

Name: CITY, dtype: object

How it works...
The values in a Series are referenced by integers beginning from 0. Step 2 selects the fourth
element of the Series with the .loc indexer. Step 3 passes a three-item integer list to the
indexing operator, which returns a Series with those integer locations selected. This feature
is an enhancement over a Python list, which is incapable of selecting multiple disjoint items
in this manner.

Selecting Subsets of Data

[117]

In step 4, slice notation with start, stop, and step values specified is used to select an
entire section of a Series.

Steps 5 through 7 replicate steps 2 through 4 with the label-based indexer, .loc. The labels
must be exact matches of values in the index. To ensure our labels are exact, we choose four
labels at random from the index in step 6 and store them to a list before selecting their
values as a Series. Selections with the .loc indexer always include the last element, as seen
in step 7.

There's more...
When passing a scalar value to the indexing operator, as with step 2 and step 5, a scalar
value is returned. When passing a list or slice, as in the other steps, a Series is returned. This
returned value might seem inconsistent, but if we think of a Series as a dictionary-like object
that maps labels to values, then returning the value makes sense. To select a single item and
retain the item in its Series, pass in as a single-item list rather than a scalar value:

>>> city.iloc[[3]]

INSTNM

University of Alabama in Huntsville Huntsville

Name: CITY, dtype: object

Care needs to be taken when using slice notation with .loc. If the start index appears
after the stop index, then an empty Series is returned without an exception raised:

>>> city.loc['Reid State Technical College':

 'Alabama State University':10]

Series([], Name: CITY, dtype: object)

See also
Pandas official documentation on indexing (http://bit.ly/2fdtZWu)

Selecting DataFrame rows
The most explicit and preferred way to select DataFrame rows is with the .iloc and .loc
indexers. They are capable of selecting rows or columns independently and simultaneously.

http://pandas.pydata.org/pandas-docs/stable/indexing.html
http://pandas.pydata.org/pandas-docs/stable/indexing.html
http://pandas.pydata.org/pandas-docs/stable/indexing.html
http://pandas.pydata.org/pandas-docs/stable/indexing.html
http://pandas.pydata.org/pandas-docs/stable/indexing.html
http://pandas.pydata.org/pandas-docs/stable/indexing.html
http://pandas.pydata.org/pandas-docs/stable/indexing.html
http://pandas.pydata.org/pandas-docs/stable/indexing.html
http://pandas.pydata.org/pandas-docs/stable/indexing.html

Selecting Subsets of Data

[118]

Getting ready
This recipe shows you how to select rows from a DataFrame using the .iloc and .loc
indexers.

How to do it...
Read in the college dataset, and set the index as the institution name:1.

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college.head()

Pass an integer to the .iloc indexer to select an entire row at that position:2.

>>> college.iloc[60]

CITY Anchorage

STABBR AK

HBCU 0

 ...

UG25ABV 0.4386

MD_EARN_WNE_P10 42500

GRAD_DEBT_MDN_SUPP 19449.5

Name: University of Alaska Anchorage, Length: 26, dtype: object

Selecting Subsets of Data

[119]

To get the same row as the preceding step, pass the index label to the .loc3.
indexer:

>>> college.loc['University of Alaska Anchorage']

CITY Anchorage

STABBR AK

HBCU 0

 ...

UG25ABV 0.4386

MD_EARN_WNE_P10 42500

GRAD_DEBT_MDN_SUPP 19449.5

Name: University of Alaska Anchorage, Length: 26, dtype: object

To select a disjointed set of rows as a DataFrame, pass a list of integers to the4.
.iloc indexer:

>>> college.iloc[[60, 99, 3]]

The same DataFrame from step 4 may be reproduced using .loc by passing it a5.
list of the exact institution names:

>>> labels = ['University of Alaska Anchorage',

 'International Academy of Hair Design',

 'University of Alabama in Huntsville']

>>> college.loc[labels]

Use slice notation with .iloc to select an entire segment of the data:6.

>>> college.iloc[99:102]

Selecting Subsets of Data

[120]

Slice notation also works with the .loc indexer and is inclusive of the last label:7.

>>> start = 'International Academy of Hair Design'

>>> stop = 'Mesa Community College'

>>> college.loc[start:stop]

How it works...
Passing a scalar value, a list of scalars, or a slice object to the .iloc or .loc indexers causes
pandas to scan the index labels for the appropriate rows and return them. If a single scalar
value is passed, a Series is returned. If a list or slice object is passed, then a DataFrame is
returned.

There's more...
In step 5, the list of index labels can be selected directly from the DataFrame returned in
step 4 without the need for copying and pasting:

>>> college.iloc[[60, 99, 3]].index.tolist()

['University of Alaska Anchorage',

 'International Academy of Hair Design',

 'University of Alabama in Huntsville']

See also
Refer to the Examining the Index object recipe from Chapter 6, Index Alignment

Selecting Subsets of Data

[121]

Selecting DataFrame rows and columns
simultaneously
Directly using the indexing operator is the correct method to select one or more columns
from a DataFrame. However, it does not allow you to select both rows and columns
simultaneously. To select rows and columns simultaneously, you will need to pass both
valid row and column selections separated by a comma to either the .iloc or .loc
indexers.

Getting ready
The generic form to select rows and columns will look like the following code:

>>> df.iloc[rows, columns]

>>> df.loc[rows, columns]

The rows and columns variables may be scalar values, lists, slice objects, or boolean
sequences.

Passing a boolean sequence to the indexers is covered in Chapter 5,
Boolean Indexing.

In this recipe, each step shows a simultaneous row and column selection using .iloc and
its exact replication using .loc.

Selecting Subsets of Data

[122]

How to do it...
Read in the college dataset, and set the index as the institution name. Select the1.
first three rows and the first four columns with slice notation:

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college.iloc[:3, :4]

>>> college.loc[:'Amridge University', :'MENONLY']

Select all the rows of two different columns:2.

>>> college.iloc[:, [4,6]].head()

>>> college.loc[:, ['WOMENONLY', 'SATVRMID']].head()

Select disjointed rows and columns:3.

>>> college.iloc[[100, 200], [7, 15]]

>>> rows = ['GateWay Community College',

 'American Baptist Seminary of the West']

>>> columns = ['SATMTMID', 'UGDS_NHPI']

>>> college.loc[rows, columns]

Selecting Subsets of Data

[123]

Select a single scalar value:4.

>>> college.iloc[5, -4]

>>> college.loc['The University of Alabama', 'PCTFLOAN']

-.401

Slice the rows and select a single column:5.

>>> college.iloc[90:80:-2, 5]

>>> start = 'Empire Beauty School-Flagstaff'

>>> stop = 'Arizona State University-Tempe'

>>> college.loc[start:stop:-2, 'RELAFFIL']

INSTNM

Empire Beauty School-Flagstaff 0

Charles of Italy Beauty College 0

Central Arizona College 0

University of Arizona 0

Arizona State University-Tempe 0

Name: RELAFFIL, dtype: int64

How it works...
One of the keys to selecting rows and columns simultaneously is to understand the use of
the comma in the brackets. The selection to the left of the comma always selects rows based
on the row index. The selection to the right of the comma always selects columns based on
the column index.

It is not necessary to make a selection for both rows and columns simultaneously. Step 2
shows how to select all the rows and a subset of columns. The colon represents a slice object
that simply returns all the values for that dimension.

Selecting Subsets of Data

[124]

There's more...
When selecting a subset of rows, along with all the columns, it is not necessary to use a
colon following a comma. The default behavior is to select all the columns if there is no
comma present. The previous recipe selected rows in exactly this manner. You can,
however, use a colon to represent a slice of all the columns. The following lines of code are
equivalent:

>>> college.iloc[:10]

>>> college.iloc[:10, :]

Selecting data with both integers and labels
The .iloc and .loc indexers each select data by either integer or label location but are not
able to handle a combination of both input types at the same time. In earlier versions of
pandas, another indexer, .ix, was available to select data by both integer and label location.
While this conveniently worked for those specific situations, it was ambiguous by nature
and was a source of confusion for many pandas users. The .ix indexer has subsequently
been deprecated and thus should be avoided.

Getting ready
Before the .ix deprecation, it was possible to select the first five rows and the columns of
the college dataset from UGDS_WHITE through UGDS_UNKN using college.ix[:5,
'UGDS_WHITE':'UGDS_UNKN']. This is now impossible to do directly using .loc or
.iloc. The following recipe shows how to find the integer location of the columns and then
use .iloc to complete the selection.

How to do it...
Read in the college dataset and assign the institution name (INSTNM) as the index:1.

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

Selecting Subsets of Data

[125]

Use the Index method get_loc to find the integer position of the desired2.
columns:

>>> col_start = college.columns.get_loc('UGDS_WHITE')

>>> col_end = college.columns.get_loc('UGDS_UNKN') + 1

>>> col_start, col_end

Use col_start and col_end to select columns by integer location using .iloc:3.

>>> college.iloc[:5, col_start:col_end]

How it works...
Step 2 first retrieves the column index through the columns attribute. Indexes have a
get_loc method, which accepts an index label and returns its integer location. We find
both the start and end integer locations for the columns that we wish to slice. We add one
because slicing with .iloc is exclusive of the last item. Step 3 uses slice notation with the
rows and columns.

There's more...
We can do a very similar operation to make .loc work with a mixture of integers and
positions. The following shows how to select the 10th through 15th (inclusive) rows, along
with columns UGDS_WHITE through UGDS_UNKN:

>>> row_start = df_college.index[10]

>>> row_end = df_college.index[15]

>>> college.loc[row_start:row_end, 'UGDS_WHITE':'UGDS_UNKN']

Selecting Subsets of Data

[126]

Doing this same operation with .ix (which is deprecated, so don't do this) would look like
this:

>>> college.ix[10:16, 'UGDS_WHITE':'UGDS_UNKN']

It is possible to achieve the same results by chaining .loc and .iloc together, but chaining
indexers is typically a bad idea:

>>> college.iloc[10:16].loc[:, 'UGDS_WHITE':'UGDS_UNKN']

See also
Refer to the Selecting columns with methods recipe from Chapter 2, Essential
DataFrame Operations

Speeding up scalar selection
Both the .iloc and .loc indexers are capable of selecting a single element, a scalar value,
from a Series or DataFrame. However, there exist the indexers, .iat and .at, which
respectively achieve the same thing at faster speeds. Like .iloc, the .iat indexer uses
integer location to make its selection and must be passed two integers separated by a
comma. Similar to .loc, the .at index uses labels to make its selection and must be passed
an index and column label separated by a comma.

Getting ready
This recipe is valuable if computational time is of utmost importance. It shows the
performance improvement of .iat and .at over .iloc and .loc when using scalar
selection.

Selecting Subsets of Data

[127]

How to do it...
Read in the college scoreboard dataset with the institution name as the index.1.
Pass a college name and column name to .loc in order to select a scalar value:

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> cn = 'Texas A & M University-College Station'

>>> college.loc[cn, 'UGDS_WHITE']

.661

Achieve the same result with .at:2.

>>> college.at[cn, 'UGDS_WHITE']

.661

Use the %timeit magic command to find the difference in speed:3.

>>> %timeit college.loc[cn, 'UGDS_WHITE']

8.97 µs ± 617 ns per loop (mean ± std. dev. of 7 runs, 100000 loops
each)

>>> %timeit college.at[cn, 'UGDS_WHITE']

6.28 µs ± 214 ns per loop (mean ± std. dev. of 7 runs, 100000 loops
each)

Find the integer locations of the preceding selections and then time the difference4.
between .iloc and .iat:

>>> row_num = college.index.get_loc(cn)

>>> col_num = college.columns.get_loc('UGDS_WHITE')

>>> row_num, col_num

(3765, 10)

>>> %timeit college.iloc[row_num, col_num]

9.74 µs ± 153 ns per loop (mean ± std. dev. of 7 runs, 100000 loops
each)

>>> %timeit college.iat[row_num, col_num]

7.29 µs ± 431 ns per loop (mean ± std. dev. of 7 runs, 100000 loops
each)

Selecting Subsets of Data

[128]

How it works...
The scalar indexers, .iat and .at, only accept scalar values. They fail if anything else is
passed to them. They are drop-in replacements for .iloc and .loc when doing scalar
selection. The timeit magic command times entire blocks of code when preceded by two
percentage signs and a single time when preceded by one percentage sign. It shows that
about 2.5 microseconds are saved on average by switching to the scalar indexers. This might
not be much but can add up quickly if scalar selection is repeatedly done in a program.

There's more...
Both .iat and .at work with Series as well. Pass them a single scalar value, and they will
return a scalar:

>>> state = college['STBBR'] # Select a Series

>>> state.iat[1000]

'IL'

>>> state.at['Stanford University']

'CA'

Slicing rows lazily
The previous recipes in this chapter showed how the .iloc and .loc indexers were used
to select subsets of both Series and DataFrames in either dimension. A shortcut to select the
rows exists with just the indexing operator itself. This is just a shortcut to show additional
features of pandas, but the primary function of the indexing operator is actually to select
DataFrame columns. If you want to select rows, it is best to use .iloc or .loc, as they are
unambiguous.

Getting ready
In this recipe, we pass a slice object to both the Series and DataFrame indexing operators.

Selecting Subsets of Data

[129]

How to do it...
Read in the college dataset with the institution name as the index and then select1.
every other row from index 10 to 20:

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college[10:20:2]

This same slicing exists with Series:2.

>>> city = college['CITY']

>>> city[10:20:2]

INSTNM

Birmingham Southern College Birmingham

Concordia College Alabama Selma

Enterprise State Community College Enterprise

Faulkner University Montgomery

New Beginning College of Cosmetology Albertville

Name: CITY, dtype: object

Both Series and DataFrames can slice by label as well with just the indexing3.
operator:

>>> start = 'Mesa Community College'

>>> stop = 'Spokane Community College'

>>> college[start:stop:1500]

Selecting Subsets of Data

[130]

Here is the same slice by label with a Series:4.

>>> city[start:stop:1500]

INSTNM

Mesa Community College Mesa

Hair Academy Inc-New Carrollton New Carrollton

National College of Natural Medicine Portland

Name: CITY, dtype: object

How it works...
The indexing operator changes behavior based on what type of object is passed to it. The
following pseudocode outlines how DataFrame indexing operator handles the object that it
is passed:

>>> df[item] # Where `df` is a DataFrame and item is some object

If item is a string then

 Find a column name that matches the item exactly

 Raise KeyError if there is no match

 Return the column as a Series

If item is a list of strings then

 Raise KeyError if one or more strings in item don't match columns

 Return a DataFrame with just the columns in the list

If item is a slice object then

 Works with either integer or string slices

 Raise KeyError if label from label slice is not in index

 Return all ROWS that are selected by the slice

If item is a list, Series or ndarray of booleans then

 Raise ValueError if length of item not equal to length of DataFrame

 Use the booleans to return only the rows with True in same location

Selecting Subsets of Data

[131]

The preceding logic covers all the most common cases but is not an exhaustive list. The
logic for a Series is slightly different and actually more complex than it is for a DataFrame.
Due to its complexity, it is probably a good idea to avoid using just the indexing operator
itself on a Series and instead use the explicit .iloc and .loc indexers.

One acceptable use case of the Series indexing operator is when doing
boolean indexing. See Chapter 6, Index Alignment for more details.

I titled this type of row slicing in this section as lazy, as it does not use the more explicit
.iloc or .loc. Personally, I always use these indexers whenever slicing rows, as there is
never a question of exactly what I am doing.

There's more...
It is important to be aware that this lazy slicing does not work for columns, just for
DataFrame rows and Series.It also cannot be used to select both rows and columns
simultaneously. Take, for instance, the following code, which attempts to select the first ten
rows and two columns:

>>> college[:10, ['CITY', 'STABBR']]

TypeError: unhashable type: 'slice'

To make a selection in this manner, you need to use .loc or .iloc. Here is one possible
way that selects all the institution labels first and then uses the label-based indexer .loc:

>>> first_ten_instnm = college.index[:10]

>>> college.loc[first_ten_instnm, ['CITY', 'STABBR']]

Slicing lexicographically
The .loc indexer typically selects data based on the exact string label of the index.
However, it also allows you to select data based on the lexicographic order of the values in
the index. Specifically, .loc allows you to select all rows with an index lexicographically
using slice notation. This works only if the index is sorted.

Selecting Subsets of Data

[132]

Getting ready
In this recipe, you will first sort the index and then use slice notation inside the .loc
indexer to select all rows between two strings.

How to do it...
Read in the college dataset, and set the institution name as the index:1.

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

Attempt to select all colleges with names lexicographically between 'Sp' and2.
'Su':

>>> college.loc['Sp':'Su']

KeyError: 'Sp'

As the index is not sorted, the preceding command fails. Let's go ahead and sort3.
the index:

>>> college = college.sort_index()

Selecting Subsets of Data

[133]

Now, let's rerun the same command from step 2:4.

>>> college.loc['Sp':'Su']

How it works...
The normal behavior of .loc is to make selections of data based on the exact labels passed
to it. It raises a KeyError when these labels are not found in the index. However, one
special exception to this behavior exists whenever the index is lexicographically sorted, and
a slice is passed to it. Selection is now possible between the start and stop labels of the
slice, even if they are not exact values of the index.

There's more...
With this recipe, it is easy to select colleges between two letters of the alphabet. For instance,
to select all colleges that begin with the letter D through S, you would use
college.loc['D':'T']. Slicing like this is still inclusive of the last index so this would
technically return a college with the exact name T.

Selecting Subsets of Data

[134]

This type of slicing also works when the index is sorted in the opposite direction. You can
determine which direction the index is sorted with the index attribute,
is_monotonic_increasing or is_monotonic_decreasing. Either of these must be
True in order for lexicographic slicing to work. For instance, the following code
lexicographically sorts the index from Z to A:

>>> college = college.sort_index(ascending=False)

>>> college.index.is_monotonic_decreasing

True

>>> college.loc['E':'B']

Python sorts all capital letters before lowercase and all integers before
capital letters.

5
Boolean Indexing

In this chapter, we will cover the following topics:

Calculating boolean statistics
Constructing multiple boolean conditions
Filtering with boolean indexing
Replicating boolean indexing with index selection
Selecting with unique and sorted indexes
Gaining perspective on stock prices
Translating SQL WHERE clauses
Determining the normality of stock market returns
Improving readability of boolean indexing with the query method
Preserving Series with the where method
Masking DataFrame rows
Selecting with booleans, integer location, and labels

Introduction
Filtering data from a dataset is one of the most common and basic operations. There are
numerous ways to filter (or subset) data in pandas with boolean indexing. Boolean
indexing (also known as boolean selection) can be a confusing term, but for the purposes of
pandas, it refers to selecting rows by providing a boolean value (True or False) for each
row. These boolean values are usually stored in a Series or NumPy ndarray and are
usually created by applying a boolean condition to one or more columns in a DataFrame.
We begin by creating boolean Series and calculating statistics on them and then move on to
creating more complex conditionals before using boolean indexing in a wide variety of
ways to filter data.

Boolean Indexing

[136]

Calculating boolean statistics
When first getting introduced to boolean Series, it can be informative to calculate basic
summary statistics on them. Each value of a boolean series evaluates to 0 or 1 so all the
Series methods that work with numerical values also work with booleans.

Getting ready
In this recipe, we create a boolean Series by applying a condition to a column of data and
then calculate summary statistics from it.

How to do it...
Read in the movie dataset, set the index to the movie title, and inspect the first1.
few rows:

>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')

>>> movie.head()

Boolean Indexing

[137]

Determine whether the duration of each movie is longer than two hours by using2.
the greater than comparison operator with the duration Series:

>>> movie_2_hours = movie['duration'] > 120

>>> movie_2_hours.head(10)

movie_title

Avatar True

Pirates of the Caribbean: At World's End True

Spectre True

The Dark Knight Rises True

Star Wars: Episode VII - The Force Awakens False

John Carter True

Spider-Man 3 True

Tangled False

Avengers: Age of Ultron True

Harry Potter and the Half-Blood Prince True

Name: duration, dtype: bool

We can now use this Series to determine the number of movies that are longer3.
than two hours:

>>> movie_2_hours.sum()

1039

To find the percentage of movies in the dataset longer than two hours, use the4.
mean method:

>>> movie_2_hours.mean()

0.2114

Unfortunately, the output from step 4 is misleading. The duration column has a5.
few missing values. If you look back at the DataFrame output from step 1, you
will see that the last row is missing a value for duration. The boolean condition
in step 2 returns False for this. We need to drop the missing values first, then
evaluate the condition and take the mean:

>>> movie['duration'].dropna().gt(120).mean()

.2112

Boolean Indexing

[138]

Use the describe method to output a few summary statistics on the boolean6.
Series:

>>> movie_2_hours.describe()

count 4916

unique 2

top False

freq 3877

Name: duration, dtype: object

How it works...
Most DataFrames will not have columns of booleans like our movie dataset. The most
straightforward method to produce a boolean Series is to apply a condition to one of the
columns using one of the comparison operators. In step 2, we use the greater than operator
to test whether or not the duration of each movie was more than two hours (120 minutes).
Steps 3 and 4 calculate two important quantities from a boolean Series, its sum and mean.
These methods are possible as Python evaluates False/True as 0/1.

You can prove to yourself that the mean of a boolean Series represents the percentage of
True values. To do this, use the value_counts method to count with the normalize
parameter set to True to get its distribution:

>>> movie_2_hours.value_counts(normalize=True)

False 0.788649

True 0.211351

Name: duration, dtype: float64

Step 5 alerts us to the incorrect result from step 4. Even though the duration column had
missing values, the boolean condition evaluated all these comparisons against missing
values as False. Dropping these missing values allows us to calculate the correct statistic.
This is done in one step through method chaining.

Step 6 shows that pandas treats boolean columns similarly to how it treats object data types
by displaying frequency information. This is a natural way to think about boolean Series,
rather than display quantiles like it does with numeric data.

Boolean Indexing

[139]

There's more...
It is possible to compare two columns from the same DataFrame to produce a boolean
Series. For instance, we could determine the percentage of movies that have actor 1 with
more Facebook likes than actor 2. To do this, we would select both of these columns and
then drop any of the rows that had missing values for either movie. Then we would make
the comparison and calculate the mean:

>>> actors = movie[['actor_1_facebook_likes',

 'actor_2_facebook_likes']].dropna()

>>> (actors['actor_1_facebook_likes'] >

 actors['actor_2_facebook_likes']).mean()

.978

See also
Refer to the Chaining Series methods together recipe from Chapter 1, Pandas
Foundations
Refer to the Working with operators recipe from Chapter 1, Pandas Foundations

Constructing multiple boolean conditions
In Python, boolean expressions use the built-in logical operators and, or, and not. These
keywords do not work with boolean indexing in pandas and are respectively replaced with
&, |, and ~. Additionally, each expression must be wrapped in parentheses or an error will
be raised.

Getting ready
Constructing a precise filter for your dataset might have you combining multiple boolean
expressions together to extract an exact subset. In this recipe, we construct multiple boolean
expressions before combining them together to find all the movies that have an
imdb_score greater than 8, a content_rating of PG-13, and a title_year either before
2000 or after 2009.

Boolean Indexing

[140]

How to do it...
Load in the movie dataset and set the index as the title:1.

>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')

Create a variable to hold each set of criteria independently as a boolean Series:2.

>>> criteria1 = movie.imdb_score > 8

>>> criteria2 = movie.content_rating == 'PG-13'

>>> criteria3 = ((movie.title_year < 2000) |

 (movie.title_year > 2009))

>>> criteria2.head() # all criteria Series look similar

movie_title

Avatar True

Pirates of the Caribbean: At World's End True

Spectre True

The Dark Knight Rises True

Star Wars: Episode VII - The Force Awakens False

Name: content_rating, dtype: bool

Combine all the criteria together into a single boolean Series:3.

>>> criteria_final = criteria1 & criteria2 & criteria3

>>> criteria_final.head()

movie_title

Avatar False

Pirates of the Caribbean: At World's End False

Spectre False

The Dark Knight Rises True

Star Wars: Episode VII - The Force Awakens False

dtype: bool

How it works...
All values in a Series can be compared against a scalar value using the standard comparison
operators(<, >, ==, !=, <=, >=). The expression movie.imdb_score > 8 yields a Series of
booleans where all imdb_score values prices exceeding 8 are True and those less than or
equal to 8 are False. The index of this boolean Series retains the same index as the original
and in this case, is the title of the movie.

Boolean Indexing

[141]

The criteria3 variable is created by two independent boolean expressions. Each
expression must be enclosed in parentheses to function properly. The pipe character, |, is
used to create a logical or condition between each of the values in both Series.

All three criteria need to be True to match the requirements of the recipe. They are each
combined together with the ampersand character, &, which creates a logical and condition
between each Series value.

There's more...
A consequence of pandas using different syntax for the logical operators is that operator
precedence is no longer the same. The comparison operators have a higher precedence than
and, or, and not. However, the new operators for pandas (the bitwise operators &, |, and ~)
have a higher precedence than the comparison operators, thus the need for parentheses. An
example can help clear this up. Take the following expression:

>>> 5 < 10 and 3 > 4

False

In the preceding expression, 5 < 10 evaluates first, followed by 3 < 4, and finally, the and
evaluates. Python progresses through the expression as follows:

>>> 5 < 10 and 3 > 4

>>> True and 3 > 4

>>> True and False

>>> False

Let's take a look at what would happen if the expression in criteria3 was written as
follows:

>>> movie.title_year < 2000 | movie.title_year > 2009

TypeError: cannot compare a dtyped [float64] array with a scalar of type

[bool]

As the bitwise operators have higher precedence than the comparison operators, 2000 |
movie.title_year is evaluated first, which is nonsensical and raises an error. Therefore,
parentheses are needed to have the operations evaluated in the correct order.

Why can't pandas use and, or, and not? When these keywords are evaluated, Python
attempts to find the truthiness of the objects as a whole. As it does not make sense for a
Series as a whole to be either True or False--only each element--pandas raises an error.

Boolean Indexing

[142]

Many objects in Python have boolean representation. For instance, all
integers except 0 are considered True. All strings except the empty string
are True. All non-empty sets, tuples, dictionaries, and lists are True. An
empty DataFrame or Series does not evaluate as True or False and instead
an error is raised. In general, to retrieve the truthiness of a Python object,
pass it to the bool function.

See also
Python operator precedence (http://bit.ly/2vxuqSn)

Filtering with boolean indexing
Boolean selection for Series and DataFrame objects is virtually identical. Both work by
passing a Series of booleans indexed identically to the object being filtered to the indexing
operator.

Getting ready
This recipe constructs two complex and independent boolean criteria for different sets of
movies. The first set of movies comes from the previous recipe and consists of those with an
imdb_score greater than 8, a content_rating of PG-13, and a title_year either before
2000 or after 2009. The second set of movies consists of those with imdb_score less than 5,
a content_rating of R, and a title_year between 2000 and 2010.

How to do it...
Read in the movie dataset, set the index to the movie_title, and create the first1.
set of criteria:

>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')

>>> crit_a1 = movie.imdb_score > 8

>>> crit_a2 = movie.content_rating == 'PG-13'

>>> crit_a3 = (movie.title_year < 2000) | (movie.title_year > 2009)

>>> final_crit_a = crit_a1 & crit_a2 & crit_a3

https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/reference/expressions.html#operator-precedence

Boolean Indexing

[143]

Create criteria for the second set of movies:2.

>>> crit_b1 = movie.imdb_score < 5

>>> crit_b2 = movie.content_rating == 'R'

>>> crit_b3 = ((movie.title_year >= 2000) &

 (movie.title_year <= 2010))

>>> final_crit_b = crit_b1 & crit_b2 & crit_b3

Combine the two sets of criteria using the pandas or operator. This yields a3.
boolean Series of all movies that are members of either set:

>>> final_crit_all = final_crit_a | final_crit_b

>>> final_crit_all.head()

movie_title

Avatar False

Pirates of the Caribbean: At World's End False

Spectre False

The Dark Knight Rises True

Star Wars: Episode VII - The Force Awakens False

dtype: bool

Once you have your boolean Series, you simply pass it to the indexing operator4.
to filter the data:

>>> movie[final_crit_all].head()

Boolean Indexing

[144]

We have successfully filtered the data and all the columns of the DataFrame. We5.
can't easily perform a manual check to determine whether the filter worked
correctly. Let's filter both rows and columns with the .loc indexer:

>>> cols = ['imdb_score', 'content_rating', 'title_year']

>>> movie_filtered = movie.loc[final_crit_all, cols]

>>> movie_filtered.head(10)

How it works...
In step 1 and step 2, each set of criteria is built from simpler boolean expressions. It is not
necessary to create a different variable for each boolean expression as done here, but it does
make it far easier to read and debug any logic mistakes. As we desire both sets of movies,
step 3 uses the pandas logical or operator to combine them.

Step 4 shows the exact syntax of how boolean indexing works. You simply pass the Series of
booleans created from step 3 directly to the indexing operator. Only the movies with True
values from final_crit_all are selected.

Boolean indexing also works with the .loc indexer as seen in step 5 by simultaneously
doing boolean indexing and individual column selection. This slimmed DataFrame is far
easier to check manually whether the logic was implemented correctly.

Boolean Indexing

[145]

Boolean indexing does not quite work with the .iloc indexing operator.
If you pass in a boolean series to it, an exception will get raised. However,
if you pass in a boolean ndarray it will the same as it does in this recipe
with the other indexers.

There's more...
As was stated earlier, it is possible to use one long boolean expression in place of several
other shorter ones. To replicate the final_crit_a variable from step 1 with one long line
of code, we can do the following:

>>> final_crit_a2 = (movie.imdb_score > 8) & \

 (movie.content_rating == 'PG-13') & \

 ((movie.title_year < 2000) |

 (movie.title_year > 2009))

>>> final_crit_a2.equals(final_crit_a)

True

See also
Pandas official documentation on boolean indexing (http://bit.ly/2v1xK77)
Checking the truth of a Python object (http://bit.ly/2vn8WXX)

Replicating boolean indexing with index
selection
It is possible to replicate specific cases of boolean selection by taking advantage of the
index. Selection through the index is more intuitive and makes for greater readability.

Getting ready
In this recipe, we use the college dataset to select all institutions from a particular state
with both boolean indexing and index selection and then compare each of their
performance against one another.

http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
https://docs.python.org/3/library/stdtypes.html#truth
https://docs.python.org/3/library/stdtypes.html#truth
https://docs.python.org/3/library/stdtypes.html#truth
https://docs.python.org/3/library/stdtypes.html#truth
https://docs.python.org/3/library/stdtypes.html#truth
https://docs.python.org/3/library/stdtypes.html#truth
https://docs.python.org/3/library/stdtypes.html#truth
https://docs.python.org/3/library/stdtypes.html#truth
https://docs.python.org/3/library/stdtypes.html#truth

Boolean Indexing

[146]

How to do it...
Read in the college dataset and use boolean indexing to select all institutions1.
from the state of Texas (TX):

>>> college = pd.read_csv('data/college.csv')

>>> college[college['STABBR'] == 'TX'].head()

Pandas official documentation on

To replicate this using index selection, we need to move the STABBR column into2.
the index. We can then use label-based selection with the .loc indexer:

>>> college2 = college.set_index('STABBR')

>>> college2.loc['TX'].head()

Boolean Indexing

[147]

Let's compare the speed of both methods:3.

>>> %timeit college[college['STABBR'] == 'TX']

1.43 ms ± 53.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops
each)

>>> %timeit college2.loc['TX']

526 µs ± 6.67 µs per loop (mean ± std. dev. of 7 runs, 1000 loops
each)

Boolean indexing takes three times as long as index selection. As setting the index4.
does not come for free, let's time that operation as well:

>>> %timeit college2 = college.set_index('STABBR')

1.04 ms ± 5.37 µs per loop (mean ± std. dev. of 7 runs, 1000 loops
each)

How it works...
Step 1 creates a boolean Series by determining which rows of data have STABBR equal to TX.
This Series is passed to the indexing operator, which subsets the data. This process may be
replicated by moving that same column to the index and simply using basic label-based
index selection with .loc. Selection via the index is much faster than boolean selection.

There's more...
This recipe only selects a single state. It is possible to select multiple states with both
boolean and index selection. Let's select Texas (TX), California (CA), and New York (NY).
With boolean selection, you can use the isin method but with indexing, just pass a list to
.loc:

>>> states = ['TX', 'CA', 'NY']

>>> college[college['STABBR'].isin(states)]

>>> college2.loc[states]

There is quite a bit more to the story than what this recipe explains. Pandas implements the
index differently based on whether the index is unique or sorted. See the following recipe
for more details.

Boolean Indexing

[148]

Selecting with unique and sorted indexes
Index selection performance drastically improves when the index is unique or sorted. The
prior recipe used an unsorted index that contained duplicates, which makes for relatively
slow selections.

Getting ready
In this recipe, we use the college dataset to form unique or sorted indexes to increase the
performance of index selection. We will continue to compare the performance to boolean
indexing as well.

How to do it...
Read in the college dataset, create a separate DataFrame with STABBR as the1.
index, and check whether the index is sorted:

>>> college = pd.read_csv('data/college.csv')

>>> college2 = college.set_index('STABBR')

>>> college2.index.is_monotonic

False

Sort the index from college2 and store it as another object:2.

>>> college3 = college2.sort_index()

>>> college3.index.is_monotonic

True

Time the selection of the state of Texas (TX) from all three DataFrames:3.

>>> %timeit college[college['STABBR'] == 'TX']

1.43 ms ± 53.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops
each)

>>> %timeit college2.loc['TX']

526 µs ± 6.67 µs per loop (mean ± std. dev. of 7 runs, 1000 loops
each)

>>> %timeit college3.loc['TX']

183 µs ± 3.67 µs per loop (mean ± std. dev. of 7 runs, 1000 loops
each)

Boolean Indexing

[149]

The sorted index performs nearly an order of magnitude faster than boolean4.
selection. Let's now turn towards unique indexes. For this, we use the institution
name as the index:

>>> college_unique = college.set_index('INSTNM')

>>> college_unique.index.is_unique

True

Let's select Stanford University with boolean indexing: 5.

>>> college[college['INSTNM'] == 'Stanford University']

Let's select Stanford University with index selection:6.

>>> college_unique.loc['Stanford University']

CITY Stanford

STABBR CA

HBCU 0

...

UG25ABV 0.0401

MD_EARN_WNE_P10 86000

GRAD_DEBT_MDN_SUPP 12782

Name: Stanford University, dtype: object

They both produce the same data, just with different objects. Let's time each7.
approach:

>>> %timeit college[college['INSTNM'] == 'Stanford University']

1.3 ms ± 56.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops
each)

>>> %timeit college_unique.loc['Stanford University']

157 µs ± 682 ns per loop (mean ± std. dev. of 7 runs, 10000 loops
each)

Boolean Indexing

[150]

How it works...
When the index is not sorted and contains duplicates, as with college2, pandas will need
to check every single value in the index in order to make the correct selection. When the
index is sorted, as with college3, pandas takes advantage of an algorithm called binary
search to greatly improve performance.

In the second half of the recipe, we use a unique column as the index. Pandas implements
unique indexes with a hash table, which makes for even faster selection. Each index location
can be looked up in nearly the same time regardless of its length.

There's more...
Boolean selection gives much more flexibility than index selection as it is possible to
condition on any number of columns. In this recipe, we used a single column as the index. It
is possible to concatenate multiple columns together to form an index. For instance, in the
following code, we set the index equal to the concatenation of the city and state columns:

>>> college.index = college['CITY'] + ', ' + college['STABBR']

>>> college = college.sort_index()

>>> college.head()

From here, we can select all colleges from a particular city and state combination without
boolean indexing. Let's select all colleges from Miami, FL:

>>> college.loc['Miami, FL'].head()

Boolean Indexing

[151]

We can compare the speed of this compound index selection with boolean indexing. There
is more than an order of magnitude difference:

>>> %%timeit

>>> crit1 = college['CITY'] == 'Miami'

>>> crit2 = college['STABBR'] == 'FL'

>>> college[crit1 & crit2]

2.43 ms ± 80.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

>>> %timeit college.loc['Miami, FL']

197 µs ± 8.69 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

See also
The Binary search algorithm (http://bit.ly/2wbMq20)

Gaining perspective on stock prices
Investors who have purchased long stock positions would obviously like to sell stocks at or
near their all-time highs. This, of course, is very difficult to do in practice, especially if a
stock price has only spent a small portion of its history above a certain threshold. We can
use boolean indexing to find all points in time that a stock has spent above or below a
certain value. This exercise may help us gain perspective as to what a common range for
some stock to be trading within.

https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm

Boolean Indexing

[152]

Getting ready
In this recipe, we examine Schlumberger stock from the start of 2010 until mid-2017. We use
boolean indexing to extract a Series of the lowest and highest ten percent of closing prices
during this time period. We then plot all points and highlight those that are in the upper
and lower ten percent.

How to do it...
Read in the Schlumberger stock data, put the Date column into the index, and1.
convert it to a DatetimeIndex:

>>> slb = pd.read_csv('data/slb_stock.csv', index_col='Date',

 parse_dates=['Date'])

>>> slb.head()

Select the closing price as a Series and use the describe method to return2.
summary statistics as a Series:

>>> slb_close = slb['Close']

>>> slb_summary = slb_close.describe(percentiles=[.1, .9])

>>> slb_summary

count 1895.000000

mean 79.121905

std 11.767802

min 51.750000

10% 64.892000

50% 78.000000

90% 93.248000

max 117.950000

Name: Close, dtype: float64

Boolean Indexing

[153]

Using boolean selection, select all closing prices in the upper or lower tenth3.
percentile:

>>> upper_10 = slb_summary.loc['90%']

>>> lower_10 = slb_summary.loc['10%']

>>> criteria = (slb_close < lower_10) | (slb_close > upper_10)

>>> slb_top_bottom_10 = slb_close[criteria]

Plot the resulting filtered Series in light gray on top of all closing prices in black.4.
Use the matplotlib library to draw horizontal lines at the tenth and ninetieth
percentiles:

>>> slb_close.plot(color='black', figsize=(12,6))

>>> slb_top_bottom_10.plot(marker='o', style=' ',

 ms=4, color='lightgray')

>>> xmin = criteria.index[0]

>>> xmax = criteria.index[-1]

>>> plt.hlines(y=[lower_10, upper_10], xmin=xmin,

 xmax=xmax, color='black')

Boolean Indexing

[154]

How it works...
The result of the describe method in step 2 is itself a Series with the identifying summary
statistic as its index labels. This summary Series is used to store the tenth and ninetieth
percentiles as their own variables. Step 3 uses boolean indexing to select only those values
in the upper and lower tenth of the distribution.

Both Series and DataFrames have direct plotting capabilities through the plot method. This
first call to the plot method comes from the slb_close Series, which contains all the SLB
closing prices. This is the black line in the plot. The points from slb_filtered are plotted
as gray markers directly on top of the closing prices. The style parameter is set to a single
blank space so that no line is drawn. The ms parameter sets the marker size.

Matplotlib comes with a convenience function, hlines, that plots horizontal lines. It takes a
list of y values and plots them from xmin to xmax.

Judging from our new perspective from the plots that we created, it's clear to see that
although SLB's all-time high is close to $120 per share, only 10% of the trading days in the
last seven years have been above $93 per share.

There's more...
Instead of plotting red points (black points) over the closing prices to indicate the upper and
lower tenth percentiles, we can use matplotlib's fill_between function. This function fills
in all the areas between two lines. It takes an optional where parameter that accepts a
boolean Series, alerting it to exactly which locations to fill in:

>>> slb_close.plot(color='black', figsize=(12,6))

>>> plt.hlines(y=[lower_10, upper_10],

 xmin=xmin, xmax=xmax,color='lightgray')

>>> plt.fill_between(x=criteria.index, y1=lower_10,

 y2=slb_close.values, color='black')

>>> plt.fill_between(x=criteria.index,y1=lower_10,

 y2=slb_close.values, where=slb_close < lower_10,

 color='lightgray')

>>> plt.fill_between(x=criteria.index, y1=upper_10,

 y2=slb_close.values, where=slb_close > upper_10,

 color='lightgray')

Boolean Indexing

[155]

See also
Refer to Chapter 11, Visualization with Matplotlib, Pandas, and Seaborn

Translating SQL WHERE clauses
Many pandas users will have a background processing data directly from databases using
the ubiquitous Structured Query Language (SQL). SQL is a standardized language to
define, manipulate, and control data stored in a database. The SELECT statement is the most
common way to use SQL to select, filter, aggregate, and order data. Pandas has the ability to
connect to databases and send SQL statements to them.

Boolean Indexing

[156]

SQL is a very important language to know for data scientists. Much of the
world's data is stored in databases that necessitate SQL to retrieve,
manipulate, and perform analyses on. SQL syntax is fairly simple and easy
to learn. There are many different SQL implementations from companies
such as Oracle, Microsoft, IBM, and more. Although the syntax is not
compatible between the different implementations, the core of it will look
very much the same.

Getting ready
Within a SQL SELECT statement, the WHERE clause is very common and filters data. This
recipe will write pandas code that is equivalent to a SQL query that selects a certain subset
of the employee dataset.

It is not necessary to understand any SQL syntax to make use of this
recipe.

Suppose we are given a task to find all the female employees that work in the police or fire
departments that have a base salary between 80 and 120 thousand dollars. The following
SQL statement would answer this query for us:

SELECT

 UNIQUE_ID,

 DEPARTMENT,

 GENDER,

 BASE_SALARY

FROM

 EMPLOYEE

WHERE

 DEPARTMENT IN ('Houston Police Department-HPD',

 'Houston Fire Department (HFD)') AND

 GENDER = 'Female' AND

 BASE_SALARY BETWEEN 80000 AND 120000;

Boolean Indexing

[157]

How to do it...
Read in the employee dataset as a DataFrame:1.

>>> employee = pd.read_csv('data/employee.csv')

Before filtering out the data, it is helpful to do some manual inspection of each of2.
the filtered columns to know the exact values that will be used in the filter:

>>> employee.DEPARTMENT.value_counts().head()

Houston Police Department-HPD 638

Houston Fire Department (HFD) 384

Public Works & Engineering-PWE 343

Health & Human Services 110

Houston Airport System (HAS) 106

Name: DEPARTMENT, dtype: int64

>>> employee.GENDER.value_counts()

 Male 1397

 Female 603

>>> employee.BASE_SALARY.describe().astype(int)

count 1886

mean 55767

std 21693

min 24960

25% 40170

50% 54461

75% 66614

max 275000

Name: BASE_SALARY, dtype: int64

Write a single statement for each of the criteria. Use the isin method to test3.
equality to one of many values:

>>> depts = ['Houston Police Department-HPD',

 'Houston Fire Department (HFD)']

>>> criteria_dept = employee.DEPARTMENT.isin(depts)

>>> criteria_gender = employee.GENDER == 'Female'

>>> criteria_sal = (employee.BASE_SALARY >= 80000) & \

 (employee.BASE_SALARY <= 120000)

Boolean Indexing

[158]

Combine all the boolean Series together:4.

>>> criteria_final = (criteria_dept &

 criteria_gender &

 criteria_sal)

Use boolean indexing to select only the rows that meet the final criteria:5.

>>> select_columns = ['UNIQUE_ID', 'DEPARTMENT',

 'GENDER', 'BASE_SALARY']

>>> employee.loc[criteria_final, select_columns].head()

How it works...
Before any filtering is actually done, you will obviously need to know the exact string
names that will be used. The Series value_counts method is an excellent way to get both
the exact string name and number of occurrences of that value.

The isin Series method is equivalent to the SQL IN operator and accepts a list of all
possible values that you would like to keep. It is possible to use a series of OR conditions to
replicate this expression but it would not be as efficient or idiomatic.

The criteria for salary, criteria_sal, is formed by combining two simple inequality
expressions. All the criteria are finally combined together with the pandas and operator, &,
to yield a single boolean Series as the filter.

Boolean Indexing

[159]

There's more...
For many operations, pandas has multiple ways to do the same thing. In the preceding
recipe, the criteria for salary uses two separate boolean expressions. Similarly to SQL, Series
have a between method, with the salary criteria equivalently written as follows:

>>> criteria_sal = employee.BASE_SALARY.between(80000, 120000)

Another useful application of isin is to provide a sequence of values automatically
generated by some other pandas statements. This would avoid any manual investigating to
find the exact string names to store in a list. Conversely, let's try to exclude the rows from
the top five most frequently occurring departments:

>>> top_5_depts = employee.DEPARTMENT.value_counts().index[:5]

>>> criteria = ~employee.DEPARTMENT.isin(top_5_depts)

>>> employee[criteria]

The SQL equivalent of this would be as follows:

SELECT

 *

FROM

 EMPLOYEE

WHERE

 DEPARTMENT not in

 (

 SELECT

 DEPARTMENT

 FROM (

 SELECT

 DEPARTMENT,

 COUNT(1) as CT

 FROM

 EMPLOYEE

 GROUP BY

 DEPARTMENT

 ORDER BY

 CT DESC

 LIMIT 5

)

);

Notice the use of the pandas not operator, ~, which negates all boolean values of a Series.

Boolean Indexing

[160]

See also
Pandas official documentation of the isin (http://bit.ly/2v1GPfQ) and
between (http://bit.ly/2wq9YPF) Series methods
Refer to the Connecting to SQL databases recipe in Chapter 9, Combining Pandas
Objects
A basic introduction to SQL from W3 schools (http://bit.ly/2hsq8Wp)
The SQL IN operator (http://bit.ly/2v3H7Bg)
The SQL BETWEEN operator (http://bit.ly/2vn5UTP)

Determining the normality of stock market
returns
In elementary statistics textbooks, the normal distribution is heavily relied upon to describe
many different populations of data. Although many random processes do appear to look
like normal distributions most of the time, real-life tends to be more complex. Stock market
returns are a prime example of a distribution that can look fairly normal but in actuality be
quite far off.

Getting ready
This recipe describes how to find daily stock market returns of the internet retail giant
Amazon and informally test whether they follow a normal distribution.

How to do it...
Load Amazon stock data and set the date as the index:1.

>>> amzn = pd.read_csv('data/amzn_stock.csv', index_col='Date',

 parse_dates=['Date'])

>>> amzn.head()

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.isin.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.isin.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.isin.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.isin.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.isin.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.isin.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.isin.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.isin.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.isin.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.between.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.between.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.between.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.between.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.between.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.between.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.between.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.between.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.between.html
https://www.w3schools.com/sql/DEfaULT.asP
https://www.w3schools.com/sql/DEfaULT.asP
https://www.w3schools.com/sql/DEfaULT.asP
https://www.w3schools.com/sql/DEfaULT.asP
https://www.w3schools.com/sql/DEfaULT.asP
https://www.w3schools.com/sql/DEfaULT.asP
https://www.w3schools.com/sql/DEfaULT.asP
https://www.w3schools.com/sql/DEfaULT.asP
https://www.w3schools.com/sql/DEfaULT.asP
https://www.w3schools.com/sql/sql_in.asp
https://www.w3schools.com/sql/sql_in.asp
https://www.w3schools.com/sql/sql_in.asp
https://www.w3schools.com/sql/sql_in.asp
https://www.w3schools.com/sql/sql_in.asp
https://www.w3schools.com/sql/sql_in.asp
https://www.w3schools.com/sql/sql_in.asp
https://www.w3schools.com/sql/sql_in.asp
https://www.w3schools.com/sql/sql_in.asp
https://www.w3schools.com/sql/sql_between.asp
https://www.w3schools.com/sql/sql_between.asp
https://www.w3schools.com/sql/sql_between.asp
https://www.w3schools.com/sql/sql_between.asp
https://www.w3schools.com/sql/sql_between.asp
https://www.w3schools.com/sql/sql_between.asp
https://www.w3schools.com/sql/sql_between.asp
https://www.w3schools.com/sql/sql_between.asp
https://www.w3schools.com/sql/sql_between.asp

Boolean Indexing

[161]

Create a Series by selecting only the closing price and then using the pct_change2.
method to get the daily rate of return:

>>> amzn_daily_return = amzn.Close.pct_change()

>>> amzn_daily_return.head()

Date

2010-01-04 NaN

2010-01-05 0.005900

2010-01-06 -0.018116

2010-01-07 -0.017013

2010-01-08 0.027077

Name: Close, dtype: float64

Drop the missing value and plot a histogram of the returns to visually inspect the3.
distribution:

>>> amzn_daily_return = amzn_daily_return.dropna()

>>> amzn_daily_return.hist(bins=20)

Boolean Indexing

[162]

Normal distributions approximately follow the 68-95-99.7 rule--meaning that 68%4.
of the data falls between 1 standard deviation of the mean, 95% between 2, and
99.7% between 3. We will now calculate the percentage of daily returns that fall
between 1, 2, and 3 standard deviations from the mean. For this, we will need the
mean and standard deviation:

>>> mean = amzn_daily_return.mean()

>>> std = amzn_daily_return.std()

Calculate the absolute value of the z-score for each observation. The z-score is5.
the number of standard deviations away from the mean:

>>> abs_z_score = amzn_daily_return.sub(mean).abs().div(std)

Find the percentage of returns that are within 1, 2, and 3 standard deviations:6.

>>> pcts = [abs_z_score.lt(i).mean() for i in range(1,4)]

>>> print('{:.3f} fall within 1 standard deviation. '

 '{:.3f} within 2 and {:.3f} within 3'.format(*pcts))

0.787 fall within 1 standard deviation. 0.957 within 2 and 0.985

within 3

Boolean Indexing

[163]

How it works...
By default, the pct_change Series method calculates the percentage change between the
current element and previous element. This transforms the raw stock closing prices into
daily percentage returns. The first element of the returned Series is a missing value as there
is no previous price.

Histograms are fantastic plots to summarize and visualize one-dimensional numeric data. It
is clear from the plot that the distribution is symmetrical but it remains difficult to
determine whether it is normal or not. There are formal statistical procedures to determine
the normality of a distribution but we will simply find how close the data matches the
68-95-99.7 rule.

Step 5 calculates the number of standard deviations away from the mean for each
observation which is referred to as the z-score. This step uses the methods and not the
symbols (- and /) to do subtraction and division. The method for less than is also used in
favor of the symbols in step 6.

It may seem odd that the mean is being taken in step 6. The result of the
abs_z_score.lt(1) expression is a Series of booleans. As booleans evaluate to 0 or 1,
taking the mean of this Series returns the percentage of elements that are True, which is
what we desired.

We can now more easily determine the normality of the returns by comparing the resulting
numbers (78.7-95.7-98.5) to the 68-95-99.7 rule. The percentages deviate greatly from the
rule for 1 and 3 standard deviations, and we can conclude that Amazon daily stock returns
do not follow a normal distribution.

There's more...
To automate this process, we can write a function that accepts stock data in the and outputs
the histogram of daily returns along with the percentages that fall within 1, 2, and 3
standard deviations from the mean. The following function does this and replaces the
methods with their symbol counterparts:

>>> def test_return_normality(stock_data):

 close = stock_data['Close']

 daily_return = close.pct_change().dropna()

 daily_return.hist(bins=20)

 mean = daily_return.mean()

 std = daily_return.std()

 abs_z_score = abs(daily_return - mean) / std

Boolean Indexing

[164]

 pcts = [abs_z_score.lt(i).mean() for i in range(1,4)]

 print('{:.3f} fall within 1 standard deviation. '

 '{:.3f} within 2 and {:.3f} within 3'.format(*pcts))

>>> slb = pd.read_csv('data/slb_stock.csv', index_col='Date',

 parse_dates=['Date'])

>>> test_return_normality(slb)

0.742 fall within 1 standard deviation. 0.946 within 2 and 0.986 within 3

See also
Pandas official documentation of the pct_change Series method (http://bit.
ly/2wcjmqT)

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html

Boolean Indexing

[165]

Improving readability of boolean indexing
with the query method
Boolean indexing is not necessarily the most pleasant syntax to read or write, especially
when using a single line to write a complex filter. Pandas has an alternative string-based
syntax through the DataFrame query method that can provide more clarity.

The query DataFrame method is experimental and not as capable as
boolean indexing and should not be used for production code.

Getting ready
This recipe replicates the earlier recipe in this chapter, Translating SQL WHERE clauses, but
instead takes advantage of the query DataFrame method. The goal here is to filter the
employee data for female employees from the police or fire departments that earn a salary
between 80 and 120 thousand dollars.

How to do it...
Read in the employee data, assign the chosen departments, and import columns1.
to variables:

>>> employee = pd.read_csv('data/employee.csv')

>>> depts = ['Houston Police Department-HPD',

 'Houston Fire Department (HFD)']

>>> select_columns = ['UNIQUE_ID', 'DEPARTMENT',

 'GENDER', 'BASE_SALARY']

Build the query string and execute the method:2.

>>> qs = "DEPARTMENT in @depts " \

 "and GENDER == 'Female' " \

 "and 80000 <= BASE_SALARY <= 120000"

>>> emp_filtered = employee.query(qs)

>>> emp_filtered[select_columns].head()

Boolean Indexing

[166]

How it works...
Strings passed to the query method are going to look more like plain English than normal
pandas code. It is possible to reference Python variables using the at symbol (@) as with
depts. All DataFrame column names are available in the query namespace by simply
referencing their name without inner quotes. If a string is needed, such as Female, inner
quotes will need to wrap it.

Another nice feature of the query syntax is the ability to write a double inequality in a
single expression and its ability to understand the verbose logical operators and, or, and
not instead of their bitwise equivalents as with boolean indexing.

There's more...
Instead of manually typing in a list of department names, we could have programmatically
created it. For instance, if we wanted to find all the female employees that were not a
member of the top 10 departments by frequency, we can run the following code:

>>> top10_depts = employee.DEPARTMENT.value_counts() \

 .index[:10].tolist()

>>> qs = "DEPARTMENT not in @top10_depts and GENDER == 'Female'"

>>> employee_filtered2 = employee.query(qs)

>>> employee_filtered2.head()

Boolean Indexing

[167]

See also
Pandas official documentation on the query method (http://bit.ly/2vnlwXk)

Preserving Series with the where method
Boolean indexing necessarily filters your dataset by removing all the rows that don't match
the criteria. Instead of dropping all these values, it is possible to keep them using the where
method. The where method preserves the size of your Series or DataFrame and either sets
the values that don't meet the criteria to missing or replaces them with something else.

Getting ready
In this recipe, we pass the where method boolean conditions to put a floor and ceiling on
the minimum and maximum number of Facebook likes for actor 1 in the movie dataset.

How to do it...
Read the movie dataset, set the movie title as the index, and select all the values1.
in the actor_1_facebook_likes column that are not missing:

>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')

>>> fb_likes = movie['actor_1_facebook_likes'].dropna()

>>> fb_likes.head()

movie_title

Avatar 1000.0

http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-query
http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-query
http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-query
http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-query
http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-query
http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-query
http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-query
http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-query
http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-query

Boolean Indexing

[168]

Pirates of the Caribbean: At World's End 40000.0

Spectre 11000.0

The Dark Knight Rises 27000.0

Star Wars: Episode VII - The Force Awakens 131.0

Name: actor_1_facebook_likes, dtype: float64

Let's use the describe method to get a sense of the distribution:2.

>>> fb_likes.describe(percentiles=[.1, .25, .5, .75, .9]) \

 .astype(int)

count 4909

mean 6494

std 15106

min 0

10% 240

25% 607

50% 982

75% 11000

90% 18000

max 640000

Name: actor_1_facebook_likes, dtype: int64

Additionally, we may plot a histogram of this Series to visually inspect the3.
distribution:

>>> fb_likes.hist()

Boolean Indexing

[169]

This is quite a bad visualization and very difficult to get a sense of the4.
distribution. On the other hand, the summary statistics from step 2 appear to be
telling us that it is highly skewed to the right with many observations more than
an order of magnitude greater than the median. Let's create criteria to test
whether the number of likes is less than 20,000:

>>> criteria_high = fb_likes < 20000

>>> criteria_high.mean().round(2)

.91

About 91% of the movies have an actor 1 with fewer than 20,000 likes. We will5.
now use the where method, which accepts a boolean condition. The default
behavior is to return a Series the same size as the original but which has all the
False locations replaced with a missing value:

>>> fb_likes.where(criteria_high).head()

movie_title

Avatar 1000.0

Pirates of the Caribbean: At World's End NaN

Spectre 11000.0

The Dark Knight Rises NaN

Star Wars: Episode VII - The Force Awakens 131.0

Name: actor_1_facebook_likes, dtype: float64

The second parameter to the where method, other, allows you to control the6.
replacement value. Let's change all the missing values to 20,000:

>>> fb_likes.where(criteria_high, other=20000).head()

movie_title

Avatar 1000.0

Pirates of the Caribbean: At World's End 20000.0

Spectre 11000.0

The Dark Knight Rises 20000.0

Star Wars: Episode VII - The Force Awakens 131.0

Name: actor_1_facebook_likes, dtype: float64

Similarly, we can create criteria to put a floor on the minimum number of likes.7.
Here, we chain another where method and replace the values not meeting with
the condition to 300:

>>> criteria_low = fb_likes > 300

>>> fb_likes_cap = fb_likes.where(criteria_high, other=20000)\

 .where(criteria_low, 300)

>>> fb_likes_cap.head()

movie_title

Avatar 1000.0

Boolean Indexing

[170]

Pirates of the Caribbean: At World's End 20000.0

Spectre 11000.0

The Dark Knight Rises 20000.0

Star Wars: Episode VII - The Force Awakens 300.0

Name: actor_1_facebook_likes, dtype: float64

The length of the original Series and modified Series is the same:8.

>>> len(fb_likes), len(fb_likes_cap)

(4909, 4909)

Let's make a histogram with the modified Series. With the data in a much tighter9.
range, it should produce a better plot:

>>> fb_likes_cap.hist()

How it works...
The where method again preserves the size and shape of the calling object and does not
modify the values where the passed boolean is True. It was important to drop the missing
values in step 1 as the where method would have eventually replaced them with a valid
number in future steps.

Boolean Indexing

[171]

The summary statistics in step 2 give us some intuition where it would make sense to cap
our data. The histogram from step 3, on the other hand, appears to clump all the data into
one bin. The data has too many outliers for a plain histogram to make a good plot. The
where method allows us to place a ceiling and floor on our data, which results in a
histogram with many more visible bars.

There's more...
Pandas actually has built-in methods clip, clip_lower, and clip_upper that replicate
this operation. The clip method can set a floor and ceiling at the same time. We also check
whether this alternate method produces the exact same Series, which it does:

>>> fb_likes_cap2 = fb_likes.clip(lower=300, upper=20000)

>>> fb_likes_cap2.equals(fb_likes_cap)

True

See also
Pandas official documentation on the where method (http://bit.ly/2vmW2cv)

Masking DataFrame rows
The mask method performs the exact opposite operation that the where method does. By
default, it creates missing values wherever the boolean condition is True. In essence, it is
literally masking, or covering up, values in your dataset.

Getting ready
In this recipe, we will mask all rows of the movie dataset that were made after 2010 and
then filter all the rows with missing values.

http://bit.ly/2vmW2cv
http://bit.ly/2vmW2cv
http://bit.ly/2vmW2cv
http://bit.ly/2vmW2cv
http://bit.ly/2vmW2cv
http://bit.ly/2vmW2cv
http://bit.ly/2vmW2cv
http://bit.ly/2vmW2cv
http://bit.ly/2vmW2cv

Boolean Indexing

[172]

How to do it...
Read the movie dataset, set the movie title as the index, and create the criteria:1.

>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')

>>> c1 = movie['title_year'] >= 2010

>>> c2 = movie['title_year'].isnull()

>>> criteria = c1 | c2

Use the mask method on a DataFrame to make all the values in rows with movies2.
that were made from 2010 onward missing. Any movie that originally had a
missing value for title_year is also masked:

>>> movie.mask(criteria).head()

Notice how all the values in the third, fourth, and fifth rows from the preceding3.
DataFrame are missing. Chain the dropna method to remove rows that have all
values missing:

>>> movie_mask = movie.mask(criteria).dropna(how='all')

>>> movie_mask.head()

Boolean Indexing

[173]

The operation in step 3 is just a complex way of doing basic boolean indexing. We4.
can check whether the two methods produce the same DataFrame:

>>> movie_boolean = movie[movie['title_year'] < 2010]

>>> movie_mask.equals(movie_boolean)

False

The equals method is telling us that they aren't equal. Something is wrong. Let's5.
do some sanity checking and see if they are the same shape:

>>> movie_mask.shape == movie_boolean.shape

True

When we used the preceding mask method, it created many missing values.6.
Missing values are float data types so any previous integer column is now a
float. The equals method returns False if the data types of the columns are
different, even if the values are the same. Let's check the equality of the data
types to see whether this scenario happened:

>>> movie_mask.dtypes == movie_boolean.dtypes

color True

director_name True

num_critic_for_reviews True

duration True

director_facebook_likes True

actor_3_facebook_likes True

actor_2_name True

actor_1_facebook_likes True

Boolean Indexing

[174]

gross True

genres True

actor_1_name True

num_voted_users False

cast_total_facebook_likes False

.....

dtype: bool

It turns out that a couple of columns don't have the same data type. Pandas has7.
an alternative for these situations. In its testing module, which is primarily used
by developers, there is a function, assert_frame_equal, that allows you to
check the equality of Series and DataFrames without also checking the equality of
the data types:

from pandas.testing import assert_frame_equal

>>> assert_frame_equal(movie_boolean, movie_mask,

check_dtype=False)

How it works...
By default, the mask method covers up data with missing values. The first parameter to the
mask method is the condition which is often a boolean Series such as criteria. Because
the mask method is called from a DataFrame, all the values in each row where the condition
is False change to missing. Step 3 uses this masked DataFrame to drop the rows that
contain all missing values. Step 4 shows how to do this same procedure with boolean
indexing.

During a data analysis, it is very important to continually validate results. Checking the
equality of Series and DataFrames is an extremely common approach to validation. Our
first attempt, in step 4, yielded an unexpected result. Some basic sanity checking, such as
ensuring that the number of rows and columns are the same or that the row and column
names are the same, are good checks before going deeper.

Step 6 compares the two Series of data types together. It is here where we uncover the
reason why the DataFrames were not equivalent. The equals method checks that both the
values and data types are the same. The assert_frame_equal function from step 7 has
many available parameters to test equality in a variety of ways. Notice that there is no
output after calling assert_frame_equal. This method returns None when the two
passed DataFrames are equal and raises an error when they are not.

Boolean Indexing

[175]

There's more...
Let's compare the speed difference between masking and dropping missing rows and
boolean indexing. Boolean indexing is about an order of magnitude faster in this case:

>>> %timeit movie.mask(criteria).dropna(how='all')

11.2 ms ± 144 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

>>> %timeit movie[movie['title_year'] < 2010]

1.07 ms ± 34.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

See also
Pandas official documentation on assert_frame_equal (http://bit.ly/
2u5H5Yl)
Python official documentation of the assert statement (http://bit.ly/2v1YKmY)

Selecting with booleans, integer location,
and labels
Chapter 4, Selecting Subsets of Data, covered a wide range of recipes on selecting different
subsets of data through the .iloc and .loc indexers. Both these indexers select rows and
columns simultaneously by either integer location or label. Both these indexers can also do
data selection through boolean indexing, even though booleans are not integers and not
labels.

Getting ready
In this recipe, we will filter both rows and columns with boolean indexing for both the
.iloc and .loc indexers.

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.testing.assert_frame_equal.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.testing.assert_frame_equal.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.testing.assert_frame_equal.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.testing.assert_frame_equal.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.testing.assert_frame_equal.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.testing.assert_frame_equal.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.testing.assert_frame_equal.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.testing.assert_frame_equal.html
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement

Boolean Indexing

[176]

How to do it...
Read in the movie dataset, set the index as the title, and then create a boolean1.
Series matching all movies with a content rating of G and an IMDB score less than
4:

>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')

>>> c1 = movie['content_rating'] == 'G'

>>> c2 = movie['imdb_score'] < 4

>>> criteria = c1 & c2

Let's first pass these criteria to the .loc indexer to filter the rows:2.

>>> movie_loc = movie.loc[criteria]

>>> movie_loc.head()

Let's check whether this DataFrame is exactly equal to the one generated directly3.
from the indexing operator:

>>> movie_loc.equals(movie[criteria])

True

Boolean Indexing

[177]

Now let's attempt the same boolean indexing with the .iloc indexer:4.

>>> movie_iloc = movie.iloc[criteria]

ValueError: iLocation based boolean indexing cannot use an

indexable as a mask

It turns out that we cannot directly use a Series of booleans because of the index.5.
We can, however, use an ndarray of booleans. To extract the array, use the
values attribute:

>>> movie_iloc = movie.iloc[criteria.values]

>>> movie_iloc.equals(movie_loc)

True

Although not very common, it is possible to do boolean indexing to select6.
particular columns. Here, we select all the columns that have a data type of 64-bit
integers:

>>> criteria_col = movie.dtypes == np.int64

>>> criteria_col.head()

color False

director_name False

num_critic_for_reviews False

duration False

director_facebook_likes False

dtype: bool

>>> movie.loc[:, criteria_col].head()

Boolean Indexing

[178]

As criteria_col is a Series, which always has an index, you must use the7.
underlying ndarray to make it work with .iloc. The following produces the
same result as step 6.

>>> movie.iloc[:, criteria_col.values].head()

A boolean Series may be used to select rows and then simultaneously select8.
columns with either integers or labels. Remember, you need to put a comma
between the row and column selections. Let's keep the row criteria and select
content_rating, imdb_score, title_year, and gross:

>>> cols = ['content_rating', 'imdb_score', 'title_year', 'gross']

>>> movie.loc[criteria, cols].sort_values('imdb_score')

This same operation may be replicated with .iloc, but you need to get the9.
integer location of all the columns:

>>> col_index = [movie.columns.get_loc(col) for col in cols]

>>> col_index

[20, 24, 22, 8]

>>> movie.iloc[criteria.values, col_index]

Boolean Indexing

[179]

How it works...
Boolean indexing may be accomplished with both the .iloc and .loc indexers with the
caveat that .iloc cannot be passed a Series but the underlying ndarray. Let's take a look at
the one-dimensional ndarray underlying the criteria Series:

>>> a = criteria.values

>>> a[:5]

array([False, False, False, False, False], dtype=bool)

>>> len(a), len(criteria)

(4916, 4916)

The array is the same length as the Series, which is the same length as the movie
DataFrame. The integer location for the boolean array aligns with the integer location of the
DataFrame and the filter happens as expected. These arrays also work with the .loc
operator as well but they are a necessity for .iloc.

Steps 6 and 7 show how to filter by columns instead of by rows. The colon, :, is needed to
indicate the selection of all the rows. The comma following the colon separates the row and
column selections. There is actually a much easier way to select columns with integer data
types and that is through the select_dtypes method.

Steps 8 and 9 show a very common and useful way to do boolean indexing on the row and
column selections simultaneously. You simply place a comma between the row and column
selections. Step 9 uses a list comprehension to loop through all the desired column names to
find their integer location with the index method get_loc.

There's more...
It is actually possible to pass arrays and lists of booleans to Series objects that are not the
same length as the DataFrame you are doing the indexing on. Let's look at an example of
this by selecting the first and third rows, and the first and fourth columns:

>>> movie.loc[[True, False, True], [True, False, False, True]]

Boolean Indexing

[180]

Both of the boolean lists are not the same length as the axis they are indexing. The rest of the
rows and columns not explicitly given a boolean value in the lists are dropped.

See also
Refer to the Selecting data with both integers and labels recipe from Chapter 4,
Selecting Subsets of Data
Refer to the Selecting columns with methods recipe from Chapter 2, Essential
DataFrame Operations

6
Index Alignment

In this chapter, we will cover the following topics:

Examining the Index object
Producing Cartesian products
Exploding indexes
Filling values with unequal indexes
Appending columns from different DataFrames
Highlighting the maximum value from each column
Replicating idxmax with method chaining
Finding the most common maximum

Introduction
When multiple Series or DataFrames are combined in some way, each dimension of the
data automatically aligns on each axis first before any computation happens. This silent and
automatic alignment of axes can cause tremendous confusion for the uninitiated, but it
gives great flexibility to the power user. This chapter explores the Index object in-depth
before showcasing a variety of recipes that take advantage of its automatic alignment.

Index Alignment

[182]

Examining the Index object
As was discussed in Chapter 1, Pandas Foundations, each axis of Series and DataFrames has
an Index object that labels the values. There are many different types of Index objects, but
they all share the same common behavior. All Index objects, except for the special
MultiIndex, are single-dimensional data structures that combine the functionality and
implementation of Python sets and NumPy ndarrays.

Getting ready
In this recipe, we will examine the column index of the college dataset and explore much of
its functionality.

How to do it...
Read in the college dataset, assign for the column index to a variable, and output1.
it:

>>> college = pd.read_csv('data/college.csv')

>>> columns = college.columns

>>> columns

Index(['INSTNM', 'CITY', 'STABBR', 'HBCU', ...], dtype='object')

Use the values attribute to access the underlying NumPy array:2.

>>> columns.values

array(['INSTNM', 'CITY', 'STABBR', 'HBCU', ...], dtype=object)

Index Alignment

[183]

Select items from the index by integer location with scalars, lists, or slices:3.

>>> columns[5]

'WOMENONLY'

>>> columns[[1,8,10]]

Index(['CITY', 'SATMTMID', 'UGDS'], dtype='object')

>>> columns[-7:-4]

Index(['PPTUG_EF', 'CURROPER', 'PCTPELL'], dtype='object')

Indexes share many of the same methods as Series and DataFrames:4.

>>> columns.min(), columns.max(), columns.isnull().sum()

('CITY', 'WOMENONLY', 0)

Use basic arithmetic and comparison operators directly on Index objects:5.

>>> columns + '_A'

Index(['INSTNM_A', 'CITY_A', 'STABBR_A', 'HBCU_A', ...],

dtype='object')

>>> columns > 'G'

array([True, False, True, True, ...], dtype=bool)

Trying to change an Index value directly after its creation fails. Indexes are6.
immutable objects:

>>> columns[1] = 'city'

TypeError: Index does not support mutable operations

How it works...
As you can see from many of the Index object operations, it appears to have quite a bit in
common with both Series and ndarrays. One of the biggest differences comes in step 6.
Indexes are immutable and their values cannot be changed once created.

Index Alignment

[184]

There's more...
Indexes support the set operations, union, intersection, difference, and symmetric
difference:

>>> c1 = columns[:4]

>>> c1

Index(['INSTNM', 'CITY', 'STABBR', 'HBCU'], dtype='object')

>>> c2 = columns[2:6]

>>> c2

Index(['STABBR', 'HBCU', 'MENONLY'], dtype='object')

>>> c1.union(c2) # or `c1 | c2`

Index(['CITY', 'HBCU', 'INSTNM', 'MENONLY', 'RELAFFIL', 'STABBR'],

dtype='object')

>>> c1.symmetric_difference(c2) # or `c1 ^ c2`

Index(['CITY', 'INSTNM', 'MENONLY'], dtype='object')

Indexes share some of the same operations as Python sets. Indexes are similar to Python sets
in another important way. They are (usually) implemented using hash tables, which make
for extremely fast access when selecting rows or columns from a DataFrame. As they are
implemented using hash tables, the values for the Index object need to be immutable such
as a string, integer, or tuple just like the keys in a Python dictionary.

Indexes support duplicate values, and if there happens to be a duplicate in
any Index, then a hash table can no longer be
used for its implementation, and object access becomes much slower.

See also
Pandas official documentation of Index (http://bit.ly/2upfgtr)

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Index.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Index.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Index.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Index.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Index.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Index.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Index.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Index.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Index.html

Index Alignment

[185]

Producing Cartesian products
Whenever two Series or DataFrames operate with another Series or DataFrame, the indexes
(both the row index and column index) of each object align first before any operation
begins. This index alignment happens silently and can be very surprising for those new to
pandas. This alignment always creates a Cartesian product between the indexes unless the
indexes are identical.

A Cartesian product is a mathematical term that usually appears in set
theory. A Cartesian product between two sets is all the combinations of
pairs of both sets. For example, the 52 cards in a standard playing card
deck represent a Cartesian product between the 13 ranks (A, 2, 3,..., Q, K)
and the four suits.

Getting ready
Producing a Cartesian product isn't always the intended outcome, but it's extremely
important to be aware of how and when it occurs to avoid unintended consequences. In this
recipe, two Series with overlapping but non-identical indexes are added together, yielding a
surprising result.

How to do it...
Follow these steps to create a Cartesian product:

Construct two Series that have indexes that are different but contain some of the1.
same values:

>>> s1 = pd.Series(index=list('aaab'), data=np.arange(4))

>>> s1

a 0

a 1

a 2

b 3

dtype: int64

>>> s2 = pd.Series(index=list('cababb'), data=np.arange(6))

>>> s2

c 0

a 1

b 2

a 3

Index Alignment

[186]

b 4

b 5

dtype: int64

Add the two Series together to produce a Cartesian product:2.

>>> s1 + s2

a 1.0

a 3.0

a 2.0

a 4.0

a 3.0

a 5.0

b 5.0

b 7.0

b 8.0

c NaN

dtype: float64

How it works...
Each Series was created with the class constructor which accepts a wide variety of inputs
with the simplest being a sequence of values for each of the parameters index and data.

Mathematical Cartesian products are slightly different from the outcome of operating on
two pandas objects. Each a label in s1 pairs up with each a label in s2. This pairing
produces six a labels, three b labels, and one c label in the resulting Series. A Cartesian
product happens between all identical index labels.

As the element with label c is unique to Series s2, pandas defaults its value to missing, as
there is no label for it to align to in s1. Pandas defaults to a missing value whenever an
index label is unique to one object. This has the unfortunate consequence of changing the
data type of the Series to a float, whereas each Series had only integers as values. This
occurred because of NumPy's missing value object; np.nan only exists for floats but not for
integers. Series and DataFrame columns must have homogeneous numeric data types;
therefore, each value was converted to a float. This makes very little difference for this small
dataset, but for larger datasets, this can have a significant memory impact.

Index Alignment

[187]

There's more...
An exception to the preceding example takes place when the indexes contain the same exact
elements in the same order. When this occurs, a Cartesian product does not take place, and
the indexes instead align by their position. Notice here that each element aligned exactly by
position and that the data type remained an integer:

>>> s1 = pd.Series(index=list('aaabb'), data=np.arange(5))

>>> s2 = pd.Series(index=list('aaabb'), data=np.arange(5))

>>> s1 + s2

a 0

a 2

a 4

b 6

b 8

dtype: int64

If the elements of the index are identical, but the order is different between the Series, a
Cartesian product occurs. Let's change the order of the index in s2 and rerun the same
operation:

>>> s1 = pd.Series(index=list('aaabb'), data=np.arange(5))

>>> s2 = pd.Series(index=list('bbaaa'), data=np.arange(5))

>>> s1 + s2

a 2

a 3

a 4

a 3

a 4

a 5

a 4

a 5

a 6

b 3

b 4

b 4

b 5

dtype: int64

It is quite interesting that pandas has two drastically different outcomes for this same
operation. If a Cartesian product was the only choice for pandas, then something as simple
as adding DataFrame columns together would explode the number of elements returned.

Index Alignment

[188]

In this recipe, each Series had a different number of elements. Typically, array-like data
structures in Python and other languages do not allow operations to take place when the
operating dimensions do not contain the same number of elements. Pandas allows this to
happen by aligning the indexes first before completing the operation.

See also
Reducing memory by changing data types recipe in Chapter 3, Beginning Data
Analysis

Exploding indexes
The previous recipe walked through a trivial example of two small Series being added
together with unequal indexes. This problem can produce comically incorrect results when
dealing with larger data.

Getting ready
In this recipe, we add two larger Series that have indexes with only a few unique values but
in different orders. The result will explode the number of values in the indexes.

How to do it...
Read in the employee data and set the index equal to the race column:1.

>>> employee = pd.read_csv('data/employee.csv', index_col='RACE')

>>> employee.head()

Index Alignment

[189]

Select the BASE_SALARY column as two different Series. Check to see whether this2.
operation actually did create two new objects:

>>> salary1 = employee['BASE_SALARY']

>>> salary2 = employee['BASE_SALARY']

>>> salary1 is salary2

True

The salary1 and salary2 variables are actually referring to the same object.3.
This means that any change to one will change the other. To ensure that you
receive a brand new copy of the data, use the copy method:

>>> salary1 = employee['BASE_SALARY'].copy()

>>> salary2 = employee['BASE_SALARY'].copy()

>>> salary1 is salary2

False

Let's change the order of the index for one of the Series by sorting it:4.

>>> salary1 = salary1.sort_index()

>>> salary1.head()

RACE

American Indian or Alaskan Native 78355.0

American Indian or Alaskan Native 81239.0

American Indian or Alaskan Native 60347.0

American Indian or Alaskan Native 68299.0

American Indian or Alaskan Native 26125.0

Name: BASE_SALARY, dtype: float64

>>> salary2.head()

RACE

Hispanic/Latino 121862.0

Hispanic/Latino 26125.0

Index Alignment

[190]

White 45279.0

White 63166.0

White 56347.0

Name: BASE_SALARY, dtype: float64

Let's add these salary Series together:5.

>>> salary_add = salary1 + salary2

>>> salary_add.head()

RACE

American Indian or Alaskan Native 138702.0

American Indian or Alaskan Native 156710.0

American Indian or Alaskan Native 176891.0

American Indian or Alaskan Native 159594.0

American Indian or Alaskan Native 127734.0

Name: BASE_SALARY, dtype: float64

The operation completed successfully. Let's create one more Series of salary16.
added to itself and then output the lengths of each Series. We just exploded the
index from 2,000 values to more than 1 million:

>>> salary_add1 = salary1 + salary1

>>> len(salary1), len(salary2), len(salary_add), len(salary_add1)

(2000, 2000, 1175424, 2000)

How it works...
Step 2 appears at first to create two unique objects but in fact, it creates a single object that is
referred to by two different variable names. The expression employee['BASE_SALARY'],
technically creates a view, and not a brand new copy. This is verified with the is operator.

In pandas, a view is not a new object but just a reference to another object,
usually some subset of a DataFrame. This shared object can be a cause for
many issues.

To ensure that both variables reference completely different objects, we use the copy Series
method and again verify that they are different objects with the is operator. Step 4 uses the
sort_index method to sort the Series by race. Step 5 adds these different Series together to
produce some result. By just inspecting the head, it's still not clear what has been produced.

Index Alignment

[191]

Step 6 adds salary1 to itself to show a comparison between the two different Series
additions. The length of all the Series in this recipe are output and we clearly see that
series_add has now exploded to over one million values. A Cartesian product took place
for each unique value in the index because the indexes were not exactly the same. This
recipe dramatically shows how much of an impact the index can have when combining
multiple Series or DataFrames.

There's more...
We can verify the number of values of salary_add by doing a little mathematics. As a
Cartesian product takes place between all of the same index values, we can sum the square
of their individual counts. Even missing values in the index produce Cartesian products
with themselves:

>>> index_vc = salary1.index.value_counts(dropna=False)

>>> index_vc

Black or African American 700

White 665

Hispanic/Latino 480

Asian/Pacific Islander 107

NaN 35

American Indian or Alaskan Native 11

Others 2

Name: RACE, dtype: int64

>>> index_vc.pow(2).sum()

1175424

Filling values with unequal indexes
When two Series are added together using the plus operator and one of the index labels
does not appear in the other, the resulting value is always missing. Pandas offers the add
method, which provides an option to fill the missing value.

Getting ready
In this recipe, we add together multiple Series from the baseball dataset with unequal
indexes using the fill_value parameter of the add method to ensure that there are no
missing values in the result.

Index Alignment

[192]

How to do it...
Read in the three baseball datasets and set the index as playerID:1.

>>> baseball_14 = pd.read_csv('data/baseball14.csv',

 index_col='playerID')

>>> baseball_15 = pd.read_csv('data/baseball15.csv',

 index_col='playerID')

>>> baseball_16 = pd.read_csv('data/baseball16.csv',

 index_col='playerID')

>>> baseball_14.head()

Use the index method difference to discover which index labels are in2.
baseball_14 and not in baseball_15, and vice versa:

>>> baseball_14.index.difference(baseball_15.index)

Index(['corpoca01', 'dominma01', 'fowlede01', 'grossro01',

 'guzmaje01', 'hoeslj01', 'krausma01', 'preslal01',

 'singljo02'], dtype='object', name='playerID')

>>> baseball_14.index.difference(baseball_16.index)

Index(['congeha01', 'correca01', 'gattiev01', 'gomezca01',

 'lowrije01', 'rasmuco01', 'tuckepr01', 'valbulu01'],

 dtype='object', name='playerID')

There are quite a few players unique to each index. Let's find out how many hits3.
each player has in total over the three-year period. The H column contains the
number of hits:

>>> hits_14 = baseball_14['H']

>>> hits_15 = baseball_15['H']

>>> hits_16 = baseball_16['H']

>>> hits_14.head()

playerID

altuvjo01 225

Index Alignment

[193]

cartech02 115

castrja01 103

corpoca01 40

dominma01 121

Name: H, dtype: int64

Let's first add together two Series using the plus operator:4.

>>> (hits_14 + hits_15).head()

playerID

altuvjo01 425.0

cartech02 193.0

castrja01 174.0

congeha01 NaN

corpoca01 NaN

Name: H, dtype: float64

Even though players congeha01 and corpoca01 have recorded hits for 2015,5.
their result is missing. Let's use the add method and its parameter, fill_value,
to avoid missing values:

>>> hits_14.add(hits_15, fill_value=0).head()

playerID

altuvjo01 425.0

cartech02 193.0

castrja01 174.0

congeha01 46.0

corpoca01 40.0

Name: H, dtype: float64

Index Alignment

[194]

We add hits from 2016 by chaining the add method once more:6.

>>> hits_total = hits_14.add(hits_15, fill_value=0) \

 .add(hits_16, fill_value=0)

>>> hits_total.head()

playerID

altuvjo01 641.0

bregmal01 53.0

cartech02 193.0

castrja01 243.0

congeha01 46.0

Name: H, dtype: float64

Check for missing values in the result:7.

>>> hits_total.hasnans

False

How it works...
The add method works similarly to the plus operator but allows for more flexibility by
providing the fill_value parameter to take the place of a non-matching index. In this
problem, it makes sense to default the non-matching index value to 0, but you could have
used any other number.

There will be occasions when each Series contains index labels that correspond to missing
values. In this specific instance, when the two Series are added, the index label will still
correspond to a missing value regardless if the fill_value parameter is used. To clarify
this, take a look at the following example where the index label a corresponds to a missing
value in each Series:

>>> s = pd.Series(index=['a', 'b', 'c', 'd'],

 data=[np.nan, 3, np.nan, 1])

>>> s

a NaN

b 3.0

c NaN

d 1.0

dtype: float64

>>> s1 = pd.Series(index=['a', 'b', 'c'], data=[np.nan, 6, 10])

>>> s1

a NaN

b 6.0

c 10.0

Index Alignment

[195]

dtype: float64

>>> s.add(s1, fill_value=5)

a NaN

b 9.0

c 15.0

d 6.0

dtype: float64

There's more...
This recipe shows how to add Series with only a single index together. It is also entirely
possible to add DataFrames together. Adding DataFrames together will align both the index
and columns before computation and yield missing values for non-matching indexes. Let's
start by selecting a few of the columns from the 2014 baseball dataset.

>>> df_14 = baseball_14[['G','AB', 'R', 'H']]

>>> df_14.head()

Let's also select a few of the same and a few different columns from the 2015 baseball dataset:

>>> df_15 = baseball_15[['AB', 'R', 'H', 'HR']]

>>> df_15.head()

Index Alignment

[196]

Adding the two DataFrames together create missing values wherever rows or column labels
cannot align. Use the style attribute to access the highlight_null method to easily see
where the missing values are:

>>> (df_14 + df_15).head(10).style.highlight_null('yellow')

Only the rows with playerID appearing in both DataFrames will be non-missing.
Similarly, the columns AB, H, and R are the only ones that appear in both DataFrames. Even
if we use the add method with the fill_value parameter specified, we still have missing
values. This is because some combinations of rows and columns never existed in our input
data. For example, the intersection of playerID congeha01 and column G. He only appeared
in the 2015 dataset that did not have the G column. Therefore, no value was filled with it:

>>> df_14.add(df_15, fill_value=0).head(10) \

 .style.highlight_null('yellow')

Index Alignment

[197]

Appending columns from different
DataFrames
All DataFrames can add new columns to themselves. However, as usual, whenever a
DataFrame is adding a new column from another DataFrame or Series, the indexes align
first before the new column is created.

Getting ready
This recipe uses the employee dataset to append a new column containing the maximum
salary of that employee's department.

Index Alignment

[198]

How to do it...
Import the employee data and select the DEPARTMENT and BASE_SALARY1.
columns in a new DataFrame:

>>> employee = pd.read_csv('data/employee.csv')

>>> dept_sal = employee[['DEPARTMENT', 'BASE_SALARY']]

Sort this smaller DataFrame by salary within each department:2.

>>> dept_sal = dept_sal.sort_values(['DEPARTMENT', 'BASE_SALARY'],

 ascending=[True, False])

Use the drop_duplicates method to keep the first row of each DEPARTMENT:3.

>>> max_dept_sal = dept_sal.drop_duplicates(subset='DEPARTMENT')

>>> max_dept_sal.head()

Put the DEPARTMENT column into the index for each DataFrames:4.

>>> max_dept_sal = max_dept_sal.set_index('DEPARTMENT')

>>> employee = employee.set_index('DEPARTMENT')

Now that the indexes contain matching values, we can append a new column to5.
the employee DataFrame:

>>> employee['MAX_DEPT_SALARY'] = max_dept_sal['BASE_SALARY']

>>> employee.head()

Index Alignment

[199]

We can validate our results with the query method to check whether there exist6.
any rows where BASE_SALARY is greater than MAX_DEPT_SALARY:

>>> employee.query('BASE_SALARY > MAX_DEPT_SALARY')

How it works...
Steps 2 and 3 find the maximum salary for each department. For automatic index alignment
to work properly, we set each DataFrame index as the department. Step 5 works because
each row index from the left DataFrame; employee aligns with one and only one index
from the right DataFrame, max_dept_sal. If max_dept_sal had repeats of any
departments in its index, then the operation would fail.

For instance, let's see what happens when we use a DataFrame on the right-hand side of the
equality that has repeated index values. We use the sample DataFrame method to
randomly choose ten rows without replacement:

>>> np.random.seed(1234)

>>> random_salary = dept_sal.sample(n=10).set_index('DEPARTMENT')

>>> random_salary

Index Alignment

[200]

Notice how there are several repeated departments in the index. Now when we attempt to
create a new column, an error is raised alerting us that there are duplicates. At least one
index label in the employee DataFrame is joining with two or more index labels from
random_salary:

>>> employee['RANDOM_SALARY'] = random_salary['BASE_SALARY']

ValueError: cannot reindex from a duplicate axis

There's more...
Not all indexes on the left-hand side of the equal sign need to have a match, but at most can
have one. If there is nothing for the left DataFrame index to align to, the resulting value will
be missing. Let's create an example where this happens. We will use only the first three
rows of the max_dept_sal Series to create a new column:

>>> employee['MAX_SALARY2'] = max_dept_sal['BASE_SALARY'].head(3)

>>> employee.MAX_SALARY2.value_counts()

140416.0 29

100000.0 11

64251.0 5

Name: MAX_SALARY2, dtype: int64

>>> employee.MAX_SALARY2.isnull().mean()

Index Alignment

[201]

.9775

The operation completed successfully but filled in salaries for only three of the departments.
All the other departments that did not appear in the first three rows of the
max_dept_sal Series resulted in a missing value.

See also
Selecting the largest from the smallest recipe from Chapter 3, Beginning Data
Analysis

Highlighting the maximum value from each
column
The college dataset has many numeric columns describing different metrics about each
school. Many people are interested in schools that perform the best for certain metrics.

Getting ready
This recipe discovers the school that has the maximum value for each numeric column and
styles the DataFrame in order to highlight the information so that it is easily consumed by a
user.

How to do it...
Read the college dataset with the institution name as the index:1.

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college.dtypes

CITY object

STABBR object

HBCU float64

MENONLY float64

 ...

PCTFLOAN float64

UG25ABV float64

MD_EARN_WNE_P10 object

Index Alignment

[202]

GRAD_DEBT_MDN_SUPP object

Length: 26, dtype: object

All the other columns besides CITY and STABBR appear to be numeric.2.
Examining the data types from the preceding step reveals unexpectedly that the
MD_EARN_WNE_P10 and GRAD_DEBT_MDN_SUPP columns are of type object and
not numeric. To help get a better idea of what kind of values are in these
columns, let's examine their first value:

>>> college.MD_EARN_WNE_P10.iloc[0]

'30300'

>>> college.GRAD_DEBT_MDN_SUPP.iloc[0]

'33888'

These values are strings but we would like them to be numeric. This means that3.
there are likely to be non-numeric characters that appear elsewhere in the Series.
One way to check for this is to sort these columns in descending order and
examine the first few rows:

>>> college.MD_EARN_WNE_P10.sort_values(ascending=False).head()

INSTNM

Sharon Regional Health System School of Nursing

PrivacySuppressed

Northcoast Medical Training Academy

PrivacySuppressed

Success Schools

PrivacySuppressed

Louisiana Culinary Institute

PrivacySuppressed

Bais Medrash Toras Chesed

PrivacySuppressed

Name: MD_EARN_WNE_P10, dtype: object

The culprit appears to be that some schools have privacy concerns about these4.
two columns of data. To force these columns to be numeric, use the pandas
function to_numeric:

>>> cols = ['MD_EARN_WNE_P10', 'GRAD_DEBT_MDN_SUPP']

>>> for col in cols:

 college[col] = pd.to_numeric(college[col], errors='coerce')

>>> college.dtypes.loc[cols]

MD_EARN_WNE_P10 float64

GRAD_DEBT_MDN_SUPP float64

dtype: object

Index Alignment

[203]

Use the select_dtypes method to filter for only numeric columns. This will5.
exclude STABBR and CITY columns, where a maximum value doesn't make sense
with this problem:

>>> college_n = college.select_dtypes(include=[np.number])

>>> college_n.head()

By utilizing the data dictionary, there are several columns that have only binary6.
(0/1) values that will not provide useful information. To programmatically find
these columns, we can create boolean Series and find all the columns that have
two unique values with the nunique method:

>>> criteria = college_n.nunique() == 2

>>> criteria.head()

HBCU True

MENONLY True

WOMENONLY True

RELAFFIL True

SATVRMID False

dtype: bool

Pass this boolean Series to the indexing operator of the columns index object and7.
create a list of the binary columns:

>>> binary_cols = college_n.columns[criteria].tolist()

>>> binary_cols

['HBCU', 'MENONLY', 'WOMENONLY', 'RELAFFIL', 'DISTANCEONLY',

'CURROPER']

Index Alignment

[204]

Remove the binary columns with the drop method:8.

>>> college_n2 = college_n.drop(labels=binary_cols, axis='columns')

>>> college_n2.head()

Use the idxmax method to find the index label of the maximum value for each9.
column:

>>> max_cols = college_n2.idxmax()

>>> max_cols

SATVRMID California Institute of Technology

SATMTMID California Institute of Technology

UGDS University of Phoenix-Arizona

UGDS_WHITE Mr Leon's School of Hair Design-Moscow

 ...

PCTFLOAN ABC Beauty College Inc

UG25ABV Dongguk University-Los Angeles

MD_EARN_WNE_P10 Medical College of Wisconsin

GRAD_DEBT_MDN_SUPP Southwest University of Visual Arts-Tucson

Length: 18, dtype: object

Call the unique method on the max_cols Series. This returns an ndarray of the10.
unique column names:

>>> unique_max_cols = max_cols.unique()

>>> unique_max_cols[:5]

array(['California Institute of Technology',

 'University of Phoenix-Arizona',

 "Mr Leon's School of Hair Design-Moscow",

 'Velvatex College of Beauty Culture',

 'Thunderbird School of Global Management'], dtype=object)

Index Alignment

[205]

Use the values of max_cols to select only the rows that have schools with a11.
maximum value and then use the style attribute to highlight these values:

>>> college_n2.loc[unique_max_cols].style.highlight_max()

How it works...
The idxmax method is very powerful and becomes quite useful when the index is
meaningfully labeled. It was unexpected that both MD_EARN_WNE_P10 and
GRAD_DEBT_MDN_SUPP were of object data type. When importing, pandas coerces all
numeric values of columns to strings if the column contains at least one string.

Index Alignment

[206]

By examining a specific column value in step 2, we were able to see clearly that we had
strings in these columns. In step 3, we sort in descending order as numeric characters
appear first. This elevates all alphabetical values to the top of the Series. We uncover the
PrivacySuppressed string causing havoc. Pandas has the ability to force all strings that
contain only numeric characters to actual numeric data types with the to_numeric
function. To override the default behavior of raising an error when to_numeric encounters
a string that cannot be converted, you must pass coerce to the errors parameter. This forces
all non-numeric character strings to become missing values (np.nan).

Several columns don't have useful or meaningful maximum values. They were removed in
step 4 through step 6. The select_dtypes can be extremely useful for very wide
DataFrames with lots of columns.

In step 7, idxmax iterates through all the columns to find the index of the maximum value
for each column. It outputs the results as a Series. The school with both the highest SAT
math and verbal scores is California Institute of Technology. Dongguk University Los
Angeles has the highest number of students older than 25.

Although the information provided by idxmax is nice, it does not yield the corresponding
maximum value. To do this, we gather all the unique school names from the values of
the max_cols Series.

Finally, in step 8, we use the .loc indexer to select rows based on the index label, which we
made as school names in the first step. This filters for only schools that have a maximum
value. DataFrames have an experimental style attribute that itself has some methods to
alter the appearance of the displayed DataFrame. Highlighting the maximum value makes
the result much clearer.

Index Alignment

[207]

There's more...
By default, the highlight_max method highlights the maximum value of each column. We
can use the axis parameter to highlight the maximum value of each row instead. Here, we
select just the race percentage columns of the college dataset and highlight the race with
the highest percentage for each school:

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college_ugds = college.filter(like='UGDS_').head()

>>> college_ugds.style.highlight_max(axis='columns')

Attempting to apply a style on a large DataFrame can cause Jupyter to crash, which is why
the style was only applied to the head of the DataFrame.

See also
Pandas official documentation on Dataframe Styling (http://bit.ly/2hsZkVK)

Replicating idxmax with method chaining
It can be a good exercise to attempt an implementation of a built-in DataFrame method on
your own. This type of replication can give you a deeper understanding of other pandas
methods that you normally wouldn't have come across. idxmax is a challenging method to
replicate using only the methods covered thus far in the book.

https://pandas.pydata.org/pandas-docs/stable/style.html
https://pandas.pydata.org/pandas-docs/stable/style.html
https://pandas.pydata.org/pandas-docs/stable/style.html
https://pandas.pydata.org/pandas-docs/stable/style.html
https://pandas.pydata.org/pandas-docs/stable/style.html
https://pandas.pydata.org/pandas-docs/stable/style.html
https://pandas.pydata.org/pandas-docs/stable/style.html
https://pandas.pydata.org/pandas-docs/stable/style.html
https://pandas.pydata.org/pandas-docs/stable/style.html

Index Alignment

[208]

Getting ready
This recipe slowly chains together basic methods to eventually find all the row index values
that contain a maximum column value.

How to do it...
Load in the college dataset and execute the same operations as the previous1.
recipe to get only the numeric columns that are of interest:

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> cols = ['MD_EARN_WNE_P10', 'GRAD_DEBT_MDN_SUPP']

>>> for col in cols:

 college[col] = pd.to_numeric(college[col], errors='coerce')

>>> college_n = college.select_dtypes(include=[np.number])

>>> criteria = college_n.nunique() == 2

>>> binary_cols = college_n.columns[criteria].tolist()

>>> college_n = college_n.drop(labels=binary_cols, axis='columns')

Find the maximum of each column with the max method:2.

>>> college_n.max().head()

SATVRMID 765.0

SATMTMID 785.0

UGDS 151558.0

UGDS_WHITE 1.0

UGDS_BLACK 1.0

dtype: float64

Use the eq DataFrame method to test each value with its column max. By default,3.
the eq method aligns the columns of the column DataFrame with the labels of the
passed Series index:

>>> college_n.eq(college_n.max()).head()

Index Alignment

[209]

All the rows in this DataFrame that have at least one True value must contain a 4.
column maximum. Let's use the any method to find all such rows that have at
least one True value:

>>> has_row_max = college_n.eq(college_n.max()).any(axis='columns')

>>> has_row_max.head()

INSTNM

Alabama A & M University False

University of Alabama at Birmingham False

Amridge University False

University of Alabama in Huntsville False

Alabama State University False

dtype: bool

There are only 18 columns, which means that there should only be at most 185.
True values in has_row_max. Let's find out how many there actually are:

>>> college_n.shape

(7535, 18)

>>> has_row_max.sum()

401

Index Alignment

[210]

This was a bit unexpected, but it turns out that there are columns with many6.
rows that equal the maximum value. This is common with many of the
percentage columns that have a maximum of 1. idxmax returns the first
occurrence of the maximum value. Let's back up a bit, remove the any method,
and look at the output from step 3. Let's run the cumsum method instead to
accumulate all the True values. The first and last three rows are shown:

>>> college_n.eq(college_n.max()).cumsum()

Some columns have one unique maximum like SATVRMID and SATMTMID, while 7.
others like UGDS_WHITE have many. 109 schools have 100% of their
undergraduates as white. If we chain the cumsum method one more time, the
value 1 would only appear once in each column and it would be the first
occurrence of the maximum:

>>> college_n.eq(college_n.max()).cumsum().cumsum()

Index Alignment

[211]

We can now test the equality of each value against 1 with the eq method and then8.
use the any method to find rows that have at least one True value:

>>> has_row_max2 = college_n.eq(college_n.max()) \

 .cumsum() \

 .cumsum() \

 .eq(1) \

 .any(axis='columns')

>>> has_row_max2.head()

INSTNM

Alabama A & M University False

University of Alabama at Birmingham False

Amridge University False

University of Alabama in Huntsville False

Alabama State University False

dtype: bool

Test that has_row_max2 has no more True values than the number of columns:9.

>>> has_row_max2.sum()

16

Index Alignment

[212]

We need all the institutions where has_row_max2 is True. We can simply use10.
boolean indexing on the Series itself:

>>> idxmax_cols = has_row_max2[has_row_max2].index

>>> idxmax_cols

Index(['Thunderbird School of Global Management',

 'Southwest University of Visual Arts-Tucson',

 'ABC Beauty College Inc',

 'Velvatex College of Beauty Culture',

 'California Institute of Technology',

 'Le Cordon Bleu College of Culinary Arts-San Francisco',

 'MTI Business College Inc', 'Dongguk University-Los

Angeles',

 'Mr Leon's School of Hair Design-Moscow',

 'Haskell Indian Nations University', 'LIU Brentwood',

 'Medical College of Wisconsin', 'Palau Community College',

 'California University of Management and Sciences',

 'Cosmopolitan Beauty and Tech School',

 'University of Phoenix-Arizona'], dtype='object',

name='INSTNM')

All 16 of these institutions are the index of the first maximum occurrence for at11.
least one of the columns. We can check whether they are the same as the ones
found with the idxmax method:

>>> set(college_n.idxmax().unique()) == set(idxmax_cols)

True

How it works...
The first step replicates work from the previous recipe by converting two columns to
numeric and eliminating the binary columns. We find the maximum value of each column
in step 2. Care needs to be taken here as pandas silently drops columns that it cannot
produce a maximum. If this happens, then step 3 will still complete but produce all False
values for each column without an available maximum.

Step 4 uses the any method to scan across each row in search of at least one True value.
Any row with at least one True value contains a maximum value for a column. We sum up
the resulting boolean Series in step 5 to determine how many rows contain a maximum.
Somewhat unexpectedly, there are far more rows than columns. Step 6 gives insight on why
this happens. We take a cumulative sum of the output from step 3 and detect the total
number of rows that equal the maximum for each column.

Index Alignment

[213]

Many colleges have 100% of their student population as only a single race. This is by far the
largest contributor to the multiple rows with maximums. As you can see, there is only one
row with a maximum value for both SAT score columns and undergraduate population,
but several of the race columns have a tie for the maximum.

Our goal is to find the first row with the maximum value. We need to take the cumulative
sum once more so that each column has only a single row equal to 1. Step 8 formats the
code to have one method per line and runs the any method exactly as it was done in step 4.
If this step is successful, then we should have no more True values than the number of
columns. Step 9 asserts that this is true.

To validate that we have found the same columns as idxmax in the previous columns, we
use boolean selection on has_row_max2 with itself. The columns will be in a different order
so we convert the sequence of column names to sets, which are inherently unordered to
compare equality.

There's more...
It is possible to complete this recipe in one long line of code chaining the indexing operator
with an anonymous function. This little trick removes the need for step 10. We can time the
difference between the direct idxmax method and our manual effort in this recipe:

>>> %timeit college_n.idxmax().values

1.12 ms ± 28.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

>>> %timeit college_n.eq(college_n.max()) \

 .cumsum() \

 .cumsum() \

 .eq(1) \

 .any(axis='columns') \

 [lambda x: x].index

5.35 ms ± 55.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Our effort is, unfortunately, five times as slow as the built-in idxmax pandas method but
regardless of its performance regression, many creative and practical solutions use the
accumulation methods like cumsum with boolean Series to find streaks or specific patterns
along an axis.

Index Alignment

[214]

Finding the most common maximum
The college dataset contains the undergraduate population percentage of eight different
races for over 7,500 colleges. It would be interesting to find the race with the highest
undergrad population for each school and then find the distribution of this result for the
entire dataset. We would be able to answer a question like, What percentage of institutions
have more white students than any other race?

Getting ready
In this recipe, we find the race with the highest percentage of the undergraduate population
for each school with the idxmax method and then find the distribution of these maximums.

How to do it...
Read in the college dataset and select just those columns with undergraduate race1.
percentage information:

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college_ugds = college.filter(like='UGDS_')

>>> college_ugds.head()

Index Alignment

[215]

Use the idxmax method to get the column name with the highest race percentage2.
for each row:

>>> highest_percentage_race = college_ugds.idxmax(axis='columns')

>>> highest_percentage_race.head()

INSTNM

Alabama A & M University UGDS_BLACK

University of Alabama at Birmingham UGDS_WHITE

Amridge University UGDS_BLACK

University of Alabama in Huntsville UGDS_WHITE

Alabama State University UGDS_BLACK

dtype: object

Use the value_counts method to return the distribution of maximum3.
occurrences:

>>> highest_percentage_race.value_counts(normalize=True)

UGDS_WHITE 0.670352

UGDS_BLACK 0.151586

UGDS_HISP 0.129473

UGDS_UNKN 0.023422

UGDS_ASIAN 0.012074

UGDS_AIAN 0.006110

UGDS_NRA 0.004073

UGDS_NHPI 0.001746

UGDS_2MOR 0.001164

dtype: float64

How it works...
The key to this recipe is recognizing that the columns all represent the same unit of
information. We can compare these columns with each other, which is usually not the case.
For instance, it wouldn't make sense to directly compare SAT verbal scores with the
undergraduate population. As the data is structured in this manner, we can apply the
idxmax method to each row of data to find the column with the largest value. We need to
alter its default behavior with the axis parameter.

Step 2 completes this operation and returns a Series, to which we can now simply apply the
value_counts method to return the distribution. We pass True to the normalize
parameter as we are interested in the distribution (relative frequency) and not the raw
counts.

Index Alignment

[216]

There's more...
We might want to explore more and answer the question: For the schools with more black
students than any other race, what is the distribution of its second highest race percentage?

>>> college_black = college_ugds[highest_percentage_race == 'UGDS_BLACK']

>>> college_black = college_black.drop('UGDS_BLACK', axis='columns')

>>> college_black.idxmax(axis='columns').value_counts(normalize=True)

UGDS_WHITE 0.661228

UGDS_HISP 0.230326

UGDS_UNKN 0.071977

UGDS_NRA 0.018234

UGDS_ASIAN 0.009597

UGDS_2MOR 0.006718

UGDS_AIAN 0.000960

UGDS_NHPI 0.000960

dtype: float64

We needed to drop the UGDS_BLACK column before applying the same method from this
recipe. Interestingly, it seems that these schools with higher black populations have a
tendency to have higher Hispanic populations.

7
Grouping for Aggregation,

Filtration, and Transformation
In this chapter, we will cover the following topics:

Defining an aggregation
Grouping and aggregating with multiple columns and functions
Removing the MultiIndex after grouping
Customizing an aggregation function
Customizing aggregating functions with *args and **kwargs
Examining the groupby object
Filtering for states with a minority majority
Transforming through a weight loss bet
Calculating weighted mean SAT scores per state with apply
Grouping by continuous variables
Counting the total number of flights between cities
Finding the longest streak of on-time flights

Introduction
One of the most fundamental tasks during a data analysis involves splitting data into
independent groups before performing a calculation on each group. This methodology has
been around for quite some time but has more recently been referred to as split-apply-
combine. This chapter covers the powerful groupby method, which allows you to group
your data in any way imaginable and apply any type of function independently to each
group before returning a single dataset.

Grouping for Aggregation, Filtration, and Transformation

[218]

Hadley Wickham coined the term split-apply-combine to describe the
common data analysis pattern of breaking up data into independent
manageable chunks, independently applying functions to these chunks,
and then combining the results back together. More details can be found in
his paper (http://bit.ly/2isFuL9).

Before we get started with the recipes, we will need to know just a little terminology. All
basic groupby operations have grouping columns, and each unique combination of values
in these columns represents an independent grouping of the data. The syntax looks as
follows:

>>> df.groupby(['list', 'of', 'grouping', 'columns'])

>>> df.groupby('single_column') # when grouping by a single column

The result of this operation returns a groupby object. It is this groupby object that will be
the engine that drives all the calculations for this entire chapter. Pandas actually does very
little when creating this groupby object, merely validating that grouping is possible. You
will have to chain methods on this groupby object in order to unleash its powers.

Technically, the result of the operation will either be a
DataFrameGroupBy or SeriesGroupBy but for simplicity, it will be
referred to as the groupby object for the entire chapter.

Defining an aggregation
The most common use of the groupby method is to perform an aggregation. What actually
is an aggregation? In our data analysis world, an aggregation takes place when a sequence
of many inputs get summarized or combined into a single value output. For example,
summing up all the values of a column or finding its maximum are common aggregations
applied on a single sequence of data. An aggregation simply takes many values and
converts them down to a single value.

In addition to the grouping columns defined during the introduction, most aggregations
have two other components, the aggregating columns and aggregating functions. The
aggregating columns are those whose values will be aggregated. The aggregating functions
define how the aggregation takes place. Major aggregation functions include sum, min, max,
mean, count, variance, std, and so on.

http://www.stat.wvu.edu/~jharner/courses/stat623/docs/plyrJSS.pdf
http://www.stat.wvu.edu/~jharner/courses/stat623/docs/plyrJSS.pdf
http://www.stat.wvu.edu/~jharner/courses/stat623/docs/plyrJSS.pdf
http://www.stat.wvu.edu/~jharner/courses/stat623/docs/plyrJSS.pdf
http://www.stat.wvu.edu/~jharner/courses/stat623/docs/plyrJSS.pdf
http://www.stat.wvu.edu/~jharner/courses/stat623/docs/plyrJSS.pdf
http://www.stat.wvu.edu/~jharner/courses/stat623/docs/plyrJSS.pdf
http://www.stat.wvu.edu/~jharner/courses/stat623/docs/plyrJSS.pdf
http://www.stat.wvu.edu/~jharner/courses/stat623/docs/plyrJSS.pdf

Grouping for Aggregation, Filtration, and Transformation

[219]

Getting ready
In this recipe, we examine the flights dataset and perform the simplest possible aggregation
involving only a single grouping column, a single aggregating column, and a single
aggregating function. We will find the average arrival delay for each airline. Pandas has
quite a few different syntaxes to produce an aggregation and this recipe covers them.

How to do it...
Read in the flights dataset, and define the grouping columns (AIRLINE),1.
aggregating columns (ARR_DELAY), and aggregating functions (mean):

>>> flights = pd.read_csv('data/flights.csv')

>>> flights.head()

Place the grouping column in the groupby method and then call the agg method2.
with a dictionary pairing the aggregating column with its aggregating function:

>>> flights.groupby('AIRLINE').agg({'ARR_DELAY':'mean'}).head()

Grouping for Aggregation, Filtration, and Transformation

[220]

Alternatively, you may place the aggregating column in the indexing operator3.
and then pass the aggregating function as a string to agg:

>>> flights.groupby('AIRLINE')['ARR_DELAY'].agg('mean').head()

AIRLINE

AA 5.542661

AS -0.833333

B6 8.692593

DL 0.339691

EV 7.034580

Name: ARR_DELAY, dtype: float64

The string names used in the previous step are a convenience pandas offers you4.
to refer to a particular aggregation function. You can pass any aggregating
function directly to the agg method such as the NumPy mean function. The
output is the same as the previous step:

>>> flights.groupby('AIRLINE')['ARR_DELAY'].agg(np.mean).head()

It's possible to skip the agg method altogether in this case and use the mean5.
method directly. This output is also the same as step 3:

>>> flights.groupby('AIRLINE')['ARR_DELAY'].mean().head()

How it works...
The syntax for the groupby method is not as straightforward as other methods. Let's
intercept the chain of methods in step 2 by storing the result of the groupby method as its
own variable

>>> grouped = flights.groupby('AIRLINE')

>>> type(grouped)

pandas.core.groupby.DataFrameGroupBy

Grouping for Aggregation, Filtration, and Transformation

[221]

A completely new intermediate object is first produced with its own distinct attributes and
methods. No calculations take place at this stage. Pandas merely validates the grouping
columns. This groupby object has an agg method to perform aggregations. One of the ways
to use this method is to pass it a dictionary mapping the aggregating column to the
aggregating function, as done in step 2.

There are several different flavors of syntax that produce a similar result, with step 3
showing an alternative. Instead of identifying the aggregating column in the dictionary,
place it inside the indexing operator just as if you were selecting it as a column from a
DataFrame. The function string name is then passed as a scalar to the agg method.

You may pass any aggregating function to the agg method. Pandas allows you to use the
string names for simplicity but you may also explicitly call an aggregating function as done
in step 4. NumPy provides many functions that aggregate values.

Step 5 shows one last syntax flavor. When you are only applying a single aggregating
function as in this example, you can often call it directly as a method on the groupby object
itself without agg. Not all aggregation functions have a method equivalent but many basic
ones do. The following is a list of several aggregating functions that may be passed as a
string to agg or chained directly as a method to the groupby object:

min max mean median sum count std var

size describe nunique idxmin idxmax

There's more...
If you do not use an aggregating function with agg, pandas raises an exception. For
instance, let's see what happens when we apply the square root function to each group:

>>> flights.groupby('AIRLINE')['ARR_DELAY'].agg(np.sqrt)

ValueError: function does not reduce

See also
Pandas official documentation on Aggregation (http://bit.ly/2iuf1Nc)

http://pandas.pydata.org/pandas-docs/stable/groupby.html#aggregation
http://pandas.pydata.org/pandas-docs/stable/groupby.html#aggregation
http://pandas.pydata.org/pandas-docs/stable/groupby.html#aggregation
http://pandas.pydata.org/pandas-docs/stable/groupby.html#aggregation
http://pandas.pydata.org/pandas-docs/stable/groupby.html#aggregation
http://pandas.pydata.org/pandas-docs/stable/groupby.html#aggregation
http://pandas.pydata.org/pandas-docs/stable/groupby.html#aggregation
http://pandas.pydata.org/pandas-docs/stable/groupby.html#aggregation
http://pandas.pydata.org/pandas-docs/stable/groupby.html#aggregation

Grouping for Aggregation, Filtration, and Transformation

[222]

Grouping and aggregating with multiple
columns and functions
It is possible to do grouping and aggregating with multiple columns. The syntax is only
slightly different than it is for grouping and aggregating with a single column. As usual
with any kind of grouping operation, it helps to identify the three components: the
grouping columns, aggregating columns, and aggregating functions.

Getting ready
In this recipe, we showcase the flexibility of the groupby DataFrame method by answering
the following queries:

Finding the number of cancelled flights for every airline per weekday
Finding the number and percentage of cancelled and diverted flights for every
airline per weekday
For each origin and destination, finding the total number of flights, the number
and percentage of cancelled flights, and the average and variance of the airtime

How to do it...
Read in the flights dataset, and answer the first query by defining the grouping1.
columns (AIRLINE, WEEKDAY), the aggregating column (CANCELLED), and the
aggregating function (sum):

>>> flights.groupby(['AIRLINE', 'WEEKDAY'])['CANCELLED'] \

 .agg('sum').head(7)

AIRLINE WEEKDAY

AA 1 41

 2 9

 3 16

 4 20

 5 18

 6 21

 7 29

Name: CANCELLED, dtype: int64

Grouping for Aggregation, Filtration, and Transformation

[223]

Answer the second query by using a list for each pair of grouping and2.
aggregating columns. Also, use a list for the aggregating functions:

>>> flights.groupby(['AIRLINE', 'WEEKDAY']) \

 ['CANCELLED', 'DIVERTED'].agg(['sum', 'mean']).head(7)

Answer the third query using a dictionary in the agg method to map specific3.
aggregating columns to specific aggregating functions:

>>> group_cols = ['ORG_AIR', 'DEST_AIR']

>>> agg_dict = {'CANCELLED':['sum', 'mean', 'size'],

 'AIR_TIME':['mean', 'var']}

>>> flights.groupby(group_cols).agg(agg_dict).head()

Grouping for Aggregation, Filtration, and Transformation

[224]

How it works...
To group by multiple columns as in step 1, we pass a list of the string names to the groupby
method. Each unique combination of AIRLINE and WEEKDAY forms an independent group.
Within each of these groups, the sum of the cancelled flights is found and then returned as a
Series.

Step 2, again groups by both AIRLINE and WEEKDAY, but this time aggregates two columns.
It applies each of the two aggregation functions, sum and mean, to each column resulting in
four returned columns per group.

Step 3 goes even further, and uses a dictionary to map specific aggregating columns to
different aggregating functions. Notice that the size aggregating function returns the total
number of rows per group. This is different than the count aggregating function, which
returns the number of non-missing values per group.

There's more...
There are a few main flavors of syntax that you will encounter when performing an
aggregation. The following four blocks of pseudocode summarize the main ways you can
perform an aggregation with the groupby method:

Using agg with a dictionary is the most flexible and allows you to specify the1.
aggregating function for each column:

>>> df.groupby(['grouping', 'columns']) \

 .agg({'agg_cols1':['list', 'of', 'functions'],

 'agg_cols2':['other', 'functions']})

Using agg with a list of aggregating functions applies each of the functions to2.
each of the aggregating columns:

>>> df.groupby(['grouping', 'columns'])['aggregating', 'columns'] \

 .agg([aggregating, functions])

Directly using a method following the aggregating columns instead of agg,3.
applies just that method to each aggregating column. This way does not allow for
multiple aggregating functions:

>>> df.groupby(['grouping', 'columns'])['aggregating', 'columns'] \

 .aggregating_method()

Grouping for Aggregation, Filtration, and Transformation

[225]

If you do not specify the aggregating columns, then the aggregating method will4.
be applied to all the non-grouping columns:

>>> df.groupby(['grouping', 'columns']).aggregating_method()

In the preceding four code blocks it is possible to substitute a string for any of the lists when
grouping or aggregating by a single column.

Removing the MultiIndex after grouping
Inevitably, when using groupby, you will likely create a MultiIndex in the columns or rows
or both. DataFrames with MultiIndexes are more difficult to navigate and occasionally have
confusing column names as well.

Getting ready
In this recipe, we perform an aggregation with the groupby method to create a DataFrame
with a MultiIndex for the rows and columns and then manipulate it so that the index is a
single level and the column names are descriptive.

How to do it...
Read in the flights dataset; write a statement to find the total and average miles1.
flown; and the maximum and minimum arrival delay for each airline for each
weekday:

>>> flights = pd.read_csv('data/flights.csv')

>>> airline_info = flights.groupby(['AIRLINE', 'WEEKDAY'])\

 .agg({'DIST':['sum', 'mean'],

 'ARR_DELAY':['min', 'max']}) \

 .astype(int)

>>> airline_info.head(7)

Grouping for Aggregation, Filtration, and Transformation

[226]

Both the rows and columns are labeled by a MultiIndex with two levels. Let's2.
squash it down to just a single level. To address the columns, we use the
MultiIndex method, get_level_values. Let's display the output of each level
and then concatenate both levels before setting it as the new column values:

>>> level0 = airline_info.columns.get_level_values(0)

Index(['DIST', 'DIST', 'ARR_DELAY', 'ARR_DELAY'], dtype='object')

>>> level1 = airline_info.columns.get_level_values(1)

Index(['sum', 'mean', 'min', 'max'], dtype='object')

>>> airline_info.columns = level0 + '_' + level1

>>> airline_info.head(7)

Grouping for Aggregation, Filtration, and Transformation

[227]

Return the row labels to a single level with reset_index:3.

>>> airline_info.reset_index().head(7)

Grouping for Aggregation, Filtration, and Transformation

[228]

How it works...
When using the agg method to perform an aggregation on multiple columns, pandas
creates an index object with two levels. The aggregating columns become the top level and
the aggregating functions become the bottom level. Pandas displays MultiIndex levels
differently than single-level columns. Except for the innermost levels, repeated index
values do not get displayed on the screen. You can inspect the DataFrame from step 1 to
verify this. For instance, the DIST column shows up only once but it refers to both of the
first two columns.

The innermost MultiIndex level is the one closest to the data. This would
be the bottom-most column level and the right-most index level.

Step 2 defines new columns by first retrieving the underlying values of each of the levels
with the MultiIndex method get_level_values. This method accepts an integer
identifying the index level. They are numbered beginning with zero from the top/left.
Indexes support vectorized operations, so we concatenate both levels together with a
separating underscore. We assign these new values to the columns attribute.

In step 3, we make both index levels as columns with reset_index. We could have
concatenated the levels together like we did in step 2, but it makes more sense to keep them
as separate columns.

There's more...
By default, at the end of a groupby operation, pandas puts all of the grouping columns in
the index. The as_index parameter in the groupby method can be set to False to avoid
this behavior. You can chain the reset_index method after grouping to get the same effect
as done in step 3. Let's see an example of this by finding the average distance traveled per
flight from each airline:

>>> flights.groupby(['AIRLINE'], as_index=False)['DIST'].agg('mean') \

 .round(0)

Grouping for Aggregation, Filtration, and Transformation

[229]

Take a look at the order of the airlines in the previous result. By default, pandas sorts the
grouping columns. The sort parameter exists within the groupby method and is defaulted
to True. You may set it to False to keep the order of the grouping columns the same as
how they are encountered in the dataset. You also get a small performance improvement by
not sorting your data.

Customizing an aggregation function
Pandas provides a number of the most common aggregation functions for you to use with
the groupby object. At some point, you will need to write your own customized user-
defined functions that don't exist in pandas or NumPy.

Grouping for Aggregation, Filtration, and Transformation

[230]

Getting ready
In this recipe, we use the college dataset to calculate the mean and standard deviation of the
undergraduate student population per state. We then use this information to find the
maximum number of standard deviations from the mean that any single population value
is per state.

How to do it...
Read in the college dataset, and find the mean and standard deviation of the1.
undergraduate population by state:

>>> college = pd.read_csv('data/college.csv')

>>> college.groupby('STABBR')['UGDS'].agg(['mean', 'std']) \

 .round(0).head()

This output isn't quite what we desire. We are not looking for the mean and2.
standard deviations of the entire group but the maximum number of standard
deviations away from the mean for any one institution. In order to calculate this,
we need to subtract the mean undergraduate population by state from each
institution's undergraduate population and then divide by the standard
deviation. This standardizes the undergraduate population for each group. We
can then take the maximum of the absolute value of these scores to find the one
that is farthest away from the mean. Pandas does not provide a function capable
of doing this. Instead, we will need to create a custom function:

>>> def max_deviation(s):

 std_score = (s - s.mean()) / s.std()

 return std_score.abs().max()

Grouping for Aggregation, Filtration, and Transformation

[231]

After defining the function, pass it directly to the agg method to complete the3.
aggregation:

>>> college.groupby('STABBR')['UGDS'].agg(max_deviation) \

 .round(1).head()

STABBR

AK 2.6

AL 5.8

AR 6.3

AS NaN

AZ 9.9

Name: UGDS, dtype: float64

How it works...
There does not exist a predefined pandas function to calculate the maximum number of
standard deviations away from the mean. We were forced to construct a customized
function in step 2. Notice that this custom function max_deviation accepts a single
parameter, s. Looking ahead at step 3, you will notice that the function name is placed
inside the agg method without directly being called. Nowhere is the parameter s explicitly
passed to max_deviation. Instead, pandas implicitly passes the UGDS column as a Series to
max_deviation.

The max_deviation function is called once for each group. As s is a Series, all normal
Series methods are available. It subtracts the mean of that particular grouping from each of
the values in the group before dividing by the standard deviation in a process called
standardization.

Standardization is a common statistical procedure to understand how
greatly individual values vary from the mean. For a normal distribution,
99.7% of the data lies within three standard deviations of the mean.

As we are interested in absolute deviation from the mean, we take the absolute value from
all the standardized scores and return the maximum. The agg method necessitates that a
single scalar value must be returned from our custom function, or else an exception will be
raised. Pandas defaults to using the sample standard deviation which is undefined for any
groups with just a single value. For instance, the state abbreviation AS (American Samoa)
has a missing value returned as it has only a single institution in the dataset.

Grouping for Aggregation, Filtration, and Transformation

[232]

There's more...
It is possible to apply our customized function to multiple aggregating columns. We simply
add more column names to the indexing operator. The max_deviation function only
works with numeric columns:

>>> college.groupby('STABBR')['UGDS', 'SATVRMID', 'SATMTMID'] \

 .agg(max_deviation).round(1).head()

You can also use your customized aggregation function along with the prebuilt functions.
The following does this and groups by state and religious affiliation:

>>> college.groupby(['STABBR', 'RELAFFIL']) \

 ['UGDS', 'SATVRMID', 'SATMTMID'] \

 .agg([max_deviation, 'mean', 'std']).round(1).head()

Grouping for Aggregation, Filtration, and Transformation

[233]

Notice that pandas uses the name of the function as the name for the returned column. You
can change the column name directly with the rename method or you can modify the
special function attribute __name__:

>>> max_deviation.__name__

'max_deviation'

>>> max_deviation.__name__ = 'Max Deviation'

>>> college.groupby(['STABBR', 'RELAFFIL']) \

 ['UGDS', 'SATVRMID', 'SATMTMID'] \

 .agg([max_deviation, 'mean', 'std']).round(1).head()

Customizing aggregating functions with
*args and **kwargs
When writing your own user-defined customized aggregation function, pandas implicitly
passes it each of the aggregating columns one at a time as a Series. Occasionally, you will
need to pass more arguments to your function than just the Series itself. To do so, you need
to be aware of Python's ability to pass an arbitrary number of arguments to functions. Let's
take a look at the signature of the groupby object's agg method with help from the inspect
module:

>>> college = pd.read_csv('data/college.csv')

>>> grouped = college.groupby(['STABBR', 'RELAFFIL'])

>>> import inspect

>>> inspect.signature(grouped.agg)

<Signature (arg, *args, **kwargs)>

Grouping for Aggregation, Filtration, and Transformation

[234]

The argument *args allow you to pass an arbitrary number of non-keyword arguments to
your customized aggregation function. Similarly, **kwargs allows you to pass an arbitrary
number of keyword arguments.

Getting ready
In this recipe, we build a customized function for the college dataset that finds the
percentage of schools by state and religious affiliation that have an undergraduate
population between two values.

How to do it...
Define a function that returns the percentage of schools with an undergraduate1.
population between 1,000 and 3,000:

>>> def pct_between_1_3k(s):

 return s.between(1000, 3000).mean()

Calculate this percentage grouping by state and religious affiliation:2.

>>> college.groupby(['STABBR', 'RELAFFIL'])['UGDS'] \

 .agg(pct_between_1_3k).head(9)

STABBR RELAFFIL

AK 0 0.142857

 1 0.000000

AL 0 0.236111

 1 0.333333

AR 0 0.279412

 1 0.111111

AS 0 1.000000

AZ 0 0.096774

 1 0.000000

Name: UGDS, dtype: float64

This function works fine but it doesn't give the user any flexibility to choose the3.
lower and upper bound. Let's create a new function that allows the user to define
these bounds:

>>> def pct_between(s, low, high):

 return s.between(low, high).mean()

Grouping for Aggregation, Filtration, and Transformation

[235]

Pass this new function to the agg method along with lower and upper bounds:4.

>>> college.groupby(['STABBR', 'RELAFFIL'])['UGDS'] \

 .agg(pct_between, 1000, 10000).head(9)

STABBR RELAFFIL

AK 0 0.428571

 1 0.000000

AL 0 0.458333

 1 0.375000

AR 0 0.397059

 1 0.166667

AS 0 1.000000

AZ 0 0.233871

 1 0.111111

Name: UGDS, dtype: float64

How it works...
Step 1 creates a function that doesn't accept any extra arguments. The upper and lower
bounds must be hardcoded into the function itself, which isn't very flexible. Step 2 shows
the results of this aggregation.

We create a more flexible function in step 3 that allows users to define both the lower and
upper bounds dynamically. Step 4 is where the magic of *args and **kwargs come into
play. In this particular example, we pass two non-keyword arguments, 1,000 and 10,000, to
the agg method. Pandas passes these two arguments respectively to the low and high
parameters of pct_between.

There are a few ways we could achieve the same result in step 4. We could have explicitly
used the parameter names with the following command to produce the same result:

>>> college.groupby(['STABBR', 'RELAFFIL'])['UGDS'] \

 .agg(pct_between, high=10000, low=1000).head(9)

The order of the keyword arguments doesn't matter as long as they come after the function
name. Further still, we can mix non-keyword and keyword arguments as long as the
keyword arguments come last:

>>> college.groupby(['STABBR', 'RELAFFIL'])['UGDS'] \

 .agg(pct_between, 1000, high=10000).head(9)

For ease of understanding, it's probably best to include all the parameter names in the order
that they are defined in the function signature.

Grouping for Aggregation, Filtration, and Transformation

[236]

Technically, when agg is called, all the non-keyword arguments get
collected into a tuple named args and all the keyword arguments get
collected into a dictionary named kwargs.

There's more...
Unfortunately, pandas does not have a direct way to use these additional arguments when
using multiple aggregation functions together. For example, if you wish to aggregate using
the pct_between and mean functions, you will get the following exception:

>>> college.groupby(['STABBR', 'RELAFFIL'])['UGDS'] \

 .agg(['mean', pct_between], low=100, high=1000)

TypeError: pct_between() missing 2 required positional arguments: 'low' and

'high'

Pandas is incapable of understanding that the extra arguments need to be passed to
pct_between. In order to use our custom function with other built-in functions and even
other custom functions, we can define a special type of nested function called a closure. We
can use a generic closure to build all of our customized functions:

>>> def make_agg_func(func, name, *args, **kwargs):

 def wrapper(x):

 return func(x, *args, **kwargs)

 wrapper.__name__ = name

 return wrapper

>>> my_agg1 = make_agg_func(pct_between, 'pct_1_3k', low=1000, high=3000)

>>> my_agg2 = make_agg_func(pct_between, 'pct_10_30k', 10000, 30000)

>>> college.groupby(['STABBR', 'RELAFFIL'])['UGDS'] \

 .agg(['mean', my_agg1, my_agg2]).head()

Grouping for Aggregation, Filtration, and Transformation

[237]

The make_agg_func function acts as a factory to create customized aggregation functions.
It accepts the customized aggregation function that you already built (pct_between in this
case), a name argument, and an arbitrary number of extra arguments. It returns a function
with the extra arguments already set. For instance, my_agg1 is a specific customized
aggregating function that finds the percentage of schools with an undergraduate population
between one and three thousand. The extra arguments (*args and **kwargs) specify an
exact set of parameters for your customized function (pct_between in this case). The name
parameter is very important and must be unique each time make_agg_func is called. It will
eventually be used to rename the aggregated column.

A closure is a function that contains a function inside of it (a nested
function) and returns this nested function. This nested function must refer
to variables in the scope of the outer function in order to be a closure. In
this example, make_agg_func is the outer function and returns the nested
function wrapper, which accesses the variables func, args, and kwargs
from the outer function.

See also
Arbitrary Argument Lists from the official Python documentation (http://bit.ly/
2vumbTE)
A tutorial on Python Closures (http://bit.ly/2xFdYga)

https://docs.python.org/3/tutorial/controlflow.html#arbitrary-argument-lists
https://docs.python.org/3/tutorial/controlflow.html#arbitrary-argument-lists
https://docs.python.org/3/tutorial/controlflow.html#arbitrary-argument-lists
https://docs.python.org/3/tutorial/controlflow.html#arbitrary-argument-lists
https://docs.python.org/3/tutorial/controlflow.html#arbitrary-argument-lists
https://docs.python.org/3/tutorial/controlflow.html#arbitrary-argument-lists
https://docs.python.org/3/tutorial/controlflow.html#arbitrary-argument-lists
https://docs.python.org/3/tutorial/controlflow.html#arbitrary-argument-lists
http://www.geeksforgeeks.org/python-closures/
http://www.geeksforgeeks.org/python-closures/
http://www.geeksforgeeks.org/python-closures/
http://www.geeksforgeeks.org/python-closures/
http://www.geeksforgeeks.org/python-closures/
http://www.geeksforgeeks.org/python-closures/
http://www.geeksforgeeks.org/python-closures/
http://www.geeksforgeeks.org/python-closures/
http://www.geeksforgeeks.org/python-closures/

Grouping for Aggregation, Filtration, and Transformation

[238]

Examining the groupby object
The immediate result from using the groupby method on a DataFrame will be a groupby
object. Usually, we continue operating on this object to do aggregations or transformations
without ever saving it to a variable. One of the primary purposes of examining this groupby
object is to inspect individual groups.

Getting ready
In this recipe, we examine the groupby object itself by directly calling methods on it as well
as iterating through each of its groups.

How to do it...
Let's get started by grouping the state and religious affiliation columns from the1.
college dataset, saving the result to a variable and confirming its type:

>>> college = pd.read_csv('data/college.csv')

>>> grouped = college.groupby(['STABBR', 'RELAFFIL'])

>>> type(grouped)

pandas.core.groupby.DataFrameGroupBy

Use the dir function to discover all its available functionality:2.

>>> print([attr for attr in dir(grouped) if not

attr.startswith('_')])

['CITY', 'CURROPER', 'DISTANCEONLY', 'GRAD_DEBT_MDN_SUPP', 'HBCU',

'INSTNM', 'MD_EARN_WNE_P10', 'MENONLY', 'PCTFLOAN', 'PCTPELL',

'PPTUG_EF', 'RELAFFIL', 'SATMTMID', 'SATVRMID', 'STABBR',

'UG25ABV', 'UGDS', 'UGDS_2MOR', 'UGDS_AIAN', 'UGDS_ASIAN',

'UGDS_BLACK', 'UGDS_HISP', 'UGDS_NHPI', 'UGDS_NRA', 'UGDS_UNKN',

'UGDS_WHITE', 'WOMENONLY', 'agg', 'aggregate', 'all', 'any',

'apply', 'backfill', 'bfill', 'boxplot', 'corr', 'corrwith',

'count', 'cov', 'cumcount', 'cummax', 'cummin', 'cumprod',

'cumsum', 'describe', 'diff', 'dtypes', 'expanding', 'ffill',

'fillna', 'filter', 'first', 'get_group', 'groups', 'head', 'hist',

'idxmax', 'idxmin', 'indices', 'last', 'mad', 'max', 'mean',

'median', 'min', 'ndim', 'ngroup', 'ngroups', 'nth', 'nunique',

'ohlc', 'pad', 'pct_change', 'plot', 'prod', 'quantile', 'rank',

'resample', 'rolling', 'sem', 'shift', 'size', 'skew', 'std',

'sum', 'tail', 'take', 'transform', 'tshift', 'var']

Grouping for Aggregation, Filtration, and Transformation

[239]

Find the number of groups with the ngroups attribute:3.

>>> grouped.ngroups

112

To find the uniquely identifying labels for each group, look in the groups4.
attribute, which contains a dictionary of each unique group mapped to all the
corresponding index labels of that group:

>>> groups = list(grouped.groups.keys())

>>> groups[:6]

[('AK', 0), ('AK', 1), ('AL', 0), ('AL', 1), ('AR', 0), ('AR', 1)]

Retrieve a single group with the get_group method by passing it a tuple of an5.
exact group label. For example, to get all the religiously affiliated schools in the
state of Florida, do the following:

>>> grouped.get_group(('FL', 1)).head()

You may want to take a peek at each individual group. This is possible because6.
groupby objects are iterable:

>>> from IPython.display import display

>>> for name, group in grouped:

 print(name)

 display(group.head(3))

Grouping for Aggregation, Filtration, and Transformation

[240]

You can also call the head method on your groupby object to get the first rows of7.
each group together in a single DataFrame.

>>> grouped.head(2).head(6)

Grouping for Aggregation, Filtration, and Transformation

[241]

How it works...
Step 1 formally creates our groupby object. It is useful to display all the public attributes
and methods to reveal all the possible functionality as was done in step 2. Each group is
uniquely identified by a tuple containing a unique combination of the values in the
grouping columns. Pandas allows you to select a specific group as a DataFrame with the
get_group method shown in step 5.

Grouping for Aggregation, Filtration, and Transformation

[242]

It is rare that you will need to iterate through your groups and in general, you should avoid
doing so if necessary, as it can be quite slow. Occasionally, you will have no other
choice. When iterating through a groupby object, you are given a tuple containing the
group name and the DataFrame without the grouping columns. This tuple is unpacked into
the variables name and group in the for-loop in step 6.

One interesting thing you can do while iterating through your groups is to display a few of
the rows from each group directly in the notebook. To do this, you can either use the print
function or the display function from the IPython.display module. Using the print
function results in DataFrames that are in plain text without any nice HTML formatting.
Using the display function will produce DataFrames in their normal easy-to-read format.

There's more...
There are several useful methods that were not explored from the list in step 2. Take for
instance the nth method, which, when given a list of integers, selects those specific rows
from each group. For example, the following operation selects the first and last rows from
each group:

>>> grouped.nth([1, -1]).head(8)

Grouping for Aggregation, Filtration, and Transformation

[243]

See also
Official documentation of the display function from IPython (http://bit.ly/
2iAIogC)

Filtering for states with a minority majority
In Chapter 4, Selecting Subsets of Data, we marked every row as True or False before
filtering out the False rows. In a similar fashion, it is possible to mark entire groups of data
as either True or False before filtering out the False groups. To do this, we first form
groups with the groupby method and then apply the filter method. The filter method
accepts a function that must return either True or False to indicate whether a group is kept
or not.

This filter method applied after a call to the groupby method is
completely different than the DataFrame filter method covered in the
Selecting columns with methods recipe from Chapter 2, Essential DataFrame
Operations.

http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display
http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display
http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display
http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display
http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display
http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display
http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display
http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display

Grouping for Aggregation, Filtration, and Transformation

[244]

Getting ready
In this recipe, we use the college dataset to find all the states that have more non-white
undergraduate students than white. As this is a dataset from the US, whites form the
majority and therefore, we are looking for states with a minority majority.

How to do it...
Read in the college dataset, group by state, and display the total number of1.
groups. This should equal the number of unique states retrieved from the
nunique Series method:

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> grouped = college.groupby('STABBR')

>>> grouped.ngroups

59

>>> college['STABBR'].nunique() # verifying the same number

59

The grouped variable has a filter method, which accepts a custom function2.
that determines whether a group is kept or not. The custom function gets
implicitly passed a DataFrame of the current group and is required to return a
boolean. Let's define a function that calculates the total percentage of minority
students and returns True if this percentage is greater than a user-defined
threshold:

>>> def check_minority(df, threshold):

 minority_pct = 1 - df['UGDS_WHITE']

 total_minority = (df['UGDS'] * minority_pct).sum()

 total_ugds = df['UGDS'].sum()

 total_minority_pct = total_minority / total_ugds

 return total_minority_pct > threshold

Use the filter method passed with the check_minority function and a3.
threshold of 50% to find all states that have a minority majority:

>>> college_filtered = grouped.filter(check_minority, threshold=.5)

>>> college_filtered.head()

Grouping for Aggregation, Filtration, and Transformation

[245]

Just looking at the output may not be indicative of what actually happened. The4.
DataFrame starts with state Arizona (AZ) and not Alaska (AK) so we can visually
confirm that something changed. Let's compare the shape of this filtered
DataFrame with the original. Looking at the results, about 60% of the rows have
been filtered, and only 20 states remain that have a minority majority:

>>> college.shape

(7535, 26)

>>> college_filtered.shape

(3028, 26)

>>> college_filtered['STABBR'].nunique()

20

How it works...
This recipe takes a look at the total population of all the institutions on a state-by-state basis.
The goal is to keep all the rows from the states, as a whole, that have a minority majority.
This requires us to group our data by state, which is done in step 1. We find that there are
59 independent groups.

Grouping for Aggregation, Filtration, and Transformation

[246]

The filter groupby method either keeps all the rows in a group or filters them out. It does
not change the number of columns. The filter groupby method performs this
gatekeeping through a user-defined function, for example, check_minority in this recipe.
A very important aspect to filter is that it passes the entire DataFrame for that particular
group to the user-defined function and returns a single boolean for each group.

Inside of the check_minority function, the percentage and the total number of non-white
students for each institution are first calculated and then the total number of all students is
found. Finally, the percentage of non-white students for the entire state is checked against
the given threshold, which produces a boolean.

The final result is a DataFrame with the same columns as the original but with the rows
from the states that don't meet the threshold filtered out. As it is possible that the head of
the filtered DataFrame is the same as the original, you need to do some inspection to ensure
that the operation completed successfully. We verify this by checking the number of rows
and number of unique states.

There's more...
Our function, check_minority, is flexible and accepts a parameter to lower or raise the
percentage of minority threshold. Let's check the shape and number of unique states for a
couple of other thresholds:

>>> college_filtered_20 = grouped.filter(check_minority, threshold=.2)

>>> college_filtered_20.shape

(7461, 26)

>>> college_filtered_20['STABBR'].nunique()

57

>>> college_filtered_70 = grouped.filter(check_minority, threshold=.7)

>>> college_filtered_70.shape

(957, 26)

>>> college_filtered_70['STABBR'].nunique()

10

See also
Pandas official documentation on Filtration (http://bit.ly/2xGUoA7)

https://pandas.pydata.org/pandas-docs/stable/groupby.html#filtration
https://pandas.pydata.org/pandas-docs/stable/groupby.html#filtration
https://pandas.pydata.org/pandas-docs/stable/groupby.html#filtration
https://pandas.pydata.org/pandas-docs/stable/groupby.html#filtration
https://pandas.pydata.org/pandas-docs/stable/groupby.html#filtration
https://pandas.pydata.org/pandas-docs/stable/groupby.html#filtration
https://pandas.pydata.org/pandas-docs/stable/groupby.html#filtration
https://pandas.pydata.org/pandas-docs/stable/groupby.html#filtration
https://pandas.pydata.org/pandas-docs/stable/groupby.html#filtration

Grouping for Aggregation, Filtration, and Transformation

[247]

Transforming through a weight loss bet
One method to increase motivation to lose weight is to make a bet with someone else. The
scenario in this recipe will track weight loss from two individuals over the course of a four-
month period and determine a winner.

Getting ready
In this recipe, we use simulated data from two individuals to track the percentage of weight
loss over the course of four months. At the end of each month, a winner will be declared
based on the individual who lost the highest percentage of body weight for that month. To
track weight loss, we group our data by month and person, then call the transform
method to find the percentage weight loss at each week from the start of the month.

How to do it...
Read in the raw weight_loss dataset, and examine the first month of data from1.
the two people, Amy and Bob. There are a total of four weigh-ins per month:

>>> weight_loss = pd.read_csv('data/weight_loss.csv')

>>> weight_loss.query('Month == "Jan"')

Grouping for Aggregation, Filtration, and Transformation

[248]

To determine the winner for each month, we only need to compare weight loss2.
from the first week to the last week of each month. But, if we wanted to have
weekly updates, we can also calculate weight loss from the current week to the
first week of each month. Let's create a function that is capable of providing
weekly updates:

>>> def find_perc_loss(s):

 return (s - s.iloc[0]) / s.iloc[0]

Let's test out this function for Bob during the month of January.3.

>>> bob_jan = weight_loss.query('Name=="Bob" and Month=="Jan"')

>>> find_perc_loss(bob_jan['Weight'])

0 0.000000

2 -0.010309

4 -0.027491

6 -0.027491

Name: Weight, dtype: float64

You should ignore the index values in the last output. 0, 2, 4 and 6 simply
refer to the original row labels of the DataFrame and have no relation to
the week.

After the first week, Bob lost 1% of his body weight. He continued losing weight4.
during the second week but made no progress during the last week. We can
apply this function to every single combination of person and week to get the
weight loss per week in relation to the first week of the month. To do this, we
need to group our data by Name and Month , and then use the transform
method to apply this custom function:

>>> pcnt_loss = weight_loss.groupby(['Name', 'Month'])['Weight'] \

 .transform(find_perc_loss)

>>> pcnt_loss.head(8)

0 0.000000

1 0.000000

2 -0.010309

3 -0.040609

4 -0.027491

5 -0.040609

6 -0.027491

7 -0.035533

Name: Weight, dtype: float64

Grouping for Aggregation, Filtration, and Transformation

[249]

The transform method must return an object with the same number of rows as5.
the calling DataFrame. Let's append this result to our original DataFrame as a
new column. To help shorten the output, we will select Bob's first two months of
data:

>>> weight_loss['Perc Weight Loss'] = pcnt_loss.round(3)

>>> weight_loss.query('Name=="Bob" and Month in ["Jan", "Feb"]')

Grouping for Aggregation, Filtration, and Transformation

[250]

Notice that the percentage weight loss resets after the new month. With this new6.
column, we can manually determine a winner but let's see if we can find a way to
do this automatically. As the only week that matters is the last week, let's select
week 4:

>>> week4 = weight_loss.query('Week == "Week 4"')

>>> week4

Grouping for Aggregation, Filtration, and Transformation

[251]

This narrows down the weeks but still doesn't automatically find out the winner7.
of each month. Let's reshape this data with the pivot method so that Bob's and
Amy's percent weight loss is side-by-side for each month:

>>> winner = week4.pivot(index='Month', columns='Name',

 values='Perc Weight Loss')

>>> winner

This output makes it clearer who has won each month, but we can still go a8.
couple steps farther. NumPy has a vectorized if-then-else function called where,
which can map a Series or array of booleans to other values. Let's create a column
for the name of the winner and highlight the winning percentage for each month:

>>> winner['Winner'] = np.where(winner['Amy'] < winner['Bob'],

 'Amy', 'Bob')

>>> winner.style.highlight_min(axis=1)

Grouping for Aggregation, Filtration, and Transformation

[252]

Use the value_counts method to return the final score as the number of months9.
won:

>>> winner.Winner.value_counts()

Amy 3

Bob 1

Name: Winner, dtype: int64

How it works...
Throughout this recipe, the query method is used to filter data instead of boolean indexing.
Refer to the Improving readability of Boolean indexing with the query method recipe from
Chapter 5, Boolean Indexing, for more information.

Our goal is to find the percentage weight loss for each month for each person. One way to
accomplish this task is to calculate each week's weight loss relative to the start of each
month. This specific task is perfectly suited to the transform groupby method. The
transform method accepts a function as its one required parameter. This function gets
implicitly passed each non-grouping column (or only the columns specified in the indexing
operator as was done in this recipe with Weight). It must return a sequence of values the
same length as the passed group or else an exception will be raised. In essence, all values
from the original DataFrame are transforming. No aggregation or filtration takes place.

Step 2 creates a function that subtracts the first value of the passed Series from all of its
values and then divides this result by the first value. This calculates the percent loss (or
gain) relative to the first value. In step 3 we test this function on one person during one
month.

In step 4, we use this function in the same manner over every combination of person and
week. In some literal sense, we are transforming the Weight column into the percentage of
weight lost for the current week. The first month of data is outputted for each person.
Pandas returns the new data as a Series. This Series isn't all that useful by itself and makes
more sense appended to the original DataFrame as a new column. We complete this
operation in step 5.

To determine the winner, only week 4 of each month is necessary. We could stop here and
manually determine the winner but pandas supplies us functionality to automate this. The
pivot function in step 7 reshapes our dataset by pivoting the unique values of one column
into new column names. The index parameter is used for the column that you do not want
to pivot. The column passed to the values parameter gets tiled over each unique
combination of the columns in the index and columns parameters.

Grouping for Aggregation, Filtration, and Transformation

[253]

The pivot method only works if there is just a single occurrence of each
unique combination of the columns in the index and columns
parameters. If there is more than one unique combination, an exception
will be raised. You can use the pivot_table method in that situation
which allows you to aggregate multiple values together.

After pivoting, we utilize the highly effective and fast NumPy where function, whose first
argument is a condition that produces a Series of booleans. True values get mapped to Amy
and False values get mapped to Bob. We highlight the winner of each month and tally the
final score with the value_counts method.

There's more...
Take a look at the DataFrame output from step 7. Did you notice that the months are in
alphabetical and not chronological order? Pandas unfortunately, in this case at least, orders
the months for us alphabetically. We can solve this issue by changing the data type of
Month to a categorical variable. Categorical variables map all the values of each column to
an integer. We can choose this mapping to be the normal chronological order for the
months. Pandas uses this underlying integer mapping during the pivot method to order
the months chronologically:

>>> week4a = week4.copy()

>>> month_chron = week4a['Month'].unique() # or use drop_duplicates

>>> month_chron

array(['Jan', 'Feb', 'Mar', 'Apr'], dtype=object)

>>> week4a['Month'] = pd.Categorical(week4a['Month'],

 categories=month_chron,

 ordered=True)

>>> week4a.pivot(index='Month', columns='Name',

 values='Perc Weight Loss')

Grouping for Aggregation, Filtration, and Transformation

[254]

To convert the Month column, use the Categorical constructor. Pass it the original
column as a Series and a unique sequence of all the categories in the desired order to the
categories parameter. As the Month column is already in chronological order, we can
simply use the unique method, which preserves order to get the array that we desire. In
general, to sort columns of object data type by something other than alphabetical, convert
them to categorical.

See also
Pandas official documentation on groupby Transformation (http://bit.ly/
2vBkpA7)
NumPy official documentation on the where function (http:// bit.ly/2weT21l)

Calculating weighted mean SAT scores per
state with apply
The groupby object has four methods that accept a function (or functions) to perform a
calculation on each group. These four methods are agg, filter, transform, and apply.
Each of the first three of these methods has a very specific output that the function must
return. agg must return a scalar value, filter must return a boolean, and transform
must return a Series with the same length as the passed group. The apply method,
however, may return a scalar value, a Series, or even a DataFrame of any shape, therefore
making it very flexible. It is also called only once per group, which contrasts with
transform and agg that get called once for each non-grouping column. The apply
method's ability to return a single object when operating on multiple columns at the same
time makes the calculation in this recipe possible.

Getting ready
In this recipe, we calculate the weighted average of both the math and verbal SAT scores
per state from the college dataset. We weight the scores by the population of undergraduate
students per school.

http://pandas.pydata.org/pandas-docs/stable/groupby.html#transformation
http://pandas.pydata.org/pandas-docs/stable/groupby.html#transformation
http://pandas.pydata.org/pandas-docs/stable/groupby.html#transformation
http://pandas.pydata.org/pandas-docs/stable/groupby.html#transformation
http://pandas.pydata.org/pandas-docs/stable/groupby.html#transformation
http://pandas.pydata.org/pandas-docs/stable/groupby.html#transformation
http://pandas.pydata.org/pandas-docs/stable/groupby.html#transformation
http://pandas.pydata.org/pandas-docs/stable/groupby.html#transformation
https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html

Grouping for Aggregation, Filtration, and Transformation

[255]

How to do it...
Read in the college dataset, and drop any rows that have missing values in either1.
the UGDS, SATMTMID, or SATVRMID columns. We must have non-missing values
for each of these three columns:

>>> college = pd.read_csv('data/college.csv')

>>> subset = ['UGDS', 'SATMTMID', 'SATVRMID']

>>> college2 = college.dropna(subset=subset)

>>> college.shape

(7535, 27)

>>> college2.shape

(1184, 27)

The vast majority of institutions do not have data for our three required columns,2.
but this is still more than enough data to continue. Next, create a user-defined
function to calculate the weighted average of just the SAT math scores:

>>> def weighted_math_average(df):

 weighted_math = df['UGDS'] * df['SATMTMID']

 return int(weighted_math.sum() / df['UGDS'].sum())

Group by state and pass this function to the apply method:3.

>>> college2.groupby('STABBR').apply(weighted_math_average).head()

STABBR

AK 503

AL 536

AR 529

AZ 569

CA 564

dtype: int64

We successfully returned a scalar value for each group. Let's take a small detour4.
and see what the outcome would have been by passing the same function to the
agg method:

>>> college2.groupby('STABBR').agg(weighted_math_average).head()

Grouping for Aggregation, Filtration, and Transformation

[256]

The weighted_math_average function gets applied to each non-aggregating 5.
column in the DataFrame. If you try and limit the columns to just SATMTMID, you
will get an error as you won't have access to UGDS. So, the best way to complete
operations that act on multiple columns is with apply:

>>> college2.groupby('STABBR')['SATMTMID'] \

 .agg(weighted_math_average)

KeyError: 'UGDS'

A nice feature of apply is that you can create multiple new columns by returning6.
a Series. The index of this returned Series will be the new column names. Let's
modify our function to calculate the weighted and arithmetic average for both
SAT scores along with the count of the number of institutions from each group.
We return these five values in a Series:

>>> from collections import OrderedDict

>>> def weighted_average(df):

 data = OrderedDict()

 weight_m = df['UGDS'] * df['SATMTMID']

 weight_v = df['UGDS'] * df['SATVRMID']

 wm_avg = weight_m.sum() / df['UGDS'].sum()

 wv_avg = weight_v.sum() / df['UGDS'].sum()

 data['weighted_math_avg'] = wm_avg

 data['weighted_verbal_avg'] = wv_avg

 data['math_avg'] = df['SATMTMID'].mean()

 data['verbal_avg'] = df['SATVRMID'].mean()

 data['count'] = len(df)

 return pd.Series(data, dtype='int')

>>> college2.groupby('STABBR').apply(weighted_average).head(10)

Grouping for Aggregation, Filtration, and Transformation

[257]

How it works...
In order for this recipe to complete properly, we need to first filter for institutions that do
not have missing values for UGDS, SATMTMID, and SATVRMID. By default, the dropna
method drops rows that have one or more missing values. We must use the subset
parameter to limit the columns it looks at for missing values.

In step 2, we define a function that calculates the weighted average for just the SATMTMID
column. The weighted average differs from an arithmetic mean in that each value is
multiplied by some weight. This quantity is then summed and divided by the sum of the
weights. In this case, our weight is the undergraduate student population.

In step 3, we pass this function to the apply method. Our function
weighted_math_average gets passed a DataFrame of all the original columns for each
group. It returns a single scalar value, the weighted average of SATMTMID. At this point, you
might think that this calculation is possible using the agg method. Directly replacing apply
with agg does not work as agg returns a value for each of its aggregating columns.

It actually is possible to use agg indirectly by precomputing the
multiplication of UGDS and SATMTMID.

Grouping for Aggregation, Filtration, and Transformation

[258]

Step 6 really shows the versatility of apply. We build a new function that calculates the
weighted and arithmetic average of both SAT columns as well as the number of rows for
each group. In order for apply to create multiple columns, you must return a Series. The
index values are used as column names in the resulting DataFrame. You can return as many
values as you want with this method.

Notice that the OrderedDict class was imported from the collections module, which is
part of the standard library. This ordered dictionary is used to store the data. A normal
Python dictionary could not have been used to store the data since it does not preserve
insertion order.

The constructor, pd.Series, does have an index parameter that you can
use to specify order but using an OrderedDict is cleaner.

There's more...
In this recipe, we returned a single row as a Series for each group. It's possible to return any
number of rows and columns for each group by returning a DataFrame. In addition to
finding just the arithmetic and weighted means, let's also find the geometric and harmonic
means of both SAT columns and return the results as a DataFrame with rows as the name of
the type of mean and columns as the SAT type. To ease the burden on us, we use the
NumPy function average to compute the weighted average and the SciPy functions gmean
and hmean for geometric and harmonic means:

>>> from scipy.stats import gmean, hmean

>>> def calculate_means(df):

 df_means = pd.DataFrame(index=['Arithmetic', 'Weighted',

 'Geometric', 'Harmonic'])

 cols = ['SATMTMID', 'SATVRMID']

 for col in cols:

 arithmetic = df[col].mean()

 weighted = np.average(df[col], weights=df['UGDS'])

 geometric = gmean(df[col])

 harmonic = hmean(df[col])

 df_means[col] = [arithmetic, weighted,

 geometric, harmonic]

 df_means['count'] = len(df)

 return df_means.astype(int)

>>> college2.groupby('STABBR').apply(calculate_means).head(12)

Grouping for Aggregation, Filtration, and Transformation

[259]

See also
Pandas official documentation of the apply groupby method (http://bit.ly/
2wmG9ki)
Python official documentation of the OrderedDict class (http://bit.ly/
2xwtUCa)
SciPy official documentation of its stats module (http://bit.ly/2wHtQ4L)

http://pandas.pydata.org/pandas-docs/stable/groupby.html#flexible-apply
http://pandas.pydata.org/pandas-docs/stable/groupby.html#flexible-apply
http://pandas.pydata.org/pandas-docs/stable/groupby.html#flexible-apply
http://pandas.pydata.org/pandas-docs/stable/groupby.html#flexible-apply
http://pandas.pydata.org/pandas-docs/stable/groupby.html#flexible-apply
http://pandas.pydata.org/pandas-docs/stable/groupby.html#flexible-apply
http://pandas.pydata.org/pandas-docs/stable/groupby.html#flexible-apply
http://pandas.pydata.org/pandas-docs/stable/groupby.html#flexible-apply
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html

Grouping for Aggregation, Filtration, and Transformation

[260]

Grouping by continuous variables
When grouping in pandas, you typically use columns with discrete repeating values. If
there are no repeated values, then grouping would be pointless as there would only be one
row per group. Continuous numeric columns typically have few repeated values and are
generally not used to form groups. However, if we can transform columns with continuous
values into a discrete column by placing each value into a bin, rounding them, or using
some other mapping, then grouping with them makes sense.

Getting ready
In this recipe, we explore the flights dataset to discover the distribution of airlines for
different travel distances. This allows us, for example, to find the airline that makes the
most flights between 500 and 1,000 miles. To accomplish this, we use the pandas cut
function to discretize the distance of each flight flown.

How to do it...
Read in the flights dataset, and output the first five rows:1.

>>> flights = pd.read_csv('data/flights.csv')

>>> flights.head()

Grouping for Aggregation, Filtration, and Transformation

[261]

If we want to find the distribution of airlines over a range of distances, we need2.
to place the values of the DIST column into discrete bins. Let's use the pandas
cut function to split the data into five bins:

>>> bins = [-np.inf, 200, 500, 1000, 2000, np.inf]

>>> cuts = pd.cut(flights['DIST'], bins=bins)

>>> cuts.head()

0 (500.0, 1000.0]

1 (1000.0, 2000.0]

2 (500.0, 1000.0]

3 (1000.0, 2000.0]

4 (1000.0, 2000.0]

Name: DIST, dtype: category

Categories (5, interval[float64]): [(-inf, 200.0] < (200.0, 500.0]

< (500.0, 1000.0] < (1000.0, 2000.0] < (2000.0, inf]]

An ordered categorical Series is created. To help get an idea of what happened,3.
let's count the values of each category:

>>> cuts.value_counts()

(500.0, 1000.0] 20659

(200.0, 500.0] 15874

(1000.0, 2000.0] 14186

(2000.0, inf] 4054

(-inf, 200.0] 3719

Name: DIST, dtype: int64

The cuts Series can now be used to form groups. Pandas allows you to form4.
groups in any way you wish. Pass the cuts Series to the groupby method and
then call the value_counts method on the AIRLINE column to find the
distribution for each distance group. Notice that SkyWest (OO) makes up 33% of
flights less than 200 miles but only 16% of those between 200 and 500 miles:

>>> flights.groupby(cuts)['AIRLINE'].value_counts(normalize=True) \

 .round(3).head(15)

DIST AIRLINE

(-inf, 200.0] OO 0.326

 EV 0.289

 MQ 0.211

 DL 0.086

 AA 0.052

 UA 0.027

 WN 0.009

(200.0, 500.0] WN 0.194

 DL 0.189

 OO 0.159

Grouping for Aggregation, Filtration, and Transformation

[262]

 EV 0.156

 MQ 0.100

 AA 0.071

 UA 0.062

 VX 0.028

Name: AIRLINE, dtype: float64

How it works...
In step 2, the cut function places each value of the DIST column into one of five bins. The
bins are created by a sequence of six numbers defining the edges. You always need one
more edge than the number of bins. You can pass the bins parameter an integer, which
automatically creates that number of equal-width bins. Negative infinity and positive
infinity objects are available in NumPy and ensure that all values get placed in a bin. If you
have values that are outside of the bin edges, they will be made missing and not be placed
in a bin.

The cuts variable is now a Series of five ordered categories. It has all the normal Series
methods and in step 3, the value_counts method is used to get a sense of its distribution.

Very interestingly, pandas allows you to pass the groupby method any object. This means
that you are able to form groups from something completely unrelated to the current
DataFrame. Here, we group by the values in the cuts variable. For each grouping, we find
the percentage of flights per airline with value_counts by setting normalize to True.

Some interesting insights can be drawn from this result. Looking at the full result, SkyWest
is the leading airline for under 200 miles but has no flights over 2,000 miles. In contrast,
American Airlines has the fifth highest total for flights under 200 miles but has by far the
most flights between 1,000 and 2,000 miles.

There's more...
We can find more results when grouping by the cuts variable. For instance, we can find the
25th, 50th, and 75th percentile airtime for each distance grouping. As airtime is in minutes,
we can divide by 60 to get hours:

>>> flights.groupby(cuts)['AIR_TIME'].quantile(q=[.25, .5, .75]) \

 .div(60).round(2)

DIST

(-inf, 200.0] 0.25 0.43

 0.50 0.50

 0.75 0.57

Grouping for Aggregation, Filtration, and Transformation

[263]

(200.0, 500.0] 0.25 0.77

 0.50 0.92

 0.75 1.05

(500.0, 1000.0] 0.25 1.43

 0.50 1.65

 0.75 1.92

(1000.0, 2000.0] 0.25 2.50

 0.50 2.93

 0.75 3.40

(2000.0, inf] 0.25 4.30

 0.50 4.70

 0.75 5.03

Name: AIR_TIME, dtype: float64

We can use this information to create informative string labels when using the cut function.
These labels replace the interval notation. We can also chain the unstack method which
transposes the inner index level to column names:

>>> labels=['Under an Hour', '1 Hour', '1-2 Hours',

 '2-4 Hours', '4+ Hours']

>>> cuts2 = pd.cut(flights['DIST'], bins=bins, labels=labels)

>>> flights.groupby(cuts2)['AIRLINE'].value_counts(normalize=True) \

 .round(3) \

 .unstack() \

 .style.highlight_max(axis=1)

Grouping for Aggregation, Filtration, and Transformation

[264]

See also
Pandas official documentation on the cut function (http://bit.ly/2whcUkJ)
Refer to Chapter 8, Restructuring Data into Tidy Form, for many more recipes with
unstack

Counting the total number of flights between
cities
In the flights dataset, we have data on the origin and destination airport. It is trivial to count
the number of flights originating in Houston and landing in Atlanta, for instance. What is
more difficult is counting the total number of flights between the two cities, regardless of
which one is the origin or destination.

Getting ready
In this recipe, we count the total number of flights between two cities regardless of which
one is the origin or destination. To accomplish this, we sort the origin and destination
airports alphabetically so that each combination of airports always occurs in the same order.
We can then use this new column arrangement to form groups and then to count.

How to do it...
Read in the flights dataset, and find the total number of flights between each1.
origin and destination airport:

>>> flights = pd.read_csv('data/flights.csv')

>>> flights_ct = flights.groupby(['ORG_AIR', 'DEST_AIR']).size()

>>> flights_ct.head()

ORG_AIR DEST_AIR

ATL ABE 31

 ABQ 16

 ABY 19

 ACY 6

 AEX 40

dtype: int64

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html

Grouping for Aggregation, Filtration, and Transformation

[265]

Select the total number of flights between Houston (IAH) and Atlanta (ATL) in2.
both directions:

>>> flights_ct.loc[[('ATL', 'IAH'), ('IAH', 'ATL')]]

ORG_AIR DEST_AIR

ATL IAH 121

IAH ATL 148

dtype: int64

We could simply sum these two numbers together to find the total flights3.
between the cities but there is a more efficient and automated solution that can
work for all flights. Let's independently sort the origin and destination cities for
each row in alphabetical order:

>>> flights_sort = flights[['ORG_AIR', 'DEST_AIR']] \

 .apply(sorted, axis=1)

>>> flights_sort.head()

Now that each row has been independently sorted, the column names are not4.
correct. Let's rename them to something more generic and then again find the
total number of flights between all cities:

>>> rename_dict = {'ORG_AIR':'AIR1', 'DEST_AIR':'AIR2'}

>>> flights_sort = flights_sort.rename(columns=rename_dict)

>>> flights_ct2 = flights_sort.groupby(['AIR1', 'AIR2']).size()

>>> flights_ct2.head()

AIR1 AIR2

ABE ATL 31

 ORD 24

ABI DFW 74

ABQ ATL 16

 DEN 46

dtype: int64

Grouping for Aggregation, Filtration, and Transformation

[266]

Let's select all the flights between Atlanta and Houston and verify that it matches5.
the sum of the values in step 2:

>>> flights_ct2.loc[('ATL', 'IAH')]

269

If we try and select flights with Houston followed by Atlanta, we get an error:6.

>>> flights_ct2.loc[('IAH', 'ATL')]

IndexingError: Too many indexers

How it works...
In step 1, we form groups by the origin and destination airport columns and then apply the
size method to the groupby object, which simply returns the total number of rows for each
group. Notice that we could have passed the string size to the agg method to achieve the
same result. In step 2, the total number of flights for each direction between Atlanta and
Houston are selected. The Series flights_count has a MultiIndex with two levels. One
way to select rows from a MultiIndex is to pass the loc indexing operator a tuple of exact
level values. Here, we actually select two different rows, ('ATL', 'HOU') and ('HOU',
'ATL'). We use a list of tuples to do this correctly.

Step 3 is the most pertinent step in the recipe. We would like to have just one label for all
flights between Atlanta and Houston and so far we have two. If we alphabetically sort each
combination of origin and destination airports, we would then have a single label for flights
between airports. To do this, we use the DataFrame apply method. This is different from
the groupby apply method. No groups are formed in step 3.

The DataFrame apply method must be passed a function. In this case, it's the built-in
sorted function. By default, this function gets applied to each column as a Series. We can
change the direction of computation by using axis=1 (or axis='index'). The sorted
function has each row of data passed to it implicitly as a Series. It returns a list of sorted
airport codes. Here is an example of passing the first row as a Series to the sorted function:

>>> sorted(flights.loc[0, ['ORG_AIR', 'DEST_AIR']])

['LAX', 'SLC']

Grouping for Aggregation, Filtration, and Transformation

[267]

The apply method iterates over all rows using sorted in this exact manner. After
completion of this operation, each row is independently sorted. The column names are now
meaningless. We rename the column names in the next step and then perform the same
grouping and aggregating as was done in step 2. This time, all flights between Atlanta and
Houston fall under the same label.

There's more...
You might be wondering why we can't use the simpler sort_values Series method. This
method does not sort independently and instead, preserves the row or column as a single
record as one would expect while doing a data analysis. Step 3 is a very expensive
operation and takes several seconds to complete. There are only about 60,000 rows so this
solution would not scale well to larger data. Calling the

Step 3 is a very expensive operation and takes several seconds to complete. There are only
about 60,000 rows so this solution would not scale well to larger data. Calling the apply
method with axis=1 is one of the least performant operations in all of pandas. Internally,
pandas loops over each row and does not provide any speed boosts from NumPy. If
possible, avoid using apply with axis=1.

We can get a massive speed increase with the NumPy sort function. Let's go ahead and
use this function and analyze its output. By default, it sorts each row independently:

>>> data_sorted = np.sort(flights[['ORG_AIR', 'DEST_AIR']])

>>> data_sorted[:10]

array([['LAX', 'SLC'],

 ['DEN', 'IAD'],

 ['DFW', 'VPS'],

 ['DCA', 'DFW'],

 ['LAX', 'MCI'],

 ['IAH', 'SAN'],

 ['DFW', 'MSY'],

 ['PHX', 'SFO'],

 ['ORD', 'STL'],

 ['IAH', 'SJC']], dtype=object)

Grouping for Aggregation, Filtration, and Transformation

[268]

A two-dimensional NumPy array is returned. NumPy does not easily do grouping
operations so let's use the DataFrame constructor to create a new DataFrame and check
whether it equals the flights_sorted DataFrame from step 3:

>>> flights_sort2 = pd.DataFrame(data_sorted, columns=['AIR1', 'AIR2'])

>>> fs_orig = flights_sort.rename(columns={'ORG_AIR':'AIR1',

 'DEST_AIR':'AIR2'})

>>> flights_sort2.equals(fs_orig)

True

As the DataFrames are the same, you can replace step 3 with the previous faster sorting
routine. Let's time the difference between each of the different sorting methods:

>>> %%timeit

>>> flights_sort = flights[['ORG_AIR', 'DEST_AIR']] \

 .apply(sorted, axis=1)

7.41 s ± 189 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

>>> %%timeit

>>> data_sorted = np.sort(flights[['ORG_AIR', 'DEST_AIR']])

>>> flights_sort2 = pd.DataFrame(data_sorted,

 columns=['AIR1', 'AIR2'])

10.6 ms ± 453 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

The NumPy solution is an astounding 700 times faster than using apply with pandas.

See also
NumPy official documentation on the sort function (http:// bit.ly/2vtRt0M)

Finding the longest streak of on-time flights
One of the most important metrics for airlines is their on-time flight performance. The
Federal Aviation Administration considers a flight delayed when it arrives at least 15
minutes later than its scheduled arrival time. Pandas has direct methods to calculate the
total and percentage of on-time flights per airline. While these basic summary statistics are
an important metric, there are other non-trivial calculations that are interesting, such as
finding the length of consecutive on-time flights for each airline at each of its origin airports.

https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html

Grouping for Aggregation, Filtration, and Transformation

[269]

Getting ready
In this recipe, we find the longest consecutive streak of on-time flights for each airline at
each origin airport. This requires each value in a column to be aware of the value
immediately following it. We make clever use of the diff and cumsum methods in order to
find streaks before applying this methodology to each of the groups.

How to do it...
Before we get started with the actual flights dataset, let's practice counting streaks1.
of ones with a small sample Series:

>>> s = pd.Series([0, 1, 1, 0, 1, 1, 1, 0])

>>> s

0 0

1 1

2 1

3 0

4 1

5 1

6 1

7 0

dtype: int64

Our final representation of the streaks of ones will be a Series of the same length2.
as the original with an independent count beginning from one for each streak. To
get started, let's use the cumsum method:

>>> s1 = s.cumsum()

>>> s1

0 0

1 1

2 2

3 2

4 3

5 4

6 5

7 5

dtype: int64

Grouping for Aggregation, Filtration, and Transformation

[270]

We have now accumulated all the ones going down the Series. Let's multiply this3.
Series by the original:

>>> s.mul(s1)

0 0

1 1

2 2

3 0

4 3

5 4

6 5

7 0

dtype: int64

We have only non-zero values where we originally had ones. This result is fairly4.
close to what we desire. We just need to restart each streak at one instead of
where the cumulative sum left off. Let's chain the diff method, which subtracts
the previous value from the current:

>>> s.mul(s1).diff()

0 NaN

1 1.0

2 1.0

3 -2.0

4 3.0

5 1.0

6 1.0

7 -5.0

dtype: float64

A negative value represents the end of a streak. We need to propagate the5.
negative values down the Series and use them to subtract away the excess
accumulation from step 2. To do this, we will make all non-negative values
missing with the where method:

>>> s.mul(s1).diff().where(lambda x: x < 0)

0 NaN

1 NaN

2 NaN

3 -2.0

4 NaN

5 NaN

6 NaN

7 -5.0

dtype: float64

Grouping for Aggregation, Filtration, and Transformation

[271]

We can now propagate these values down with the ffill method:6.

>>> s.mul(s1).diff().where(lambda x: x < 0).ffill()

0 NaN

1 NaN

2 NaN

3 -2.0

4 -2.0

5 -2.0

6 -2.0

7 -5.0

dtype: float64

Finally, we can add this Series back to s1 to clear out the excess accumulation:7.

>>> s.mul(s1).diff().where(lambda x: x < 0).ffill() \

 .add(s1, fill_value=0)

0 0.0

1 1.0

2 2.0

3 0.0

4 1.0

5 2.0

6 3.0

7 0.0

dtype: float64

Now that we have a working consecutive streak finder, we can find the longest8.
streak per airline and origin airport. Let's read in the flights dataset and create a
column to represent on-time arrival:

>>> flights = pd.read_csv('data/flights.csv')

>>> flights['ON_TIME'] = flights['ARR_DELAY'].lt(15).astype(int)

>>> flights[['AIRLINE', 'ORG_AIR', 'ON_TIME']].head(10)

Grouping for Aggregation, Filtration, and Transformation

[272]

Use our logic from the first seven steps to define a function that returns the9.
maximum streak of ones for a given Series:

>>> def max_streak(s):

 s1 = s.cumsum()

 return s.mul(s1).diff().where(lambda x: x < 0) \

 .ffill().add(s1, fill_value=0).max()

Find the maximum streak of on-time arrivals per airline and origin airport along10.
with the total number of flights and percentage of on-time arrivals. First, sort the
day of the year and scheduled departure time:

>>> flights.sort_values(['MONTH', 'DAY', 'SCHED_DEP']) \

 .groupby(['AIRLINE', 'ORG_AIR'])['ON_TIME'] \

 .agg(['mean', 'size', max_streak]).round(2).head()

How it works...
Finding streaks in the data is not a straightforward operation in pandas and requires
methods that look ahead or behind, such as diff or shift, or those that remember their
current state, such as cumsum. The final result from the first seven steps is a Series the same
length as the original that keeps track of all consecutive ones. Throughout these steps, we
use the mul and add methods instead of their operator equivalents (*) and (+). In my
opinion, this allows for a slightly cleaner progression of calculations from left to right. You,
of course, can replace these with the actual operators.

Grouping for Aggregation, Filtration, and Transformation

[273]

Ideally, we would like to tell pandas to apply the cumsum method to the start of each streak
and reset itself after the end of each one. It takes many steps to convey this message to
pandas. Step 2 accumulates all the ones in the Series as a whole. The rest of the steps slowly
remove any excess accumulation. In order to identify this excess accumulation, we need to
find the end of each streak and subtract this value from the beginning of the next streak.

To find the end of each streak, we cleverly make all values not part of the streak zero by
multiplying s1 by the original Series of zeros and ones in step 3. The first zero following a
non-zero, marks the end of a streak. That's good, but again, we need to eliminate the excess
accumulation. Knowing where the streak ends doesn't exactly get us there.

In step 4, we use the diff method to find this excess. The diff method takes the difference
between the current value and any value located at a set number of rows away from it. By
default, the difference between the current and the immediately preceding value is
returned.

Only negative values are meaningful in step 4. Those are the ones immediately following
the end of a streak. These values need to be propagated down until the end of the following
streak. To eliminate (make missing) all the values we don't care about, we use the where
method, which takes a Series of conditionals of the same size as the calling Series. By
default, all the True values remain the same, while the False values become missing. The
where method allows you to use the calling Series as part of the conditional by taking a
function as its first parameter. An anonymous function is used, which gets passed the
calling Series implicitly and checks whether each value is less than zero. The result of step 5
is a Series where only the negative values are preserved with the rest changed to missing.

The ffill method in step 6 replaces missing values with the last non-missing value going
forward/down a Series. As the first three values don't follow a non-missing value, they
remain missing. We finally have our Series that removes the excess accumulation. We add
our accumulation Series to the result of step 6 to get the streaks all beginning from zero. The
add method allows us to replace the missing values with the fill_value parameter. This
completes the process of finding streaks of ones in the dataset. When doing complex logic
like this, it is a good idea to use a small dataset where you know what the final output will
be. It would be quite a difficult task to start at step 8 and build this streak-finding logic
while grouping.

Grouping for Aggregation, Filtration, and Transformation

[274]

In step 8, we create the ON_TIME column. One item of note is that the cancelled flights have
missing values for ARR_DELAY, which do not pass the boolean condition and therefore
result in a zero for the ON_TIME column. Canceled flights are treated the same as delayed.

Step 9 turns our logic from the first seven steps into a function and chains the max method
to return the longest streak. As our function returns a single value, it is formally an
aggregating function and can be passed to the agg method as done in step 10. To ensure
that we are looking at actual consecutive flights, we use the sort_values method to sort
by date and scheduled departure time.

There's more...
Now that we have found the longest streaks of on-time arrivals, we can easily find the
opposite--the longest streak of delayed arrivals. The following function returns two rows
for each group passed to it. The first row is the start of the streak, and the last row is the end
of the streak. Each row contains the month and day that the streak started/ended, along
with the total streak length:

>>> def max_delay_streak(df):

 df = df.reset_index(drop=True)

 s = 1 - df['ON_TIME']

 s1 = s.cumsum()

 streak = s.mul(s1).diff().where(lambda x: x < 0) \

 .ffill().add(s1, fill_value=0)

 last_idx = streak.idxmax()

 first_idx = last_idx - streak.max() + 1

 df_return = df.loc[[first_idx, last_idx], ['MONTH', 'DAY']]

 df_return['streak'] = streak.max()

 df_return.index = ['first', 'last']

 df_return.index.name='type'

 return df_return

>>> flights.sort_values(['MONTH', 'DAY', 'SCHED_DEP']) \

 .groupby(['AIRLINE', 'ORG_AIR']) \

 .apply(max_delay_streak) \

 .sort_values('streak', ascending=False).head(10)

Grouping for Aggregation, Filtration, and Transformation

[275]

As we are using the apply groupby method, a DataFrame of each group is passed to the
max_delay_streak function. Inside this function, the index of the DataFrame is dropped
and replaced by a RangeIndex in order for us to easily find the first and last row of the
streak. The ON_TIME column is inverted and then the same logic is used to find streaks of
delayed flights. The index of the first and last rows of the streak are stored as variables.
These indexes are then used to select the month and day when the streaks ended. We use a
DataFrame to return our results. We label and name the index to make the final result
clearer.

Our final results show the longest delayed streaks accompanied by the first and last date.
Let's investigate to see if we can find out why these delays happened. Inclement weather is
a common reason for delayed or canceled flights. Looking at the first row, American
Airlines (AA) started a streak of 38 delayed flights in a row from the Dallas Fort-Worth
(DFW) airport beginning February 26 until March 1 of 2015. Looking at historical weather
data from February 27, 2015, two inches of snow fell, which was a record for that day
(http://bit.ly/2iLGsCg). This was a major weather event for DFW and caused massive
problems for the entire city (http://bit.ly/2wmsHPj). Notice that DFW makes another
appearance as the third longest streak but this time a few days earlier and for a different
airline.

http://bit.ly/2iLGsCg
http://bit.ly/2iLGsCg
http://bit.ly/2iLGsCg
http://bit.ly/2iLGsCg
http://bit.ly/2iLGsCg
http://bit.ly/2iLGsCg
http://bit.ly/2iLGsCg
http://bit.ly/2iLGsCg
http://bit.ly/2iLGsCg
http://bit.ly/2wmsHPj
http://bit.ly/2wmsHPj
http://bit.ly/2wmsHPj
http://bit.ly/2wmsHPj
http://bit.ly/2wmsHPj
http://bit.ly/2wmsHPj
http://bit.ly/2wmsHPj
http://bit.ly/2wmsHPj
http://bit.ly/2wmsHPj

Grouping for Aggregation, Filtration, and Transformation

[276]

See also
Refer to the Working with operators on a Series recipe from Chapter 1, Pandas
Foundations
Pandas official documentation of ffill (http://bit.ly/2gn5zGU

http://bit.ly/2gn5zGU

8
Restructuring Data into a Tidy

Form
In this chapter, we will cover the following topics:

Tidying variable values as column names with stack
Tidying variable values as column names with melt
Stacking multiple groups of variables simultaneously
Inverting stacked data
Unstacking after a groupby aggregation
Replicating pivot_table with a groupby aggregation
Renaming axis levels for easy reshaping
Tidying when multiple variables are stored as column names
Tidying when multiple variables are stored as column values
Tidying when two or more values are stored in the same cell
Tidying when variables are stored in column names and values
Tidying when multiple observational units are stored in the same table

Introduction
All the datasets used in the preceding chapters have not had much or any work done to
change their structure. We immediately began processing the datasets in their original
shape. Many datasets in the wild will need a significant amount of restructuring before
commencing a more detailed analysis. In some cases, an entire project might only be
concerned with formatting the data in such a way that it can be easily processed by
someone else.

Restructuring Data into a Tidy Form

[278]

There are many terms that are used to describe the process of data restructuring, with tidy
data being the most common to data scientists. Tidy data is a term coined by Hadley
Wickham to describe a form of data that makes analysis easy to do. This chapter will cover
many ideas formulated by Hadley and how to accomplish them with pandas. To learn a
great deal more about tidy data, read Hadley's paper (http://vita.had.co.nz/papers/
tidy-data.pdf).

What is tidy data? Hadley puts forth three simple guiding principles that determine
whether a dataset is tidy or not:

Each variable forms a column
Each observation forms a row
Each type of observational unit forms a table

Any dataset that does not meet these guidelines is considered messy. This definition will
make more sense once we start restructuring our data into tidy form, but for now, we'll
need to know what variables, observations, and observational units are.

To gain intuition about what a variable actually is, it is good to think about the distinction
between a variable name and the variable value. The variable names are labels, such as
gender, race, salary, and position. The variable values are those things liable to change for
every observation, such as male/female for gender or white/black for race. A single
observation is the collection of all variable values for a single observational unit. To help
understand what an observational unit might be, consider a retail store, which has data for
each transaction, employee, customer, item, and the store itself. Each of these can be
considered an observational unit and would require its own table. Combining employee
information (like the number of hours worked) with customer information (like amount
spent) in the same table would break this tidy principle.

The first step to resolving messy data is to recognize it when it exists, and there are
boundless possibilities. Hadley explicitly mentions five of the most common types of messy
data:

Column names are values, not variable names
Multiple variables are stored in column names
Variables are stored in both rows and columns
Multiple types of observational units are stored in the same table
A single observational unit is stored in multiple tables

http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf

Restructuring Data into a Tidy Form

[279]

It is important to understand that tidying data does not typically involve changing the
values of your dataset, filling in missing values, or doing any sort of analysis. Tidying data
involves changing the shape or structure of the data to meet the tidy principles. Tidy data is
akin to having all your tools in the toolbox instead of scattered randomly throughout your
house. Having the tools properly in the toolbox allows all other tasks to be completed
easily. Once the data is in the correct form, it becomes much easier to perform further
analysis.

Once you have spotted messy data, you will use the pandas tools to restructure the data, so
that it is tidy. The main tidy tools that pandas has available for you are the DataFrame
methods stack, melt, unstack, and pivot. More complex tidying involves ripping apart
text, which necessitates the str accessor. Other helper methods, such as rename,
rename_axis, reset_index, and set_index will help with applying the final touches to
tidy data.

Tidying variable values as column names
with stack
To help understand the differences between tidy and messy data, let's take a look at a
simple table that may or may not be in tidy form:

>>> state_fruit = pd.read_csv('data/state_fruit.csv', index_col=0)

>>> state_fruit

Restructuring Data into a Tidy Form

[280]

There does not appear to be anything messy about this table, and the information is easily
consumable. However, according to the tidy principles, it isn't actually tidy. Each column
name is actually the value of a variable. In fact, none of the variable names are even present
in the DataFrame. One of the first steps to transform a messy dataset into tidy data is to
identify all of the variables. In this particular dataset, we have variables for state and fruit.
There's also the numeric data that wasn't identified anywhere in the context of the problem.
We can label this variable as weight or any other sensible name.

Getting ready
This particular messy dataset contains variable values as column names. We will need to
transpose these column names into column values. In this recipe, we use the stack method
to restructure our DataFrame into tidy form.

How to do it...
First, take note that the state names are in the index of the DataFrame. These1.
states are correctly placed vertically and do not need to be restructured. It is the
column names that are the problem. The stack method takes all of the column
names and reshapes them to be vertical as a single index level:

>>> state_fruit.stack()

Texas Apple 12

 Orange 10

 Banana 40

Arizona Apple 9

 Orange 7

 Banana 12

Florida Apple 0

 Orange 14

 Banana 190

dtype: int64

Notice that we now have a Series with a MultiIndex. There are now two levels in2.
the index. The original index has been pushed to the left to make room for the old
column names. With this one command, we now essentially have tidy data. Each
variable, state, fruit, and weight is vertical. Let's use the reset_index method to
turn the result into a DataFrame:

>>> state_fruit_tidy = state_fruit.stack().reset_index()

>>> state_fruit_tidy

Restructuring Data into a Tidy Form

[281]

Our structure is now correct, but the column names are meaningless. Let's replace3.
them with proper identifiers:

>>> state_fruit_tidy.columns = ['state', 'fruit', 'weight']

>>> state_fruit_tidy

Restructuring Data into a Tidy Form

[282]

Instead of directly changing the columns attribute, it's possible to use the lesser-4.
known Series method rename_axis to set the names of the index levels before
using reset_index:

>>> state_fruit.stack()\

 .rename_axis(['state', 'fruit'])

state fruit

Texas Apple 12

 Orange 10

 Banana 40

Arizona Apple 9

 Orange 7

 Banana 12

Florida Apple 0

 Orange 14

 Banana 190

dtype: int64

From here, we can simply chain the reset_index method with the name5.
parameter to reproduce the output from step 3:

>>> state_fruit.stack()\

 .rename_axis(['state', 'fruit'])\

 .reset_index(name='weight')

How it works...
The stack method is powerful and it takes time to understand and appreciate fully. It takes
all the column names and transposes them, so they become the new innermost index
level. Notice how each old column name still labels its original value by being paired with
each state. There were nine original values in a 3 x 3 DataFrame, which got transformed into
a single Series with the same number of values. The original first row of data became the
first three values in the resulting Series.

After resetting the index in step 2, pandas defaults our DataFrame columns to level_0,
level_1, and 0. This is because the Series calling this method has two index levels that
were formally unnamed. Pandas also refers to indexes by integer beginning from zero from
the outside.

Step 3 shows a simple and intuitive way to rename the columns. You can simply set new
columns for the entire DataFrame by setting the columns attribute equal to a list.

Restructuring Data into a Tidy Form

[283]

Alternatively, it is possible to set the column names in a single step by chaining the
rename_axis method that, when passing a list as the first argument, uses those values as
the index level names. Pandas uses these index level names as the new column names when
the index is reset. Additionally, the reset_index method has a name parameter
corresponding to the new column name of the Series values.

All Series have a name attribute that can be set directly or with the rename
method. It is this attribute that becomes the column name when using
reset_index.

There's more...
One of the keys to using stack is to place all of the columns that you do not wish to
transform in the index. The dataset in this recipe was initially read with the states in the
index. Let's take a look at what would have happened if we did not read the states into the
index:

>>> state_fruit2 = pd.read_csv('data/state_fruit2.csv')

>>> state_fruit2

As the state names are not in the index, using stack on this DataFrame reshapes all values
into one long Series of values:

>>> state_fruit2.stack()

0 State Texas

 Apple 12

 Orange 10

 Banana 40

1 State Arizona

 Apple 9

 Orange 7

 Banana 12

2 State Florida

 Apple 0

 Orange 14

 Banana 190

Restructuring Data into a Tidy Form

[284]

dtype: object

This command reshapes all the columns, this time including the states, and is not at all what
we need. In order to reshape this data correctly, you will need to put all the non-reshaped
columns into the index first with the set_index method, and then use stack. The
following code gives a similar result to step 1:

>>> state_fruit2.set_index('State').stack()

See also
Pandas official documentation on Reshaping and Pivot Tables (http://bit.ly/
2xbnNms)
Pandas official documentation on the stack method (http://bit.ly/2vWZhH1)

Tidying variable values as column names
with melt
Like most large Python libraries, pandas has many different ways to accomplish the same
task--the differences usually being readability and performance. Pandas contains a
DataFrame method named melt that works similarly to the stack method described in the
previous recipe but gives a bit more flexibility.

Before pandas version 0.20, melt was only provided as a function that had
to be accessed with pd.melt. Pandas is still an evolving library and you
need to expect changes with each new version. Pandas has been making a
push to move all functions that only operate on DataFrames to methods,
such as they did with melt. This is the preferred way to use melt and the
way this recipe uses it. Check the What's New part of the pandas
documentation to stay up to date with all the changes (http://bit.ly/
2xzXIhG).

http://pandas.pydata.org/pandas-docs/stable/reshaping.html
http://pandas.pydata.org/pandas-docs/stable/reshaping.html
http://pandas.pydata.org/pandas-docs/stable/reshaping.html
http://pandas.pydata.org/pandas-docs/stable/reshaping.html
http://pandas.pydata.org/pandas-docs/stable/reshaping.html
http://pandas.pydata.org/pandas-docs/stable/reshaping.html
http://pandas.pydata.org/pandas-docs/stable/reshaping.html
http://pandas.pydata.org/pandas-docs/stable/reshaping.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.stack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.stack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.stack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.stack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.stack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.stack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.stack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.stack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.stack.html
http://bit.ly/2xzXIhG
http://bit.ly/2xzXIhG
http://bit.ly/2xzXIhG
http://bit.ly/2xzXIhG
http://bit.ly/2xzXIhG
http://bit.ly/2xzXIhG
http://bit.ly/2xzXIhG
http://bit.ly/2xzXIhG

Restructuring Data into a Tidy Form

[285]

Getting ready
In this recipe, we use the melt method to tidy a simple DataFrame with variable values as
column names.

How to do it...
Read in the state_fruit2 dataset and identify which columns need to be1.
transformed and which ones do not:

>>> state_fruit2 = pd.read_csv('data/state_fruit2.csv')

>>> state_fruit2

Use the melt method by passing the appropriate columns to the id_vars and2.
value_vars parameters:

>>> state_fruit2.melt(id_vars=['State'],

 value_vars=['Apple', 'Orange', 'Banana'])

Restructuring Data into a Tidy Form

[286]

This one step creates tidy data for us. By default, melt refers to the transformed3.
former column names as variable and the corresponding values as value.
Conveniently, melt has two additional parameters, var_name and value_name,
that give you the ability to rename these two columns:

>>> state_fruit2.melt(id_vars=['State'],

 value_vars=['Apple', 'Orange', 'Banana'],

 var_name='Fruit',

 value_name='Weight')

Restructuring Data into a Tidy Form

[287]

How it works...
The melt method is powerful and dramatically reshapes your DataFrame. It takes up to
five parameters, with two of them being crucial to understanding how to reshape your data
correctly:

id_vars is a list of column names that you want to preserve as columns and not
reshape
value_vars is a list of column names that you want to reshape into a single
column

The id_vars, or the identification variables, remain in the same column but repeat for each
of the columns passed to value_vars. One crucial aspect of melt is that it ignores values in
the index, and, in fact, it silently drops your index and replaces it with a default
RangeIndex. This means that if you do have values in your index that you would like to
keep, you will need to reset the index first before using melt.

It is somewhat common terminology to refer to the transformation of
horizontal column names into vertical column values as melting, stacking,
or unpivoting.

There's more...
All the parameters for the melt method are optional, and if you desire all your values to be
in a single column and their old column labels to be in the other, you may call melt with
just its defaults:

>>> state_fruit2.melt()

Restructuring Data into a Tidy Form

[288]

More realistically, you might have lots of variables that need melting and would like to
specify only the identification variables. In that case, calling melt in the following manner
will yield the same result as in step 2. You actually don't even need a list when melting a
single column and can simply pass its string value:

>>> state_fruit2.melt(id_vars='State')

See also
Pandas official documentation on the melt method (http://bit.ly/2vcuZNJ)
Pandas developers discussion of melt and other similar functions being
converted to methods (http://bit.ly/2iqIQhI)

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.melt.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.melt.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.melt.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.melt.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.melt.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.melt.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.melt.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.melt.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.melt.html
https://github.com/pandas-dev/pandas/issues/12640
https://github.com/pandas-dev/pandas/issues/12640
https://github.com/pandas-dev/pandas/issues/12640
https://github.com/pandas-dev/pandas/issues/12640
https://github.com/pandas-dev/pandas/issues/12640
https://github.com/pandas-dev/pandas/issues/12640
https://github.com/pandas-dev/pandas/issues/12640
https://github.com/pandas-dev/pandas/issues/12640
https://github.com/pandas-dev/pandas/issues/12640

Restructuring Data into a Tidy Form

[289]

Stacking multiple groups of variables
simultaneously
Some datasets contain multiple groups of variables as column names that need to be
stacked simultaneously into their own columns. An example with the movie dataset can
help clarify this. Let's begin by selecting all columns containing the actor names and their
corresponding Facebook likes:

>>> movie = pd.read_csv('data/movie.csv')

>>> actor = movie[['movie_title', 'actor_1_name',

 'actor_2_name', 'actor_3_name',

 'actor_1_facebook_likes',

 'actor_2_facebook_likes',

 'actor_3_facebook_likes']]

>>> actor.head()

If we define our variables as the title of the movie, the actor name, and the number of
Facebook likes, then we will need to stack independently two sets of columns, which is not
possible using a single call to stack or melt.

Getting ready
In this recipe, we will tidy our actor DataFrame by simultaneously stacking the actor
names and their corresponding Facebook likes with the wide_to_long function.

Restructuring Data into a Tidy Form

[290]

How to do it...
We will be using the versatile wide_to_long function to reshape our data into1.
tidy form. To use this function, we will need to change the column names that we
are stacking, so that they end with a digit. We first create a user-defined function
to change the column names:

>>> def change_col_name(col_name):

 col_name = col_name.replace('_name', '')

 if 'facebook' in col_name:

 fb_idx = col_name.find('facebook')

 col_name = col_name[:5] + col_name[fb_idx - 1:] \

 + col_name[5:fb_idx-1]

 return col_name

Pass this function to the rename method to transform all the column names:2.

>>> actor2 = actor.rename(columns=change_col_name)

>>> actor2.head()

Use the wide_to_long function to stack the actor and Facebook sets of columns3.
simultaneously:

>>> stubs = ['actor', 'actor_facebook_likes']

>>> actor2_tidy = pd.wide_to_long(actor2,

 stubnames=stubs,

 i=['movie_title'],

 j='actor_num',

 sep='_')

>>> actor2_tidy.head()

Restructuring Data into a Tidy Form

[291]

How it works...
The wide_to_long function works in a fairly specific manner. Its main parameter is
stubnames, which is a list of strings. Each string represents a single column grouping. All
columns that begin with this string will be stacked into a single column. In this recipe, there
are two groups of columns: actor, and actor_facebook_likes. By default, each of these groups of
columns will need to end in a digit. This digit will subsequently be used to label the
reshaped data. Each of these column groups has an underscore character separating the
stubname from the ending digit. To account for this, you must use the sep parameter.

The original column names do not match the pattern needed for wide_to_long to work.
The column names could have been changed manually by exactly specifying their values
with a list. This could quickly become a lot of typing so instead, we define a function that
automatically converts our columns to a format that works. The change_col_name
function removes _name from the actor columns and rearranges the Facebook columns so
that now they both end in digits.

To actually accomplish the column renaming, we use the rename method in step 2. It
accepts many different types of arguments, one of which is a function. When passing it to a
function, every column name gets implicitly passed to it one at a time.

We have now correctly created two independent groups of columns, those beginning with
actor and actor_facebook_likes that will be stacked. In addition to this, wide_to_long
requires a unique column, parameter i, to act as an identification variable that will not be
stacked. Also required is the parameter j, which simply renames the identifying digit
stripped from the end of the original column names. By default, the prefix parameter
contains the regular expression, \d+ that searches for one more or more digits. The \d is a
special token that matches the digits 0-9. The plus sign, +, makes the expression match for
one or more of these digits.

Restructuring Data into a Tidy Form

[292]

To become a powerful user of the str methods, you will need to be
familiar with regular expressions, which are a sequence of characters that
match a particular pattern within some text. They consist of
metacharacters, which have a special meaning, and literal characters. To
make yourself useful with regular expressions check this short tutorial
from Regular-Expressions.info (http://bit.ly/2wiWPbz).

There's more...
The function wide_to_long works when all groupings of variables have the same numeric
ending like they did in this recipe. When your variables do not have the same ending or
don't end in a digit, you can still use wide_to_long to do simultaneous column stacking.
For instance, let's take a look at the following dataset:

>>> df = pd.read_csv('data/stackme.csv')

>>> df

Let's say we wanted columns a1 and b1 stacked together, as well as columns d and e.
Additionally, we wanted to use a1 and b1 as labels for the rows. To accomplish this task,
we would need to rename the columns so that they ended in the label we desired:

>>> df2 = df.rename(columns = {'a1':'group1_a1', 'b2':'group1_b2',

 'd':'group2_a1', 'e':'group2_b2'})

>>> df2

http://bit.ly/2wiWPbz
http://bit.ly/2wiWPbz
http://bit.ly/2wiWPbz
http://bit.ly/2wiWPbz
http://bit.ly/2wiWPbz
http://bit.ly/2wiWPbz
http://bit.ly/2wiWPbz
http://bit.ly/2wiWPbz
http://bit.ly/2wiWPbz

Restructuring Data into a Tidy Form

[293]

We would then need to modify the suffix parameter, which normally defaults to a regular
expression that selects digits. Here, we simply tell it to find any number of characters:

>>> pd.wide_to_long(df2,

 stubnames=['group1', 'group2'],

 i=['State', 'Country', 'Test'],

 j='Label',

 suffix='.+',

 sep='_')

See also
Pandas official documentation for wide_to_long (http://bit.ly/2xb8NVP)

Inverting stacked data
DataFrames have two similar methods, stack and melt, to convert horizontal column
names into vertical column values. DataFrames have the ability to invert these two
operations directly with the unstack and pivot methods respectively. stack/unstack
are simpler methods that allow control over only the column/row indexes, while
melt/pivot gives more flexibility to choose which columns are reshaped.

Getting ready
In this recipe, we will stack/melt a dataset and promptly invert the operation with
unstack/pivot back to its original form.

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.wide_to_long.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.wide_to_long.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.wide_to_long.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.wide_to_long.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.wide_to_long.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.wide_to_long.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.wide_to_long.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.wide_to_long.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.wide_to_long.html

Restructuring Data into a Tidy Form

[294]

How to do it...
Read in the college dataset with the institution name as the index, and with1.
only the undergraduate race columns:

>>> usecol_func = lambda x: 'UGDS_' in x or x == 'INSTNM'

>>> college = pd.read_csv('data/college.csv',

 index_col='INSTNM',

 usecols=usecol_func)

>>> college.head()

Use the stack method to convert each horizontal column name into a vertical2.
index level:

>>> college_stacked = college.stack()

>>> college_stacked.head(18)

INSTNM

Alabama A & M University UGDS_WHITE 0.0333

 UGDS_BLACK 0.9353

 UGDS_HISP 0.0055

 UGDS_ASIAN 0.0019

 UGDS_AIAN 0.0024

 UGDS_NHPI 0.0019

 UGDS_2MOR 0.0000

 UGDS_NRA 0.0059

 UGDS_UNKN 0.0138

University of Alabama at Birmingham UGDS_WHITE 0.5922

 UGDS_BLACK 0.2600

 UGDS_HISP 0.0283

 UGDS_ASIAN 0.0518

 UGDS_AIAN 0.0022

 UGDS_NHPI 0.0007

 UGDS_2MOR 0.0368

 UGDS_NRA 0.0179

 UGDS_UNKN 0.0100

Restructuring Data into a Tidy Form

[295]

dtype: float64

Invert this stacked data back to its original form with the unstack Series method:3.

>>> college_stacked.unstack()

A similar sequence of operations can be done with melt followed by pivot.4.
First, read in the data without putting the institution name in the index:

>>> college2 = pd.read_csv('data/college.csv',

 usecols=usecol_func)

>>> college2.head()

Use the melt method to transpose all the race columns into a single column:5.

>>> college_melted = college2.melt(id_vars='INSTNM',

 var_name='Race',

 value_name='Percentage')

>>> college_melted.head()

Restructuring Data into a Tidy Form

[296]

Use the pivot method to invert this previous result:6.

>>> melted_inv = college_melted.pivot(index='INSTNM',

 columns='Race',

 values='Percentage')

>>> melted_inv.head()

Notice that the institution names are now shuttled over into the index and are not7.
in their original order. The column names are not in their original order. To get
an exact replication of our starting DataFrame from step 4, use the .loc indexing
operator to select rows and columns simultaneously and then reset the index:

>>> college2_replication = melted_inv.loc[college2['INSTNM'],

 college2.columns[1:]]\

 .reset_index()

>>> college2.equals(college2_replication)

True

Restructuring Data into a Tidy Form

[297]

How it works...
There are multiple ways to accomplish the same thing in step 1. Here, we show the
versatility of the read_csv function. The usecols parameter accepts either a list of the
columns that we would like to import or a function that dynamically determines them. We
use an anonymous function that checks whether the column name contains UGDS_ or is
equal to INSTNM. The function is passed each column name as a string and must return a
boolean. A huge amount of memory can be saved in this manner.

The stack method in step 2 puts all column names into the innermost index level and
returns a Series. In step 3, the unstack method inverts this operation by taking all the
values in the innermost index level converting them to column names.

The result from step 3 isn't quite an exact replication of step 1. There are
entire rows of missing values, and by default, the stack method drops
these during step 2. To keep these missing values and create an exact
replication, use dropna=False in the stack method.

Step 4 reads in the same dataset as in step 1 but does not put the institution name in the
index because the melt method isn't able to access it. Step 5 uses the melt method to
transpose all the Race columns. It does this by leaving the value_vars parameter as its
default value None. When not specified, all the columns not present in the id_vars
parameter get transposed.

Step 6 inverts the operation from step 5 with the pivot method, which accepts three
parameters. Each parameter takes a single column as a string. The column referenced by the
index parameter remains vertical and becomes the new index. The values of the column
referenced by the columns parameter become the column names. The values referenced by
the values parameter become tiled to correspond with the intersection of their former
index and columns label.

To make an exact replication with pivot, we need to sort the rows and columns in the exact
order from the original. As the institution name is in the index, we use the .loc indexing
operator as a way to sort the DataFrame by its original index.

Restructuring Data into a Tidy Form

[298]

There's more...
To help further understand stack/unstack, let's use them to transpose the college
DataFrame.

In this context, we are using the precise mathematical definition of the
transposing of a matrix, where the new rows are the old columns of the
original data matrix.

If you take a look at the output from step 2, you'll notice that there are two index levels. By
default, the unstack method uses the innermost index level as the new column values.
Index levels are numbered beginning from zero from the outside. Pandas defaults the
level parameter of the unstack method to -1, which refers to the innermost index. We can
instead unstack the outermost column using level=0:

>>> college.stack().unstack(0)

There is actually a very simple way to transpose a DataFrame that don't require stack or
unstack by using the transpose method or the T attribute like this:

>>> college.T

>>> college.transpose()

Restructuring Data into a Tidy Form

[299]

See also
Refer to the Selecting DataFrame rows and columns simultaneously recipe from
Chapter 4, Selecting Subsets of Data
Pandas official documentation of the unstack (http://bit.ly/2xIyFvr) and
pivot (http://bit.ly/2f3qAWP) methods

Unstacking after a groupby aggregation
Grouping data by a single column and performing an aggregation on a single column
returns a simple and straightforward result that is easy to consume. When grouping by
more than one column, a resulting aggregation might not be structured in a manner that
makes consumption easy. Since groupby operations by default put the unique grouping
columns in the index, the unstack method can be extremely useful to rearrange the data so
that it is presented in a manner that is more useful for interpretation.

Getting ready
In this recipe, we use the employee dataset to perform an aggregation, grouping by
multiple columns. We then use the unstack method to reshape the result into a format that
makes for easier comparisons of different groups.

How to do it...
Read in the employee dataset and find the mean salary by race:1.

>>> employee = pd.read_csv('data/employee.csv')

>>> employee.groupby('RACE')['BASE_SALARY'].mean().astype(int)

RACE

American Indian or Alaskan Native 60272

Asian/Pacific Islander 61660

Black or African American 50137

Hispanic/Latino 52345

Others 51278

White 64419

Name: BASE_SALARY, dtype: int64

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.unstack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.unstack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.unstack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.unstack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.unstack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.unstack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.unstack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.unstack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.unstack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pivot.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pivot.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pivot.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pivot.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pivot.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pivot.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pivot.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pivot.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pivot.html

Restructuring Data into a Tidy Form

[300]

This is a very simple groupby operation that results in a Series that is easy to2.
read and has no need to reshape. Let's now find the average salary for all races by
gender:

>>> agg = employee.groupby(['RACE', 'GENDER'])['BASE_SALARY'] \

 .mean().astype(int)

>>> agg

RACE GENDER

American Indian or Alaskan Native Female 60238

 Male 60305

Asian/Pacific Islander Female 63226

 Male 61033

Black or African American Female 48915

 Male 51082

Hispanic/Latino Female 46503

 Male 54782

Others Female 63785

 Male 38771

White Female 66793

 Male 63940

Name: BASE_SALARY, dtype: int64

This aggregation is more complex and can be reshaped to make different3.
comparisons easier. For instance, it would be easier to compare male versus
female salaries for each race if they were side by side and not vertical as they are
now. Let's unstack the gender index level:

>>> agg.unstack('GENDER')

Restructuring Data into a Tidy Form

[301]

Similarly, we can unstack the race index level:4.

>>> agg.unstack('RACE')

How it works...
Step 1 has the simplest possible aggregation with a single grouping column (RACE), a single
aggregating column (BASE_SALARY), and a single aggregating function (mean). This result is
easy to consume and doesn't require any more processing to evaluate. Step 2 slightly
increases the complexity by grouping by both race and gender together. The resulting
MultiIndex Series contains all the values in a single dimension, which makes comparisons
more difficult. To make the information easier to consume, we use the unstack method to
convert the values in one (or more) of the levels to columns.

By default, unstack uses the innermost index level as the new columns. You can specify
the exact level you would like to unstack with the level parameter, which accepts either
the level name as a string or the level integer location. It is preferable to use the level name
over the integer location to avoid ambiguity. Steps 3 and 4 unstack each level, which results
in a DataFrame with a single-level index. It is now much easier to compare salaries from
each race by gender.

There's more...
If there are multiple grouping and aggregating columns, then the immediate result will be a
DataFrame and not a Series. For instance, let's calculate more aggregations than just the
mean, as was done in step 2:

>>> agg2 = employee.groupby(['RACE', 'GENDER'])['BASE_SALARY'] \

 .agg(['mean', 'max', 'min']).astype(int)

>>> agg2

Restructuring Data into a Tidy Form

[302]

Unstacking the Gender column will result in MultiIndex columns. From here, you can keep
swapping row and column levels with both the unstack and stack methods until you
achieve the structure of data you desire:

>>> agg2.unstack('GENDER')

Restructuring Data into a Tidy Form

[303]

See also
Refer to the Grouping and aggregating with multiple columns recipe and functions
from Chapter 7, Grouping for Aggregation, Filtration, and Transformation

Replicating pivot_table with a groupby
aggregation
At first glance, it may seem that the pivot_table method provides a unique way to
analyze data. However, after a little massaging, it is possible to replicate its functionality
exactly with a groupby aggregation. Knowing this equivalence can help shrink the universe
of pandas functionality.

Getting ready
In this recipe, we use the flights dataset to create a pivot table and then recreate it using
groupby operations.

How to do it...
Read in the flights dataset, and use the pivot_table method to find the total1.
number of cancelled flights per origin airport for each airline:

>>> flights = pd.read_csv('data/flights.csv')

>>> fp = flights.pivot_table(index='AIRLINE',

 columns='ORG_AIR',

 values='CANCELLED',

 aggfunc='sum',

 fill_value=0).round(2)

>>> fp.head()

Restructuring Data into a Tidy Form

[304]

A groupby aggregation cannot directly replicate this table. The trick is to group2.
by all the columns in the index and columns parameters first:

>>> fg = flights.groupby(['AIRLINE', 'ORG_AIR'])['CANCELLED'].sum()

>>> fg.head()

AIRLINE ORG_AIR

AA ATL 3

 DEN 4

 DFW 86

 IAH 3

 LAS 3

Name: CANCELLED, dtype: int64

Use the unstack method to pivot the ORG_AIR index level to column names:3.

>>> fg_unstack = fg.unstack('ORG_AIR', fill_value=0)

>>> fp.equals(fg_unstack)

True

How it works...
The pivot_table method is very versatile and flexible but performs a rather similar
operation to a groupby aggregation with step 1 showing a simple example. The index
parameter takes a column (or columns) that will not be pivoted and whose unique values
will be placed in the index. The columns parameter takes a column (or columns) that will
be pivoted and whose unique values will be made into column names. The values
parameter takes a column (or columns) that will be aggregated.

Restructuring Data into a Tidy Form

[305]

There also exists an aggfunc parameter that takes an aggregating function (or functions)
that determines how the columns in the values parameter get aggregated. It defaults to the
mean, and, in this example, we change it to calculate the sum. Additionally, some unique
combinations of AIRLINE and ORG_AIR do not exist. These missing combinations will
default to missing values in the resulting DataFrame. Here, we use the fill_value
parameter to change them to zero.

Step 2 begins the replication process using all the columns in the index and columns
parameter as the grouping columns. This is the key to making this recipe work. A pivot
table is simply an intersection of all the unique combinations of the grouping columns. Step
3 finishes the replication by pivoting the innermost index level into column names with the
unstack method. Just like with pivot_table, not all combinations of AIRLINE and
ORG_AIR exist; we again use the fill_value parameter to force these missing intersections
to zero.

There's more...
It is possible to replicate much more complex pivot tables with groupby aggregations. For
instance, take the following result from pivot_table:

>>> flights.pivot_table(index=['AIRLINE', 'MONTH'],

 columns=['ORG_AIR', 'CANCELLED'],

 values=['DEP_DELAY', 'DIST'],

 aggfunc=[np.sum, np.mean],

 fill_value=0)

Restructuring Data into a Tidy Form

[306]

To replicate this with a groupby aggregation, simply follow the same pattern from the
recipe and place all the columns from the index and columns parameters into the groupby
method and then unstack the columns:

>>> flights.groupby(['AIRLINE', 'MONTH', 'ORG_AIR', 'CANCELLED']) \

 ['DEP_DELAY', 'DIST'] \

 .agg(['mean', 'sum']) \

 .unstack(['ORG_AIR', 'CANCELLED'], fill_value=0) \

 .swaplevel(0, 1, axis='columns')

There are a few differences. The pivot_table method does not accept aggregation
functions as strings when passed as a list like the agg groupby method. Instead, you must
use NumPy functions. The order of the column levels also differs, with pivot_table
putting the aggregation functions at a level preceding the columns in the values
parameter. This is equalized with the swaplevel method that, in this instance, switches the
order of the top two levels.

As of the time of writing this book, there is a bug when unstacking more
than one column. The fill_value parameter is ignored (http://bit.ly/
2jCPnWZ). To work around this bug, chain .fillna(0) to the end of the
code.

Renaming axis levels for easy reshaping
Reshaping with the stack/unstack methods is far easier when each axis (index/column)
level has a name. Pandas allows users to reference each axis level by integer location or by
name. Since integer location is implicit and not explicit, you should consider using level
names whenever possible. This advice follows from The Zen of Python (http://bit.ly/
2xE83uC), a short list of guiding principles for Python of which the second one is Explicit is
better than implicit.

Getting ready
When grouping or aggregating with multiple columns, the resulting pandas object will
have multiple levels in one or both of the axes. In this recipe, we will name each level of
each axis and then use the methods stack/unstack to dramatically reshape the data to the
desired form.

https://github.com/pandas-dev/pandas/issues/13971
https://github.com/pandas-dev/pandas/issues/13971
https://github.com/pandas-dev/pandas/issues/13971
https://github.com/pandas-dev/pandas/issues/13971
https://github.com/pandas-dev/pandas/issues/13971
https://github.com/pandas-dev/pandas/issues/13971
https://github.com/pandas-dev/pandas/issues/13971
https://github.com/pandas-dev/pandas/issues/13971
http://bit.ly/2xE83uC
http://bit.ly/2xE83uC
http://bit.ly/2xE83uC
http://bit.ly/2xE83uC
http://bit.ly/2xE83uC
http://bit.ly/2xE83uC
http://bit.ly/2xE83uC
http://bit.ly/2xE83uC

Restructuring Data into a Tidy Form

[307]

How to do it...
Read in the college dataset, and find a few basic summary statistics on the1.
undergraduate population and SAT math scores by institution and religious
affiliation:

>>> college = pd.read_csv('data/college.csv')

>>> cg = college.groupby(['STABBR', 'RELAFFIL']) \

 ['UGDS', 'SATMTMID'] \

 .agg(['size', 'min', 'max']).head(6)

Notice that both index levels have names and are the old column names. The2.
column levels, on the other hand, do not have names. Use the rename_axis
method to supply level names to them:

>>> cg = cg.rename_axis(['AGG_COLS', 'AGG_FUNCS'], axis='columns')

>>> cg

Restructuring Data into a Tidy Form

[308]

Now that each axis level has a name, reshaping is a breeze. Use the stack3.
method to move the AGG_FUNCS column to an index level:

>>> cg.stack('AGG_FUNCS').head()

By default, stacking places the new column level in the innermost position. Use4.
the swaplevel method to switch the placement of the levels:

>>> cg.stack('AGG_FUNCS').swaplevel('AGG_FUNCS', 'STABBR',

 axis='index').head()

Restructuring Data into a Tidy Form

[309]

We can continue to make use of the axis level names by sorting levels with the5.
sort_index method:

>>> cg.stack('AGG_FUNCS') \

 .swaplevel('AGG_FUNCS', 'STABBR', axis='index') \

 .sort_index(level='RELAFFIL', axis='index') \

 .sort_index(level='AGG_COLS', axis='columns').head(6)

To completely reshape your data, you might need to stack some columns while6.
unstacking others. Chain the two methods together in a single command:

>>> cg.stack('AGG_FUNCS').unstack(['RELAFFIL', 'STABBR'])

Restructuring Data into a Tidy Form

[310]

Stack all the columns at once to return a Series:7.

>>> cg.stack(['AGG_FUNCS', 'AGG_COLS']).head(12)

STABBR RELAFFIL AGG_FUNCS AGG_COLS

AK 0 count UGDS 7.0

 SATMTMID 0.0

 min UGDS 109.0

 max UGDS 12865.0

 1 count UGDS 3.0

 SATMTMID 1.0

 min UGDS 27.0

 SATMTMID 503.0

 max UGDS 275.0

 SATMTMID 503.0

AL 0 count UGDS 71.0

 SATMTMID 13.0

dtype: float64

How it works...
It is common for the result of a groupby aggregation to produce a DataFrame or Series with
multiple axis levels. The resulting DataFrame from the groupby operation in step 1 has
multiple levels for each axis. The column levels are not named, which would require us to
reference them only by their integer location. To greatly ease our ability to reference the
column levels, we rename them with the rename_axis method.

Restructuring Data into a Tidy Form

[311]

The rename_axis method is a bit strange in that it can modify both the level names and the
level values based on the type of the first argument passed to it. Passing it a list (or a scalar
if there is only one level) changes the names of the levels. Passing it a dictionary or a
function changes the values of the levels. In step 2, we pass the rename_axis method a list
and are returned a DataFrame with all axis levels named.

Once all the axis levels have names, we can easily and explicitly control the structure of
data. Step 3 stacks the AGG_FUNCS column into the innermost index level. The swaplevel
method in step 4 accepts the name or position of the levels that you want to swap as the first
two arguments. The sort_index method is called twice and sorts the actual values of each
level. Notice that the values of the column level are the column names SATMTMID and UGDS.

We can get vastly different output by both stacking and unstacking, as done in step 6. It is
also possible to stack every single column level into the index to produce a Series.

There's more...
If you wish to dispose of the level values altogether, you may set them to None. A case for
this can be made when there is a need to reduce clutter in the visual output of a DataFrame
or when it is obvious what the column levels represent and no further processing will take
place:

>>> cg.rename_axis([None, None], axis='index') \

 .rename_axis([None, None], axis='columns')

Restructuring Data into a Tidy Form

[312]

Tidying when multiple variables are stored
as column names
One particular flavor of messy data appears whenever the column names contain multiple
different variables themselves. A common example of this scenario occurs when age and
sex are concatenated together. To tidy datasets like this, we must manipulate the columns
with the pandas str accessor, an attribute that contains additional methods for string
processing.

Getting ready...
In this recipe, we will first identify all the variables of which some will be concatenated
together as column names. We then reshape the data and parse the text to extract the correct
variable values.

How to do it...
Read in the men's weightlifting dataset, and identify the variables:1.

>>> weightlifting = pd.read_csv('data/weightlifting_men.csv')

>>> weightlifting

Restructuring Data into a Tidy Form

[313]

The variables are the weight category, sex/age category, and the qualifying total.2.
The age and sex variables have been concatenated together into a single cell.
Before we can separate them, let's use the melt method to transpose the age and
sex column names into a single vertical column:

>>> wl_melt = weightlifting.melt(id_vars='Weight Category',

 var_name='sex_age',

 value_name='Qual Total')

>>> wl_melt.head()

Select the sex_age column, and use the split method available from the str3.
accessor to split the column into two different columns:

>>> sex_age = wl_melt['sex_age'].str.split(expand=True)

>>> sex_age.head()

Restructuring Data into a Tidy Form

[314]

This operation returned a completely separate DataFrame with meaningless4.
column names. Let's rename the columns so that we can explicitly access them:

>>> sex_age.columns = ['Sex', 'Age Group']

>>> sex_age.head()

Use the indexing operator directly after the str accessor to select the first5.
character from the Sex column:

>>> sex_age['Sex'] = sex_age['Sex'].str[0]

>>> sex_age.head()

Use the pd.concat function to concatenate this DataFrame with wl_melt to6.
produce a tidy dataset:

>>> wl_cat_total = wl_melt[['Weight Category', 'Qual Total']]

>>> wl_tidy = pd.concat([sex_age, wl_cat_total], axis='columns')

>>> wl_tidy.head()

Restructuring Data into a Tidy Form

[315]

This same result could have been created with the following:7.

>>> cols = ['Weight Category', 'Qual Total']

>>> sex_age[cols] = wl_melt[cols]

How it works...
The weightlifting dataset, like many datasets, has easily digestible information in its raw
form, but technically, it is messy, as all but one of the column names contain information for
sex and age. Once the variables are identified, we can begin to tidy the dataset. Whenever
column names contain variables, you will need to use the melt (or stack) method. The
Weight Category variable is already in the correct position so we keep it as an identifying
variable by passing it to the id_vars parameter. Note that we don't explicitly need to name
all the columns that we are melting with value_vars. By default, all the columns not
present in id_vars get melted.

The sex_age column needs to be parsed, and split into two variables. For this, we turn to
the extra functionality provided by the str accessor, only available to Series (a single
DataFrame column). The split method is one of the more common methods in this
situation, as it can separate different parts of the string into their own column. By default, it
splits on an empty space, but you may also specify a string or regular expression with the
pat parameter. When the expand parameter is set to True, a new column forms for each
independent split character segment. When False, a single column is returned, containing
a list of all the segments.

Restructuring Data into a Tidy Form

[316]

After renaming the columns in step 4, we need to use the str accessor again. Interestingly
enough, the indexing operator is available to select or slice segments of a string. Here, we
select the first character, which is the variable for sex. We could go further and split the ages
into two separate columns for minimum and maximum age, but it is common to refer to the
entire age group in this manner, so we leave it as is.

Step 6 shows one of two different methods to join all the data together. The concat
function accepts a collection of DataFrames and either concatenates them vertically
(axis='index') or horizontally (axis='columns'). Because the two DataFrames are
indexed identically, it is possible to assign the values of one DataFrame to new columns in
the other as done in step 7.

There's more...
Another way to complete this recipe, beginning after step 2, is by directly assigning new
columns from the sex_age column without using the split method. The assign method
may be used to add these new columns dynamically:

>>> age_group = wl_melt.sex_age.str.extract('(\d{2}[-+](?:\d{2})?)',

 expand=False)

>>> sex = wl_melt.sex_age.str[0]

>>> new_cols = {'Sex':sex,

 'Age Group': age_group}

>>> wl_tidy2 = wl_melt.assign(**new_cols) \

 .drop('sex_age',axis='columns')

>>> wl_tidy2.sort_index(axis=1).equals(wl_tidy.sort_index(axis=1))

True

The Sex column is found in the exact same manner as done in step 5. Because we are not
using split, the Age Group column must be extracted in a different manner. The extract
method uses a complex regular expression to extract very specific portions of the string. To
use extract correctly, your pattern must contain capture groups. A capture group is
formed by enclosing parentheses around a portion of the pattern. In this example, the entire
expression is one large capture group. It begins with \d{2}, which searches for exactly two
digits, followed by either a literal plus or minus, optionally followed by two more digits.
Although the last part of the expression, (?:\d{2})?, is surrounded by parentheses, the
?: denotes that it is not actually a capture group. It is technically a non-capturing group
used to express two digits together as optional. The sex_age column is no longer needed
and is dropped. Finally, the two tidy DataFrames are compared against one another and are
found to be equivalent.

Restructuring Data into a Tidy Form

[317]

See also
Refer to the site Regular-Expressions.info for more on non-capturing groups
(http://bit.ly/2f60KSd)

Tidying when multiple variables are stored
as column values
Tidy datasets must have a single column for each variable. Occasionally, multiple variable
names are placed in a single column with their corresponding value placed in another. The
general format for this kind of messy data is as follows:

In this example, the first and last three rows represent two distinct observations that should
each be rows. The data needs to be pivoted such that it ends up like this:

Getting ready
In this recipe, we identify the column containing the improperly structured variables and
pivot it to create tidy data.

http://www.regular-expressions.info/brackets.html
http://www.regular-expressions.info/brackets.html
http://www.regular-expressions.info/brackets.html
http://www.regular-expressions.info/brackets.html
http://www.regular-expressions.info/brackets.html
http://www.regular-expressions.info/brackets.html
http://www.regular-expressions.info/brackets.html
http://www.regular-expressions.info/brackets.html
http://www.regular-expressions.info/brackets.html

Restructuring Data into a Tidy Form

[318]

How to do it...
Read in the restaurant inspections dataset, and convert the Date column data1.
type to datetime64:

>>> inspections = pd.read_csv('data/restaurant_inspections.csv',

 parse_dates=['Date'])

>>> inspections.head()

This dataset has two variables, Name and Date, that are each correctly contained2.
in a single column. The Info column itself has five different variables: Borough,
Cuisine, Description, Grade, and Score. Let's attempt to use the pivot
method to keep the Name and Date columns vertical, create new columns out of
all the values in the Info column, and use the Value column as their intersection:

>>> inspections.pivot(index=['Name', 'Date'],

 columns='Info', values='Value')

NotImplementedError: > 1 ndim Categorical are not supported at this

time

Restructuring Data into a Tidy Form

[319]

Unfortunately, pandas developers have not implemented this functionality for3.
us. There is a good chance that in the future, this line of code is going to work.
Thankfully, for the most part, pandas has multiple ways of accomplishing the
same task. Let's put Name, Date, and Info into the index:

>>> inspections.set_index(['Name','Date', 'Info']).head(10)

Use the unstack method to pivot all the values in the Info column:4.

>>> inspections.set_index(['Name','Date', 'Info']) \

 .unstack('Info').head()

Restructuring Data into a Tidy Form

[320]

Make the index levels into columns with the reset_index method:5.

>>> insp_tidy = inspections.set_index(['Name','Date', 'Info']) \

 .unstack('Info') \

 .reset_index(col_level=-1)

>>> insp_tidy.head()

The dataset is tidy, but there is some annoying leftover pandas debris that needs6.
to be removed. Let's use the MultiIndex method droplevel to remove the top
column level and then rename the index level to None:

>>> insp_tidy.columns = insp_tidy.columns.droplevel(0) \

 .rename(None)

>>> insp_tidy.head()

Restructuring Data into a Tidy Form

[321]

The creation of the column MultiIndex in step 4 could have been avoided by7.
converting that one column DataFrame into a Series with the squeeze method.
The following code produces the same result as the previous step:

>>> inspections.set_index(['Name','Date', 'Info']) \

 .squeeze() \

 .unstack('Info') \

 .reset_index() \

 .rename_axis(None, axis='columns')

How it works...
In step 1, we notice that there are five variables placed vertically in the Info column with
their corresponding value in the Value column. Because we need to pivot each of these five
variables as horizontal column names, it would seem that the pivot method would work.
Unfortunately, pandas developers have yet to implement this special case when there is
more than one non-pivoted column. We are forced to use a different method.

The unstack method also pivots vertical data, but only for data in the index. Step 3 begins
this process by moving both the columns that will and will not be pivoted into the index
with the set_index method. Once these columns are in the index, unstack can be put to
work as done in step 3.

Notice that as we are unstacking a DataFrame, pandas keeps the original column names
(here, it is just a single column, Value) and creates a MultiIndex with the old column names
as the upper level. The dataset is now essentially tidy but we go ahead and make our non-
pivoted columns normal columns with the reset_index method. Because we have
MultiIndex columns, we can choose which level the new column names will belong to with
the col_level parameter. By default, the names are inserted into the uppermost level
(level 0). We use -1 to indicate the bottommost level.

After all this, we have some excess DataFrame names and indexes that need to be
discarded. Unfortunately, there isn't a DataFrame method that can remove levels, so we
must drop down into the index and use its droplevel method. Here, we overwrite the old
MultiIndex columns with single-level columns. These columns still have a useless name
attribute, Info, which is renamed to None.

Cleaning up the MultiIndex columns could have been avoided by forcing the resulting
DataFrame from step 3 to a Series. The squeeze method works only on single-column
DataFrames and turns them into Series.

Restructuring Data into a Tidy Form

[322]

There's more...
It is actually possible to use the pivot_table method, which has no restrictions on how
many non-pivoted columns are allowed. The pivot_table method differs from pivot by
performing an aggregation for all the values that correspond to the intersection between the
columns in the index and columns parameters. Because it is possible that there are
multiple values in this intersection, pivot_table requires the user to pass it an
aggregating function, in order to output a single value. We use the first aggregating
function, which takes the first of the values of the group. In this particular example, there is
exactly one value for each intersection, so there is nothing to be aggregated. The default
aggregation function is the mean, which will produce an error here, since some of the
values are strings:

>>> inspections.pivot_table(index=['Name', 'Date'],

 columns='Info',

 values='Value',

 aggfunc='first') \

 .reset_index() \

 .rename_axis(None, axis='columns')

See also
Pandas official documentation of the droplevel (http://bit.ly/2yo5BXf) and
squeeze (http://bit.ly/2yo5TgN) methods

Tidying when two or more values are stored
in the same cell
Tabular data, by nature, is two-dimensional, and thus, there is a limited amount of
information that can be presented in a single cell. As a workaround, you will occasionally
see datasets with more than a single value stored in the same cell. Tidy data allows for
exactly a single value for each cell. To rectify these situations, you will typically need to
parse the string data into multiple columns with the methods from the str Series accessor.

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.MultiIndex.droplevel.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.MultiIndex.droplevel.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.MultiIndex.droplevel.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.MultiIndex.droplevel.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.MultiIndex.droplevel.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.MultiIndex.droplevel.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.MultiIndex.droplevel.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.MultiIndex.droplevel.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.MultiIndex.droplevel.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.squeeze.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.squeeze.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.squeeze.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.squeeze.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.squeeze.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.squeeze.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.squeeze.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.squeeze.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.squeeze.html

Restructuring Data into a Tidy Form

[323]

Getting ready...
In this recipe, we examine a dataset that has a column containing multiple different
variables in each cell. We use the str accessor to parse these strings into separate columns
to tidy the data.

How to do it..
Read in the Texas cities dataset, and identify the variables:1.

>>> cities = pd.read_csv('data/texas_cities.csv')

>>> cities

The City column looks good and contains exactly one value. The Geolocation2.
column, on the other hand, contains four variables: latitude, latitude
direction, longitude, and longitude direction. Let's split the
Geolocation column into four separate columns:

>>> geolocations = cities.Geolocation.str.split(pat='. ',

 expand=True)

>>> geolocations.columns = ['latitude', 'latitude direction',

 'longitude', 'longitude direction']

>>> geolocations

Restructuring Data into a Tidy Form

[324]

Because the original data type for the Geolocation was an object, all the new3.
columns are also objects. Let's change latitude and longitude into floats:

>>> geolocations = geolocations.astype({'latitude':'float',

 'longitude':'float'})

>>> geolocations.dtypes

latitude float64

latitude direction object

longitude float64

longitude direction object

dtype: object

Concatenate these new columns with the City column from the original:4.

>>> cities_tidy = pd.concat([cities['City'], geolocations],

 axis='columns')

>>> cities_tidy

How it works...
After reading the data, we decide how many variables there are in the dataset. Here, we
chose to split the Geolocation column into four variables, but we could have just chosen
two for latitude and longitude and used a negative sign to differentiate between west/east
and south/north.

There are a few ways to parse the Geolocation column with the methods from the str
accessor. The easiest way is to use the split method. We pass it a simple regular
expression defined by any character (the period) and a space. When a space follows any
character, a split is made, and a new column is formed. The first occurrence of this pattern
takes place at the end of the latitude. A space follows the degree character, and a split is
formed. The splitting characters are discarded and not kept in the resulting columns. The
next split matches the comma and space following directly after the latitude direction.

Restructuring Data into a Tidy Form

[325]

A total of three splits are made, resulting in four columns. The second line in step 2
provides them with meaningful names. Even though the resulting latitude and
longitude columns appear to be floats, they are not. They were originally parsed from an
object column and therefore remain object data types. Step 3 uses a dictionary to map the
column names to their new types.

Instead of using a dictionary, which would require a lot of typing if you had many column
names, you can use the function to_numeric to attempt to convert each column to either
integer or float. To apply this function iteratively over each column, use the apply method
with the following:

>>> geolocations.apply(pd.to_numeric, errors='ignore')

Step 4 concatenates the city to the front of this new DataFrame to complete the process of
making tidy data.

There's more...
The split method worked exceptionally well in this example with a simple regular
expression. For other examples, some columns might require you to create splits on several
different patterns. To search for multiple regular expressions, use the pipe character |. For
instance, if we wanted to split only the degree symbol and comma, each followed by a
space, we would do the following:

>>> cities.Geolocation.str.split(pat='° |, ', expand=True)

This returns the same DataFrame from step 2. Any number of additional split patterns may
be appended to the preceding string pattern with the pipe character.

The extract method is another excellent method which allows you to extract specific
groups within each cell. These capture groups must be enclosed in parentheses. Anything
that matches outside the parentheses is not present in the result. The following line
produces the same output as step 2:

>>> cities.Geolocation.str.extract('([0-9.]+). (N|S), ([0-9.]+). (E|W)',

 expand=True)

This regular expression has four capture groups. The first and third groups search for at
least one or more consecutive digits with decimals. The second and fourth groups search for
a single character (the direction). The first and third capture groups are separated by any
character followed by a space. The second capture group is separated by a comma and then
a space.

Restructuring Data into a Tidy Form

[326]

Tidying when variables are stored in column
names and values
One particularly difficult form of messy data to diagnose appears whenever variables are
stored both horizontally across the column names and vertically down column values. You
will typically encounter this type of dataset, not in a database, but from a summarized
report that someone else has already generated.

Getting ready
In this recipe, variables are identified both vertically and horizontally and reshaped into
tidy data with the melt and pivot_table methods.

How to do it...
Read in the sensors dataset and identify the variables:1.

>>> sensors = pd.read_csv('data/sensors.csv')

>>> sensors

Restructuring Data into a Tidy Form

[327]

The only variable placed correctly in a vertical column is Group. The Property2.
column appears to have three unique variables, Pressure, Temperature, and
Flow. The rest of the columns 2012 to 2016 are themselves a single variable,
which we can sensibly name Year. It isn't possible to restructure this kind of
messy data with a single DataFrame method. Let's begin with the melt method
to pivot the years into their own column:

>>> sensors.melt(id_vars=['Group', 'Property'], var_name='Year') \

 .head(6)

This takes care of one of our issues. Let's use the pivot_table method to pivot3.
the Property column into new column names:

>>> sensors.melt(id_vars=['Group', 'Property'], var_name='Year') \

 .pivot_table(index=['Group', 'Year'],

 columns='Property', values='value') \

 .reset_index() \

 .rename_axis(None, axis='columns')

Restructuring Data into a Tidy Form

[328]

How it works...
Once we have identified the variables in step 1, we can begin our restructuring. Pandas
does not have a method to pivot columns simultaneously, so we must take on this task one
step at a time. We correct the years by keeping the Property column vertical by passing it
to the id_vars parameter in the melt method.

The result is now precisely the pattern of messy data found in the preceding recipe, Tidying
when multiple variables are stored as column values. As explained in the There's more section of
that recipe, we must use pivot_table to pivot a DataFrame when using more than one
column in the index parameter. After pivoting, the Group and Year variables are stuck in
the index. We push them back out as columns. The pivot_table method preserves the
column name used in the columns parameter as the name of the column index. After
resetting the index, this name is meaningless, and we remove it with rename_axis.

Restructuring Data into a Tidy Form

[329]

There's more...
Whenever a solution involves melt, pivot_table, or pivot, you can be sure that there is
an alternative method using stack and unstack. The trick is first to move the columns that
are not currently being pivoted into the index:

>>> sensors.set_index(['Group', 'Property']) \

 .stack() \

 .unstack('Property') \

 .rename_axis(['Group', 'Year'], axis='index') \

 .rename_axis(None, axis='columns') \

 .reset_index()

Tidying when multiple observational units
are stored in the same table
It is generally easier to maintain data when each table contains information from a single
observational unit. On the other hand, it can be easier to find insights when all data is in a
single table, and in the case of machine learning, all data must be in a single table. The focus
of tidy data is not on directly performing analysis. Rather, it is structuring the data so that
analysis is easier further down the line, and when there are multiple observational units
in one table, they may need to get separated into their own tables.

Getting ready
In this recipe, we use the movie dataset to identify the three observational units (movies,
actors, and directors) and create separate tables for each. One of the keys to this recipe is
understanding that the actor and director Facebook likes are independent of the movie.
Each actor and director is mapped to a single value representing their number of Facebook
likes. Due to this independence, we can separate the data for the movies, directors, and
actors into their own tables. Database folks call this process normalization, which increases
data integrity and reduces redundancy.

Restructuring Data into a Tidy Form

[330]

How to do it...
Read in the altered movie dataset, and output the first five rows:1.

>>> movie = pd.read_csv('data/movie_altered.csv')

>>> movie.head()

This dataset contains information on the movie itself, the director, and actors.2.
These three entities can be considered observational units. Before we start, let's
use the insert method to create a column to uniquely identify each movie:

>>> movie.insert(0, 'id', np.arange(len(movie)))

>>> movie.head()

Restructuring Data into a Tidy Form

[331]

Let's attempt to tidy this dataset with the wide_to_long function to put all the3.
actors in one column and their corresponding Facebook likes in another, and do
the same for the director, even though there is only one per movie:

>>> stubnames = ['director', 'director_fb_likes',

 'actor', 'actor_fb_likes']

>>> movie_long = pd.wide_to_long(movie,

 stubnames=stubnames,

 i='id',

 j='num',

 sep='_').reset_index()

>>> movie_long['num'] = movie_long['num'].astype(int)

>>> movie_long.head(9)

The dataset is now ready to be split into multiple smaller tables:4.

>>> movie_table = movie_long[['id', 'year', 'duration', 'rating']]

>>> director_table = movie_long[['id', 'num',

 'director', 'director_fb_likes']]

>>> actor_table = movie_long[['id', 'num',

 'actor', 'actor_fb_likes']]

Restructuring Data into a Tidy Form

[332]

There are still several issues with these tables. The movie table duplicates each5.
movie three times, the director table has two missing rows for each ID, and a few
movies have missing values for some of the actors. Let's take care of these issues:

>>> movie_entity = movie_entity.drop_duplicates() \

 .reset_index(drop=True)

>>> director_entity = director_entity.dropna() \

 .reset_index(drop=True)

>>> actor_table = actor_table.dropna() \

 .reset_index(drop=True)

Now that we have separated the observational units into their own tables, let's6.
compare the memory of the original dataset with these three tables:

>>> movie.memory_usage(deep=True).sum()

2318234

>>> movie_table.memory_usage(deep=True).sum() + \

 director_table.memory_usage(deep=True).sum() + \

 actor_table.memory_usage(deep=True).sum()

2627306

Restructuring Data into a Tidy Form

[333]

Our new tidier data actually takes up a little more memory. This is to be7.
expected, as all the data in the original columns are simply spread out into the
new tables. The new tables also each have an index, and two of them have an
extra num column, which accounts for the extra memory. We can, however, take
advantage of the fact that the count of Facebook likes is independent of the
movie, meaning that each actor and director has exactly one count of Facebook
likes for all movies. Before we can do this, we need to create another table
mapping each movie to each actor/director. Let's first create id columns specific
to the actor and director tables, uniquely identifying each actor/director:

>>> director_cat = pd.Categorical(director_table['director'])

>>> director_table.insert(1, 'director_id', director_cat.codes)

>>> actor_cat = pd.Categorical(actor_table['actor'])

>>> actor_table.insert(1, 'actor_id', actor_cat.codes)

We can use these tables to form our intermediate tables and unique8.
actor/director tables. Let's first do this with the director tables:

>>> director_associative = director_table[['id', 'director_id',

 'num']]

>>> dcols = ['director_id', 'director', 'director_fb_likes']

>>> director_unique = director_table[dcols].drop_duplicates() \

 .reset_index(drop=True)

Let's do the same thing with the actor table:9.

Restructuring Data into a Tidy Form

[334]

>>> actor_associative = actor_table[['id', 'actor_id', 'num']]

>>> acols = ['actor_id', 'actor', 'actor_fb_likes']

>>> actor_unique = actor_table[acols].drop_duplicates() \

 .reset_index(drop=True)

Let's find out how much memory our new tables consume:10.

>>> movie_table.memory_usage(deep=True).sum() + \

 director_associative.memory_usage(deep=True).sum() + \

 director_unique.memory_usage(deep=True).sum() + \

 actor_associative.memory_usage(deep=True).sum() + \

 actor_unique.memory_usage(deep=True).sum()

1833402

Now that we have normalized our tables, we can build an entity-relationship11.
diagram showing all the tables (entities), columns, and relationships. This
diagram was created with the easy to use ERDPlus (https://erdplus.com):

https://erdplus.com/#/
https://erdplus.com/#/
https://erdplus.com/#/
https://erdplus.com/#/
https://erdplus.com/#/
https://erdplus.com/#/
https://erdplus.com/#/

Restructuring Data into a Tidy Form

[335]

How it works...
After importing the data and identifying the three entities, we must create a unique
identifier for each observation so that we can link to the movies, actors and directors
together once they have been separated into different tables. In step 2, we simply set the ID
column as the row number beginning from zero. In step 3, we use the wide_to_long
function to simultaneously melt the actor and director columns. It uses the integer
suffix of the columns to align the data vertically and places this integer suffix in the index.
The parameter j is used to control its name. The values in the columns not in the
stubnames list repeat to align with the columns that were melted.

In step 4, we create our three new tables, keeping the id column in each. We also keep the
num column to identify the exact director/actor column from which it was derived. Step
5 condenses each table by removing duplicates and missing values.

After step 5, the three observational units are in their own tables, but they still contain the
same amount of data as the original (and a bit more), as seen in step 6. To return the correct
number of bytes from the memory_usage method for object data type columns, you must
set the deep parameter to True.

Each actor/director needs only one entry in his or her respective tables. We can't simply
make a table of just actor name and Facebook likes, as there would be no way to link the
actors back to the original movie. The relationship between movies and actors is called a
many-to-many relationship. Each movie is associated with multiple actors, and each actor
can appear in multiple movies. To resolve this relationship, an intermediate or associative
table is created, which contains the unique identifiers (primary keys) of both the movie and
actor.

To create associative tables, we must uniquely identify each actor/director. One trick is to
create a categorical data type out of each actor/director name with pd.Categorical.
Categorical data types have an internal map from each value to an integer. This integer is
found in the codes attribute, which is used as the unique ID. To set up the creation of the
associative table, we add this unique ID to the actor/director tables.

Step 8 and step 9 create the associative tables by selecting both of the unique identifiers.
Now, we can reduce the actor and director tables to just the unique names and
Facebook likes. This new arrangement of tables uses 20% less memory than the original.
Formal relational databases have entity-relationship diagrams to visualize the tables. In step
10, we use the simple ERDPlus tool to make the visualization, which greatly eases the
understanding of the relationships between the tables.

Restructuring Data into a Tidy Form

[336]

There's more...
It is possible to recreate the original movie table by joining all the tables back together. First,
join the associative tables to the actor/director tables. Then pivot the num column, and
add the column prefixes back:

>>> actors = actor_associative.merge(actor_unique, on='actor_id') \

 .drop('actor_id', 1) \

 .pivot_table(index='id',

 columns='num',

 aggfunc='first')

>>> actors.columns = actors.columns.get_level_values(0) + '_' + \

 actors.columns.get_level_values(1).astype(str)

>>> directors = director_associative.merge(director_unique,

 on='director_id') \

 .drop('director_id', 1) \

 .pivot_table(index='id',

 columns='num',

 aggfunc='first')

>>> directors.columns = directors.columns.get_level_values(0) + '_' + \

 directors.columns.get_level_values(1) \

 .astype(str)

Restructuring Data into a Tidy Form

[337]

These tables can now be joined together with movie_table:

>>> movie2 = movie_table.merge(directors.reset_index(),

 on='id', how='left') \

 .merge(actors.reset_index(),

 on='id', how='left')

>>> movie.equals(movie2[movie.columns])

True

See also
More on database normalization (http://bit.ly/ 2w8wahQ), associative tables
(http://bit.ly/2yqE4oh), and primary and foreign keys (http://bit.ly/
2xgIvEb)
Refer to the Stacking multiple groups of variables simultaneously recipe in this
chapter for more information on the wide_to_long function

https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Associative_entity
https://en.wikipedia.org/wiki/Associative_entity
https://en.wikipedia.org/wiki/Associative_entity
https://en.wikipedia.org/wiki/Associative_entity
https://en.wikipedia.org/wiki/Associative_entity
https://en.wikipedia.org/wiki/Associative_entity
https://en.wikipedia.org/wiki/Associative_entity
https://en.wikipedia.org/wiki/Associative_entity
https://en.wikipedia.org/wiki/Associative_entity
https://en.wikipedia.org/wiki/Unique_key
https://en.wikipedia.org/wiki/Unique_key
https://en.wikipedia.org/wiki/Unique_key
https://en.wikipedia.org/wiki/Unique_key
https://en.wikipedia.org/wiki/Unique_key
https://en.wikipedia.org/wiki/Unique_key
https://en.wikipedia.org/wiki/Unique_key
https://en.wikipedia.org/wiki/Unique_key

9
Combining Pandas Objects

In this chapter, we will cover the following topics:

Appending new rows to DataFrames
Concatenating multiple DataFrames together
Comparing President Trump's and Obama's approval ratings
Understanding the differences between concat, join, and merge
Connecting to SQL databases

Introduction
A wide variety of options are available to combine two or more DataFrames or Series
together. The append method is the least flexible and only allows for new rows to be
appended to a DataFrame. The concat method is very versatile and can combine any
number of DataFrames or Series on either axis. The join method provides fast lookups by
aligning a column of one DataFrame to the index of others. The merge method provides
SQL-like capabilities to join two DataFrames together.

Appending new rows to DataFrames
When performing a data analysis, it is far more common to create new columns than new
rows. This is because a new row of data usually represents a new observation and, as an
analyst, it is typically not your job to continually capture new data. Data capture is usually
left to other platforms like relational database management systems. Nevertheless, it is a
necessary feature to know as it will crop up from time to time.

Combining Pandas Objects

[339]

Getting ready
In this recipe, we will begin by appending rows to a small dataset with the .loc indexer
and then transition to using the append method.

How to do it...
Read in the names dataset, and output it:1.

>>> names = pd.read_csv('data/names.csv')

>>> names

Let's create a list that contains some new data and use the .loc indexer to set a2.
single row label equal to this new data:

>>> new_data_list = ['Aria', 1]

>>> names.loc[4] = new_data_list

>>> names

Combining Pandas Objects

[340]

The .loc indexer uses labels to refer to the rows. In this case, the row labels3.
exactly match the integer location. It is possible to append more rows with non-
integer labels:

>>> names.loc['five'] = ['Zach', 3]

>>> names

To be more explicit in associating variables to values, you may use a dictionary.4.
Also, in this step, we can dynamically choose the new index label to be the length
of the DataFrame:

>>> names.loc[len(names)] = {'Name':'Zayd', 'Age':2}

>>> names

Combining Pandas Objects

[341]

A Series can hold the new data as well and works exactly the same as a5.
dictionary:

>>> names.loc[len(names)] = pd.Series({'Age':32,

 'Name':'Dean'})

>>> names

The preceding operations all use the .loc indexing operator to make changes to6.
the names DataFrame in-place. There is no separate copy of the DataFrame that is
returned. In the next few steps, we will look at the append method, which does
not modify the calling DataFrame. Instead, it returns a new copy of the
DataFrame with the appended row(s). Let's begin with the original names
DataFrame and attempt to append a row. The first argument to append must be
either another DataFrame, Series, dictionary, or a list of these, but not a list like
the one in step 2. Let's see what happens when we attempt to use a dictionary
with append:

>>> names = pd.read_csv('data/names.csv')

>>> names.append({'Name':'Aria', 'Age':1})

TypeError: Can only append a Series if ignore_index=True or if the

Series has a name

This error message appears to be slightly incorrect. We are passing a DataFrame7.
and not a Series but nevertheless, it gives us instructions on how to correct it:

>>> names.append({'Name':'Aria', 'Age':1}, ignore_index=True)

Combining Pandas Objects

[342]

This works but ignore_index is a sneaky parameter. When set to True, the old 8.
index will be removed completely and replaced with a RangeIndex from 0 to
n-1. For instance, let's specify an index for the names DataFrame:

>>> names.index = ['Canada', 'Canada', 'USA', 'USA']

>>> names

Rerun the code from step 7 and you will get the same result. The original index is9.
completely ignored.
Let's continue with this names dataset with these country strings in the index and10.
use a Series that has a name attribute with the append method:

>>> s = pd.Series({'Name': 'Zach', 'Age': 3}, name=len(names))

>>> s

Age 3

Name Zach

Name: 4, dtype: object

>>> names.append(s)

Combining Pandas Objects

[343]

The append method is more flexible than the .loc indexer. It supports11.
appending multiple rows at the same time. One way to accomplish this is with a
list of Series:

>>> s1 = pd.Series({'Name': 'Zach', 'Age': 3}, name=len(names))

>>> s2 = pd.Series({'Name': 'Zayd', 'Age': 2}, name='USA')

>>> names.append([s1, s2])

Small DataFrames with only two columns are simple enough to manually write12.
out all the column names and values. When they get larger, this process will be
quite painful. For instance, let's take a look at the 2016 baseball dataset:

>>> bball_16 = pd.read_csv('data/baseball16.csv')

>>> bball_16.head()

Combining Pandas Objects

[344]

This dataset contains 22 columns and it would be easy to mistype a column name13.
or forget one altogether if you were manually entering new rows of data. To help
protect against these mistakes, let's select a single row as a Series and chain the
to_dict method to it to get an example row as a dictionary:

>>> data_dict = bball_16.iloc[0].to_dict()

>>> print(data_dict)

{'playerID': 'altuvjo01', 'yearID': 2016, 'stint': 1, 'teamID':

'HOU', 'lgID': 'AL', 'G': 161, 'AB': 640, 'R': 108, 'H': 216, '2B':

42, '3B': 5, 'HR': 24, 'RBI': 96.0, 'SB': 30.0, 'CS': 10.0, 'BB':

60, 'SO': 70.0, 'IBB': 11.0, 'HBP': 7.0, 'SH': 3.0, 'SF': 7.0,

'GIDP': 15.0}

Clear the old values with a dictionary comprehension assigning any previous14.
string value as an empty string and all others, missing values. This dictionary can
now serve as a template for any new data you would like to enter:

>>> new_data_dict = {k: '' if isinstance(v, str) else

 np.nan for k, v in data_dict.items()}

>>> print(new_data_dict)

{'playerID': '', 'yearID': nan, 'stint': nan, 'teamID': '', 'lgID':

'', 'G': nan, 'AB': nan, 'R': nan, 'H': nan, '2B': nan, '3B': nan,

'HR': nan, 'RBI': nan, 'SB': nan, 'CS': nan, 'BB': nan, 'SO': nan,

'IBB': nan, 'HBP': nan, 'SH': nan, 'SF': nan, 'GIDP': nan}

Combining Pandas Objects

[345]

How it works...
The .loc indexing operator is used to select and assign data based on the row and column
labels. The first value passed to it represents the row label. In step 2, names.loc[4] refers
to the row with a label equal to the integer 4. This label does not currently exist in the
DataFrame. The assignment statement creates a new row with data provided by the list. As
was mentioned in the recipe, this operation modifies the names DataFrame itself. If there
was a previously existing row with a label equal to the integer 4, this command would have
written over it. This modification in-place makes this indexing operator riskier to use than
the append method, which never modifies the original calling DataFrame.

Any valid label may be used with the .loc indexing operator, as seen in step 3. Regardless
of what the new label value actually is, the new row will always be appended at the end.
Even though assigning with a list works, for clarity it's best to use a dictionary so that we
know exactly which columns are associated with each value, as done in step 4.

Step 5 shows a little trick to dynamically set the new label to be the current number of rows
in the DataFrame. Data stored in a Series will also get assigned correctly as long as the
index labels match the column names.

The rest of the steps use the append method, which is a simple method that only appends
new rows to DataFrames. Most DataFrame methods allow both row and column
manipulation through an axis parameter. One exception is with append, which can only
append rows to DataFrames.

Using a dictionary of column names mapped to values isn't enough information for append
to work, as seen by the error message in step 6. To correctly append a dictionary without a
row name, you will have to set the ignore_index parameter to True. Step 10 shows you
how to keep the old index by simply converting your dictionary to a Series. Make sure to
use the name parameter, which is then used as the new index label. Any number of rows
may be added with append in this manner by passing a list of Series as the first argument.

When wanting to append rows in this manner with a much larger DataFrame, you can
avoid lots of typing and mistakes by converting a single row to a dictionary with the
to_dict method and then using a dictionary comprehension to clear out all the old values
replacing them with some defaults.

Combining Pandas Objects

[346]

There's more...
Appending a single row to a DataFrame is a fairly expensive operation and if you find
yourself writing a loop to append single rows of data to a DataFrame, then you are doing it
wrong. Let's first create 1,000 rows of new data as a list of Series:

>>> random_data = []

>>> for i in range(1000):

 d = dict()

 for k, v in data_dict.items():

 if isinstance(v, str):

 d[k] = np.random.choice(list('abcde'))

 else:

 d[k] = np.random.randint(10)

 random_data.append(pd.Series(d, name=i + len(bball_16)))

>>> random_data[0].head()

2B 3

3B 9

AB 3

BB 9

CS 4

Name: 16, dtype: object

Let's time how long it takes to loop through each item making one append at a time:

>>> %%timeit

>>> bball_16_copy = bball_16.copy()

>>> for row in random_data:

 bball_16_copy = bball_16_copy.append(row)

4.88 s ± 190 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

That took nearly five seconds for only 1,000 rows. If we instead pass in the entire list of
Series, we get an enormous speed increase:

>>> %%timeit

>>> bball_16_copy = bball_16.copy()

>>> bball_16_copy = bball_16_copy.append(random_data)

78.4 ms ± 6.2 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

By passing in the list of Series, the time has been reduced to under one-tenth of a second.
Internally, pandas converts the list of Series to a single DataFrame and then makes the
append.

Combining Pandas Objects

[347]

Concatenating multiple DataFrames together
The versatile concat function enables concatenating two or more DataFrames (or Series)
together, both vertically and horizontally. As per usual, when dealing with multiple pandas
objects simultaneously, concatenation doesn't happen haphazardly but aligns each object by
their index.

Getting ready
In this recipe, we combine DataFrames both horizontally and vertically with the concat
function and then change the parameter values to yield different results.

How to do it...
Read in the 2016 and 2017 stock datasets, and make their ticker symbol the index:1.

>>> stocks_2016 = pd.read_csv('data/stocks_2016.csv',

 index_col='Symbol')

>>> stocks_2017 = pd.read_csv('data/stocks_2017.csv',

 index_col='Symbol')

Combining Pandas Objects

[348]

Place all the stock datasets into a single list, and then call the concat function to2.
concatenate them together:

>>> s_list = [stocks_2016, stocks_2017]

>>> pd.concat(s_list)

By default, the concat function concatenates DataFrames vertically, one on top3.
of the other. One issue with the preceding DataFrame is that there is no way to
identify the year of each row. The concat function allows each piece of the
resulting DataFrame to be labeled with the keys parameter. This label will
appear in the outermost index level of the concatenated frame and force the
creation of a MultiIndex. Also, the names parameter has the ability to rename
each index level for clarity:

>>> pd.concat(s_list, keys=['2016', '2017'],

 names=['Year', 'Symbol'])

Combining Pandas Objects

[349]

It is also possible to concatenate horizontally by changing the axis parameter to4.
columns or 1:

>>> pd.concat(s_list, keys=['2016', '2017'],

 axis='columns', names=['Year', None])

Combining Pandas Objects

[350]

Notice that missing values appear whenever a stock symbol is present in one year5.
but not the other. The concat function, by default, uses an outer join, keeping all
rows from each DataFrame in the list. However, it gives us options to only keep
rows that have the same index values in both DataFrames. This is referred to as
an inner join. We set the join parameter to inner to change the behavior:

>>> pd.concat(s_list, join='inner', keys=['2016', '2017'],

 axis='columns', names=['Year', None])

How it works...
The first argument is the only argument required for the concat function and it must be a
sequence of pandas objects, typically a list or dictionary of DataFrames or Series. By default,
all these objects will be stacked vertically one on top of the other. In this recipe, only two
DataFrames are concatenated, but any number of pandas objects work. When we were
concatenating vertically, the DataFrames align by their column names.

In this dataset, all the column names were the same so each column in the 2017 data lined
up precisely under the same column name in the 2016 data. However, when they were
concatenated horizontally, as in step 4, only two of the index labels matched from both
years--AAPL and TSLA. Therefore, these ticker symbols had no missing values for either
year. There are two types of alignment possible using concat, outer (the default) and inner
referred to by the join parameter.

There's more...
The append method is a heavily watered down version of concat that can only append
new rows to a DataFrame. Internally, append just calls the concat function. For instance,
step 2 from this recipe may be duplicated with the following:

>>> stocks_2016.append(stocks_2017)

Combining Pandas Objects

[351]

Comparing President Trump's and Obama's
approval ratings
Public support of the current President of the United States is a topic that frequently makes
it into news headlines and is formally measured through opinion polls. In recent years,
there has been a rapid increase in the frequency of these polls and lots of new data rolls in
each week. There are many different pollsters that each have their own questions and
methodology to capture their data, and thus there exists quite a bit of variability among the
data. The American Presidency Project from the University of California, Santa Barbara,
provides an aggregate approval rating down to a single data point each day.

Unlike most of the recipes in this book, the data is not readily available in a CSV file. Often,
as a data analyst, you will need to find data on the web, and use a tool that can scrape it into
a format that you can then parse through your local workstation.

Getting ready
In this recipe, we will use the read_html function, which comes heavily equipped to scrape
data from tables online and turn them into DataFrames. You will also learn how to inspect
web pages to find the underlying HTML for certain elements. I used Google Chrome as my
browser and suggest you use it, or Firefox, for the web-based steps.

How to do it...
Navigate to The American Presidency Project approval page for President Donald1.
Trump (http://www.presidency.ucsb.edu/data/popularity.php?pres=45). You
should get a page that contains a time series plot with the data in a table directly
following it:

http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45
http://www.presidency.ucsb.edu/data/popularity.php?pres=45

Combining Pandas Objects

[352]

The read_html function is able to scrape tables off web pages and place their2.
data into DataFrames. It works best with simple HTML tables and provides some
useful parameters to select the exact table you desire in case there happen to be
multiple tables on the same page. Let's go ahead and use read_html with its
default values, which will return all the tables as DataFrames in a list:

>>> base_url =

'http://www.presidency.ucsb.edu/data/popularity.php?pres={}'

>>> trump_url = base_url.format(45)

>>> df_list = pd.read_html(trump_url)

>>> len(df_list)

14

Combining Pandas Objects

[353]

The function has returned 14 tables, which seems preposterous at first, as the web3.
page appears to show only a single element that most people would recognize as
a table. The read_html function formally searches for HTML table elements that
begin with <table. Let's inspect the HTML page by right-clicking on the approval
data table and selecting inspect or inspect element:

This opens up the console, which is a very powerful tool for web development.4.
For this recipe, we will only need it for a few tasks. All consoles allow you to
search the HTML for a specific word. Let's search for the word table. My
browser found 15 different HTML tables, very close to the number returned by
read_html:

Combining Pandas Objects

[354]

Let's begin inspecting the DataFrames in df_list:5.

>>> df0 = df_list[0]

>>> df0.shape

(308, 1794)

>>> df0.head(7)

Looking back at the web page, there is a row in the approval table for nearly each6.
day beginning January 22, 2017, until the day the data was scraped--September
25, 2017. This is a little more than eight months or 250 rows of data, which is
somewhat close to the 308 lines in that first table. Scanning through the rest of the
tables, you can see that lots of empty meaningless tables were discovered, as well
as tables for different parts of the web page that don't actually resemble tables.
Let's use some of the parameters of the read_html function to help us select the
table we desire. We can use the match parameter to search for a specific string in
the table. Let's search for a table with the word Start Date in it:

>>> df_list = pd.read_html(trump_url, match='Start Date')

>>> len(df_list)

3

Combining Pandas Objects

[355]

By searching for a specific string in the table, we have reduced the number of7.
tables down to just three. Another useful parameter is attrs, which accepts a
dictionary of HTML attributes paired with their value. We would like to find
some unique attributes for our particular table. To do this, let's right-click again
in our data table. This time, make sure to click at the very top in one of the table
headers. For example, right click on President, and select inspect or inspect
element again:

The element that you selected should be highlighted. This is actually not the8.
element we are interested in. Keep looking until you come across an HTML tag
beginning with <table. All the words to the left of the equal signs are the attributes
or attrs and to the right are the values. Let's use the align attribute with its value
center in our search:

>>> df_list = pd.read_html(trump_url, match='Start Date',

 attrs={'align':'center'})

>>> len(df_list)

1

>>> trump = df_list[0]

>>> trump.shape

(249, 19)

>>> trump.head(8)

Combining Pandas Objects

[356]

We only matched with one table and the number of rows is very close to the total9.
days between the first and last dates. Looking at the data, it appears that we have
indeed found the table we are looking for. The six column names appear to be on
line 4. We can go even further and precisely select the rows we want to skip and
which row we would like to use for the column names with the skiprows and
header parameters. We can also make sure that the start and end dates are
coerced correctly to the right data type with the parse_dates parameter:

>>> df_list = pd.read_html(trump_url, match='Start Date',

 attrs={'align':'center'},

 header=0, skiprows=[0,1,2,3,5],

 parse_dates=['Start Date',

 'End Date'])

>>> trump = df_list[0]

>>> trump.head()

Combining Pandas Objects

[357]

This is almost exactly what we want, except for the columns with missing values.10.
Let's use the dropna method to drop columns with all values missing:

>>> trump = trump.dropna(axis=1, how='all')

>>> trump.head()

Let's fill the missing values in the President column in a forward direction with11.
the ffill method. Let's first check whether there are any missing values in the
other columns:

>>> trump.isnull().sum()

President 242

Start Date 0

End Date 0

Approving 0

Disapproving 0

unsure/no data 0

dtype: int64

>>> trump = trump.ffill()

trump.head()

Combining Pandas Objects

[358]

Finally, it is important to check the data types to ensure they are correct:12.

>>> trump.dtypes

President object

Start Date datetime64[ns]

End Date datetime64[ns]

Approving int64

Disapproving int64

unsure/no data int64

dtype: object

Let's build a function with all the steps combined into one to automate the13.
process of retrieving approval data for any President:

>>> def get_pres_appr(pres_num):

 base_url =

'http://www.presidency.ucsb.edu/data/popularity.php?pres={}'

 pres_url = base_url.format(pres_num)

 df_list = pd.read_html(pres_url, match='Start Date',

 attrs={'align':'center'},

 header=0, skiprows=[0,1,2,3,5],

 parse_dates=['Start Date',

 'End Date'])

 pres = df_list[0].copy()

 pres = pres.dropna(axis=1, how='all')

 pres['President'] = pres['President'].ffill()

 return pres.sort_values('End Date') \

 .reset_index(drop=True)

The only parameter, pres_num, denotes the order number of each president.14.
Barack Obama was the 44th President of the United States; pass 44 to the
get_pres_appr function to retrieve his approval numbers:

>>> obama = get_pres_appr(44)

>>> obama.head()

Combining Pandas Objects

[359]

There is Presidential approval rating data dating back to 1941 during President15.
Franklin Roosevelt's third term. With our custom function along with the concat
function, it is possible to grab all the presidential approval rating data from this
site. For now, let's just grab the approval rating data for the last five presidents
and output the first three rows for each President:

>>> pres_41_45 = pd.concat([get_pres_appr(x) for x in

range(41,46)],

 ignore_index=True)

>>> pres_41_45.groupby('President').head(3)

Before continuing, let's determine if there are any dates with multiple approval16.
ratings:

>>> pres_41_45['End Date'].value_counts().head(8)

1990-08-26 2

1990-03-11 2

1999-02-09 2

2013-10-10 2

1990-08-12 2

1992-11-22 2

1990-05-22 2

1991-09-30 1

Name: End Date, dtype: int64

Combining Pandas Objects

[360]

Only a few of the days have duplicate values. To help simplify our analysis, let's17.
keep only the first row where the duplicate date exists:

>>> pres_41_45 = pres_41_45.drop_duplicates(subset='End Date')

Let's get a few summary statistics on the data:18.

>>> pres_41_45.shape

(3679, 6)

>>> pres_41_45['President'].value_counts()

Barack Obama 2786

George W. Bush 270

Donald J. Trump 243

William J. Clinton 227

George Bush 153

Name: President, dtype: int64

>>> pres_41_45.groupby('President', sort=False) \

 .median().round(1)

Let's plot each President's approval rating on the same chart. To do this, we will19.
group by each President, iterate through each group, and individually plot the
approval rating for each date:

>>> from matplotlib import cm

>>> fig, ax = plt.subplots(figsize=(16,6))

>>> styles = ['-.', '-', ':', '-', ':']

>>> colors = [.9, .3, .7, .3, .9]

>>> groups = pres_41_45.groupby('President', sort=False)

>>> for style, color, (pres, df) in zip(styles, colors, groups):

 df.plot('End Date', 'Approving', ax=ax,

Combining Pandas Objects

[361]

 label=pres, style=style, color=cm.Greys(color),

 title='Presedential Approval Rating')

This chart places all the Presidents sequentially one after the other. We can20.
compare them on a simpler scale by plotting their approval rating against the
number of days in office. Let's create a new variable to represent the number of
days in office:

>>> days_func = lambda x: x - x.iloc[0]

>>> pres_41_45['Days in Office'] = pres_41_45.groupby('President')

\

 ['End Date'] \

 .transform(days_func)

>>> pres_41_45.groupby('President').head(3)

Combining Pandas Objects

[362]

We have successfully given each row a relative number of days since the start of21.
the presidency. It's interesting that the new column, Days in Office, has a
string representation of its value. Let's check its data type:

>>> pres_41_45.dtypes

...

Days in Office timedelta64[ns]

dtype: object

The Days in Office column is a timedelta64 object with nanosecond22.
precision. This is far more precision than is needed. Let's change the data type to
integer by getting just the days:

>>> pres_41_45['Days in Office'] = pres_41_45['Days in Office'] \

 .dt.days

>>> pres_41_45['Days in Office'].head()

0 0

1 32

2 35

3 43

4 46

Name: Days in Office, dtype: int64

Combining Pandas Objects

[363]

We could plot this data in a similar fashion to what we did in step 19, but there is23.
a completely different method that doesn't involve any looping. By default, when
calling the plot method on a DataFrame, pandas attempts to plot each column of
data as a line plot and uses the index as the x-axis. Knowing this, let's pivot our
data so that each President has his own column for approval rating:

>>> pres_pivot = pres_41_45.pivot(index='Days in Office',

 columns='President',

 values='Approving')

>>> pres_pivot.head()

Now that each President has his own column of approval ratings, we can plot24.
each column directly without grouping. To reduce the clutter in the plot, we will
only plot Barack Obama and Donald J. Trump:

>>> plot_kwargs = dict(figsize=(16,6), color=cm.gray([.3, .7]),

 style=['-', '--'], title='Approval Rating')

>>> pres_pivot.loc[:250, ['Donald J. Trump', 'Barack Obama']] \

 .ffill().plot(**plot_kwargs)

Combining Pandas Objects

[364]

How it works...
It is typical to call read_html multiple times before arriving at the table (or tables) that you
desire. There are two primary parameters at your disposal to specify a table, match and
attrs. The string provided to match is used to find an exact match for the actual text in the
table. This is text that will show up on the web page itself. The attrs parameter, on the
other hand, searches for HTML table attributes found directly after the start of the table tag,
<table. To see more of the table attributes, visit this page from W3 Schools (http://bit.
ly/2hzUzdD).

Once we find our table in step 8, we can still take advantage of some other parameters to
simplify things. HTML tables don't typically translate directly to nice DataFrames. There
are often missing column names, extra rows, and misaligned data. In this recipe, skiprows
is passed a list of row numbers to skip over when reading the file. They correspond to the
rows of missing values in the DataFrame output from step 8. The header parameter is also
used to specify the location of the column names. Notice that header is equal to zero,
which may seem wrong at first. Whenever the header parameter is used in conjunction with
skiprows, the rows are skipped first resulting in a new integer label for each row. The
correct column names are in row 4 but as we skipped rows 0 through 3, the new integer
label for it is 0.

https://www.w3schools.com/TagS/tag_table.asp
https://www.w3schools.com/TagS/tag_table.asp
https://www.w3schools.com/TagS/tag_table.asp
https://www.w3schools.com/TagS/tag_table.asp
https://www.w3schools.com/TagS/tag_table.asp
https://www.w3schools.com/TagS/tag_table.asp
https://www.w3schools.com/TagS/tag_table.asp
https://www.w3schools.com/TagS/tag_table.asp

Combining Pandas Objects

[365]

In step 11, the ffill method fills any missing values vertically, going down with the last
non-missing value. This method is just a shortcut for fillna(method='ffill').

Step 13 builds a function composed of all the previous steps to automatically get approval
ratings from any President, provided you have the order number. There are a few
differences in the function. Instead of applying the ffill method to the entire DataFrame,
we only apply it to the President column. In Trump's DataFrame, the other columns had
no missing data but this does not guarantee that all the scraped tables will have no missing
data in their other columns. The last line of the function sorts the dates in a more natural
way for data analysis from the oldest to newest. This changes the order of the index too, so
we discard it with reset_index to have it begin from zero again.

Step 16 shows a common pandas idiom for collecting multiple, similarly indexed
DataFrames into a list before combining them together with the concat function. After
concatenation into a single DataFrame, we should visually inspect it to ensure its accuracy.
One way to do this is to take a glance at the first few rows from each President's section by
grouping the data and then using the head method on each group.

The summary statistics in step 18 are interesting as each successive President has had lower
median approval than the last. Extrapolating the data would lead to naively predicting a
negative approval rating within the next several Presidents.

The plotting code in step 19 is fairly complex. You might be wondering why we need to
iterate through a groupby object, to begin with. In the DataFrame's current structure, it has
no ability to plot different groups based on values in a single column. However, step 23
shows you how to set up your DataFrame so that pandas can directly plot each President's
data without a loop like this.

To understand the plotting code in step 19, you must first be aware that a groupby object is
iterable and, when iterating through, yields a tuple containing the current group (here it's
just the name of the President) and the sub-DataFrame for just that group. This groupby
object is zipped together with values controlling the color and linestyle of the plot. We
import the colormap module, cm, from matplotlib which contains dozens of different
colormaps. Passing a float between 0 and 1 chooses a specific color from that colormap and
we use it in our plot method with the color parameter. It is also important to note that we
had to create the figure, fig, along with a plotting surface, ax, to ensure that each approval
line was placed on the same plot. At each iteration in the loop, we use the same plotting
surface with the identically named parameter, ax.

Combining Pandas Objects

[366]

To make a better comparison between Presidents, we create a new column equal to the
number of days in office. We subtract the first date from the rest of the dates per President
group. When two datetime64 columns are subtracted, the result is a timedelta64 object,
which represents some length of time, days in this case. If we leave the column with
nanosecond precision, the x-axis will similarly display too much precision by using the
special dt accessor to return the number of days.

A crucial step comes in step 23. We structure the data such that each President has a unique
column for their approval rating. Pandas makes a separate line for each column. Finally, in
step 24, we use the .loc indexer to simultaneously select the first 250 days (rows) along
with only the columns for just Trump and Obama. The ffill method is used in the rare
instances that one of the Presidents has a missing value for a particular day. In Python, it is
possible to pass dictionaries that contain the parameter names and their values to functions
by preceding them with ** in a process called dictionary unpacking.

There's more...
The plot from step 19 shows quite a lot of noise and the data might be easier to interpret if it
were smoothed. One common smoothing method is called the rolling average. Pandas
offers the rolling method for DataFrames and groupby objects. It works analogously to
the groupby method by returning an object waiting for an additional action to be
performed on it. When creating it, you must pass the size of the window as the first
argument, which can either be an integer or a date offset string.

In this example, we take a 90-day moving average with the date offset string 90D. The on
parameter specifies the column from which the rolling window is calculated:

>>> pres_rm = pres_41_45.groupby('President', sort=False) \

 .rolling('90D', on='End Date')['Approving'] \

 .mean()

>>> pres_rm.head()

President End Date

George Bush 1989-01-26 51.000000

 1989-02-27 55.500000

 1989-03-02 57.666667

 1989-03-10 58.750000

 1989-03-13 58.200000

Name: Approving, dtype: float64

Combining Pandas Objects

[367]

From here, we can restructure the data so that it looks similar to the output from step 23
with the unstack method, and then make our plot:

>>> styles = ['-.', '-', ':', '-', ':']

>>> colors = [.9, .3, .7, .3, .9]

>>> color = cm.Greys(colors)

>>> title='90 Day Approval Rating Rolling Average'

>>> plot_kwargs = dict(figsize=(16,6), style=styles,

 color = color, title=title)

>>> correct_col_order = pres_41_45.President.unique()

>>> pres_rm.unstack('President')[correct_col_order].plot(**plot_kwargs)

See also
Colormap references for matplotlib (http://bit.ly/2yJZOvt)
A list of all the date offsets and their aliases (http://bit.ly/2xO5Yg0)
Refer to chapter 11, Visualization with Matplotlib, Pandas, and Seaborn

https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

Combining Pandas Objects

[368]

Understanding the differences between
concat, join, and merge
The merge and join DataFrame (and not Series) methods and the concat function all
provide very similar functionality to combine multiple pandas objects together. As they are
so similar and they can replicate each other in certain situations, it can get very confusing
when and how to use them correctly. To help clarify their differences, take a look at the
following outline:

concat:
Pandas function
Combines two or more pandas objects vertically or horizontally
Aligns only on the index
Errors whenever a duplicate appears in the index
Defaults to outer join with option for inner

join:
DataFrame method
Combines two or more pandas objects horizontally
Aligns the calling DataFrame's column(s) or index with the other
objects' index (and not the columns)
Handles duplicate values on the joining columns/index by
performing a cartesian product
Defaults to left join with options for inner, outer, and right

merge:
DataFrame method
Combines exactly two DataFrames horizontally
Aligns the calling DataFrame's column(s)/index with the other
DataFrame's column(s)/index
Handles duplicate values on the joining columns/index by
performing a cartesian product
Defaults to inner join with options for left, outer, and right

Combining Pandas Objects

[369]

The first parameter to the join method is other which can either be a
single DataFrame/Series or a list of any number of DataFrames/Series.

Getting ready
In this recipe, we will do what is required to combine DataFrames. The first situation is
simpler with concat while the second is simpler with merge.

How to do it...
Let's read in stock data for 2016, 2017, and 2018 into a list of DataFrames using a1.
loop instead of three different calls to the read_csv function. Jupyter notebooks
currently only allow a single DataFrame to be displayed on one line. However,
there is a way to customize the HTML output with help from the IPython
library. The user-defined display_frames function accepts a list of DataFrames
and outputs them all in a single row:

>>> from IPython.display import display_html

>>> years = 2016, 2017, 2018

>>> stock_tables = [pd.read_csv('data/stocks_{}.csv'.format(year),

 index_col='Symbol')

 for year in years]

>>> def display_frames(frames, num_spaces=0):

 t_style = '<table style="display: inline;"'

 tables_html = [df.to_html().replace('<table', t_style)

 for df in frames]

 space = ' ' * num_spaces

 display_html(space.join(tables_html), raw=True)

>>> display_frames(stock_tables, 30)

>>> stocks_2016, stocks_2017, stocks_2018 = stock_tables

Combining Pandas Objects

[370]

The concat function is the only one able to combine DataFrames vertically. Let's2.
do this by passing it the list stock_tables:

>>> pd.concat(stock_tables, keys=[2016, 2017, 2018])

It can also combine DataFrames horizontally by changing the axis parameter to3.
columns:

>>> pd.concat(dict(zip(years,stock_tables)), axis='columns')

Combining Pandas Objects

[371]

Now that we have started combining DataFrames horizontally, we can use the4.
join and merge methods to replicate this functionality of concat. Here, we use
the join method to combine the stock_2016 and stock_2017 DataFrames. By
default, the DataFrames align on their index. If any of the columns have the same
names, then you must supply a value to the lsuffix or rsuffix parameters to
distinguish them in the result:

>>> stocks_2016.join(stocks_2017, lsuffix='_2016',

 rsuffix='_2017', how='outer')

Combining Pandas Objects

[372]

To exactly replicate the output of the concat function from step 3, we can pass a5.
list of DataFrames to the join method:

>>> other = [stocks_2017.add_suffix('_2017'),

 stocks_2018.add_suffix('_2018')]

>>> stocks_2016.add_suffix('_2016').join(other, how='outer')

Let's check whether they actually are exactly equal:6.

>>> stock_join = stocks_2016.add_suffix('_2016').join(other,

 how='outer')

>>> stock_concat = pd.concat(dict(zip(years,stock_tables)),

 axis='columns')

>>> level_1 = stock_concat.columns.get_level_values(1)

>>> level_0 = stock_concat.columns.get_level_values(0).astype(str)

>>> stock_concat.columns = level_1 + '_' + level_0

>>> stock_join.equals(stock_concat)

True

Now, let's turn to merge that, unlike concat and join, can combine exactly two7.
DataFrames together. By default, merge attempts to align the values in the
columns that have the same name for each of the DataFrames. However, you can
choose to have it align on the index by setting the boolean parameters
left_index and right_index to True. Let's merge the 2016 and 2017 stock
data together:

>>> stocks_2016.merge(stocks_2017, left_index=True,

 right_index=True)

Combining Pandas Objects

[373]

By default, merge uses an inner join and automatically supplies suffixes for8.
identically named columns. Let's change to an outer join and then perform
another outer join of the 2018 data to exactly replicate concat:

>>> step1 = stocks_2016.merge(stocks_2017, left_index=True,

 right_index=True, how='outer',

 suffixes=('_2016', '_2017'))

>>> stock_merge = step1.merge(stocks_2018.add_suffix('_2018'),

 left_index=True, right_index=True,

 how='outer')

>>> stock_concat.equals(stock_merge)

True

Now let's turn our comparison to datasets where we are interested in aligning9.
together the values of columns and not the index or column labels themselves.
The merge method is built exactly for this situation. Let's take a look at two new
small datasets, food_prices and food_transactions:

>>> names = ['prices', 'transactions']

>>> food_tables = [pd.read_csv('data/food_{}.csv'.format(name))

 for name in names]

>>> food_prices, food_transactions = food_tables

>>> display_frames(food_tables, 30)

Combining Pandas Objects

[374]

If we wanted to find the total amount of each transaction, we would need to join10.
these tables on the item and store columns:

>>> food_transactions.merge(food_prices, on=['item', 'store'])

Combining Pandas Objects

[375]

The price is now aligned correctly with its corresponding item and store, but11.
there is a problem. Customer 2 has a total of four steak items. As the steak item
appears twice in each table for store B, a Cartesian product takes place between
them, resulting in four rows. Also, notice that the item, coconut, is missing
because there was no corresponding price for it. Let's fix both of these issues:

>>> food_transactions.merge(food_prices.query('Date == 2017'),

 how='left')

We can replicate this with the join method but we must first put the joining12.
columns of the food_prices DataFrame into the index:

>>> food_prices_join = food_prices.query('Date == 2017') \

 .set_index(['item', 'store'])

>>> food_prices_join

Combining Pandas Objects

[376]

The join method only aligns with the index of the passed DataFrame but can use13.
the index or the columns of the calling DataFrame. To use columns for alignment
on the calling DataFrame, you will need to pass them to the on parameter:

>>> food_transactions.join(food_prices_join, on=['item', 'store'])

The output matches the result from step 11 exactly. To replicate this with the14.
concat method, you would need to put the item and store columns into the
index of both DataFrames. However, in this particular case, an error would be
produced as a duplicate index value occurs in at least one of the DataFrames
(with item steak and store B):

>>> pd.concat([food_transactions.set_index(['item', 'store']),

 food_prices.set_index(['item', 'store'])],

 axis='columns')

Exception: cannot handle a non-unique multi-index!

How it works...
It can get tedious to repeatedly write the read_csv function when importing many
DataFrames at the same time. One way to automate this process is to put all the file names
in a list and iterate through them with a for loop. This was done in step 1 with a list
comprehension.

Combining Pandas Objects

[377]

The rest of this step builds a function to display multiple DataFrames on the same line of
output in a Jupyter notebook. All DataFrames have a to_html method, which returns a raw
HTML string representation of the table. The CSS (cascading style sheet) of each table is
changed by altering the display attribute to inline so that elements get displayed
horizontally next to one another rather than vertically. To properly render the table in the
notebook, you must use the helper function read_html provided by the IPython library.

At the end of step 1, we unpack the list of DataFrames into their own appropriately named
variables so that each individual table may be easily and clearly referenced. The nice thing
about having a list of DataFrames is that, it is the exact requirement for the concat
function, as seen in step 2. Notice how step 2 uses the keys parameter to name each chunk
of data. This can be also be accomplished by passing a dictionary to concat, as done in step
3.

In step 4, we must change the type of join to outer to include all of the rows in the passed
DataFrame that do not have an index present in the calling DataFrame. In step 5, the passed
list of DataFrames cannot have any columns in common. Although there is an rsuffix
parameter, it only works when passing a single DataFrame and not a list of them. To work
around this limitation, we change the names of the columns beforehand with the
add_suffix method, and then call the join method.

In step 7, we use merge, which defaults to aligning on all column names that are the same
in both DataFrames. To change this default behavior, and align on the index of either one or
both, set the left_index or right_index parameters to True. Step 8 finishes the
replication with two calls to merge. As you can see, when you are aligning multiple
DataFrames on their index, concat is usually going to be a far better choice than merge.

In step 9, we switch gears to focus on a situation where merge has the advantage. The
merge method is the only one capable of aligning both the calling and passed DataFrame by
column values. Step 10 shows you how easy it is to merge two DataFrames. The on
parameter is not necessary but provided for clarity.

Unfortunately, it is very easy to duplicate or drop data when combining DataFrames, as
shown in step 10. It is vital to take some time to do some sanity checks after combining data.
In this instance, the food_prices dataset had a duplicate price for steak in store B so we
eliminated this row by querying for only the current year in step 11. We also change to a left
join to ensure that each transaction is kept regardless if a price is present or not.

Combining Pandas Objects

[378]

It is possible to use join in these instances but all the columns in the passed DataFrame must
be moved into the index first. Finally, concat is going to be a poor choice whenever you
intend to align data by values in their columns.

There's more...
It is possible to read all files from a particular directory into DataFrames without knowing
their names. Python provides a few ways to iterate through directories, with the glob
module being a popular choice. The gas prices directory contains five different CSV files,
each having weekly prices of a particular grade of gas beginning from 2007. Each file has
just two columns--the date for the week and the price. This is a perfect situation to iterate
through all the files, read them into DataFrames, and combine them all together with the
concat function. The glob module has the glob function, which takes a single parameter--
the location of the directory you would like to iterate through as a string. To get all the files
in the directory, use the string *. In this example, *.csv returns only files that end in .csv. The
result from the glob function is a list of string filenames, which can be directly passed to
the read_csv function:

>>> import glob

>>> df_list = []

>>> for filename in glob.glob('data/gas prices/*.csv'):

 df_list.append(pd.read_csv(filename, index_col='Week',

 parse_dates=['Week']))

>>> gas = pd.concat(df_list, axis='columns')

>>> gas.head()

Combining Pandas Objects

[379]

See also
IPython official documentation of the read_html function (http://bit.ly/
2fzFRzd)
Refer to the Exploding indexes recipe from Chapter 6, Index Alignment

Connecting to SQL databases
To become a serious data analyst, you will almost certainly have to learn some amount of
SQL. Much of the world's data is stored in databases that accept SQL statements. There are
many dozens of relational database management systems, with SQLite being one of the
most popular and easy to use.

Getting ready
We will be exploring the Chinook sample database provided by SQLite that contains 11
tables of data for a music store. One of the best things to do when first diving into a proper
relational database is to study a database diagram (sometimes called an entity relationship
diagram) to better understand how tables are related. The following diagram will be
immensely helpful when navigating through this recipe:

http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display_html
http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display_html
http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display_html
http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display_html
http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display_html
http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display_html
http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display_html
http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display_html

Combining Pandas Objects

[380]

In order for this recipe to work, you will need to have the sqlalchemy Python package
installed. If you installed the Anaconda distribution, then it should already be available to
you. SQLAlchemy is the preferred pandas tool when making connections to databases. In
this recipe, you will learn how to connect to a SQLite database. You will then ask two
different queries, and answer them by joining together tables with the merge method.

How to do it...
Before we can begin reading tables from the chinook database, we need to set up1.
our SQLAlchemy engine:

>>> from sqlalchemy import create_engine

>>> engine = create_engine('sqlite:///data/chinook.db')

We can now step back into the world of pandas and remain there for the rest of2.
the recipe. Let's complete a simple command and read in the tracks table with
the read_sql_table function. The name of the table is the first argument and
the SQLAlchemy engine is the second:

>>> tracks = pd.read_sql_table('tracks', engine)

>>> tracks.head()

For the rest of the recipe, we will answer a couple of different specific queries3.
with help from the database diagram. To begin, let's find the average length of
song per genre:

>>> genre_track = genres.merge(tracks[['GenreId', 'Milliseconds']],

 on='GenreId', how='left') \

 .drop('GenreId', axis='columns')

>>> genre_track.head()

Combining Pandas Objects

[381]

Now we can easily find the average length of each song per genre. To help ease4.
interpretation, we convert the Milliseconds column to the timedelta data
type:

>>> genre_time = genre_track.groupby('Name')['Milliseconds'].mean()

>>> pd.to_timedelta(genre_time, unit='ms').dt.floor('s')

 .sort_values()

Name

Rock And Roll 00:02:14

Opera 00:02:54

Hip Hop/Rap 00:02:58

...

Drama 00:42:55

Science Fiction 00:43:45

Sci Fi & Fantasy 00:48:31

Name: Milliseconds, dtype: timedelta64[ns]

Now let's find the total amount spent per customer. We will need the customers,5.
invoices, and invoice_items tables all connected to each other:

>>> cust = pd.read_sql_table('customers', engine,

 columns=['CustomerId','FirstName',

 'LastName'])

>>> invoice = pd.read_sql_table('invoices', engine,

columns=['InvoiceId','CustomerId'])

>>> ii = pd.read_sql_table('invoice_items', engine,

 columns=['InvoiceId', 'UnitPrice',

 'Quantity'])

>>> cust_inv = cust.merge(invoice, on='CustomerId') \

 .merge(ii, on='InvoiceId')

>>> cust_inv.head()

Combining Pandas Objects

[382]

We can now multiply the quantity by the unit price and then find the total6.
amount spent per customer:

>>> total = cust_inv['Quantity'] * cust_inv['UnitPrice']

>>> cols = ['CustomerId', 'FirstName', 'LastName']

>>> cust_inv.assign(Total = total).groupby(cols)['Total'] \

 .sum() \

 .sort_values(ascending=False) \

 .head()

CustomerId FirstName LastName

6 Helena Holý 49.62
26 Richard Cunningham 47.62

57 Luis Rojas 46.62

46 Hugh O'Reilly 45.62

45 Ladislav Kovács 45.62
Name: Total, dtype: float64

How it works...
The create_engine function requires a connection string in order to work properly. The
connection string for SQLite is very simple, and is just the location of the database, which is
located in the data directory. Other relational database management systems have more
complex connection strings. You will need to provide a username, password, hostname,
port, and optionally, a database. You will also need to supply the SQL dialect and the
driver. The general form for the connection string is as follows:
dialect+driver://username:password@host:port/database. The driver for your
particular relational database might need to be installed separately.

Combining Pandas Objects

[383]

Once we have created the engine, selecting entire tables into DataFrames is very easy with
the read_sql_table function in step 2. Each of the tables in the database has a primary
key uniquely identifying each row. It is identified graphically with a key symbol in the
diagram. In step 3, we link genres to tracks through GenreId. As we only care about the
track length, we trim the tracks DataFrame down to just the columns we need before
performing the merge. Once the tables have merged, we can answer the query with a basic
groupby operation.

We go one step further and convert the integer milliseconds into a Timedelta object that is
far easier to read. The key is passing in the correct unit of measurement as a string. Now
that we have a Timedelta Series, we can use the dt attribute to access the floor method,
which rounds the time down to the nearest second.

The query required to answer step 5 involves three tables. We can trim the tables down
significantly to only the columns we need by passing them to the columns parameter.
When using merge, the joining columns are not kept when they have the same name. In
step 6, we could have assigned a column for the price times quantity with the following:

cust_inv['Total'] = cust_inv['Quantity'] * cust_inv['UnitPrice']

There is nothing wrong with assigning columns in this manner. We chose to dynamically
create a new column with the assign method to allow a continuous chain of methods.

There's more...
If you are adept with SQL, you can write a SQL query as a string and pass it to the
read_sql_query function. For example, the following will reproduce the output from step
4:

>>> sql_string1 = '''

 select

 Name,

 time(avg(Milliseconds) / 1000, 'unixepoch') as avg_time

 from (

 select

 g.Name,

 t.Milliseconds

 from

 genres as g

 join

 tracks as t

 on

 g.genreid == t.genreid

)

Combining Pandas Objects

[384]

 group by

 Name

 order by

 avg_time

'''

>>> pd.read_sql_query(sql_string1, engine)

To reproduce the answer from step 6, use the following SQL query:

>>> sql_string2 = '''

 select

 c.customerid,

 c.FirstName,

 c.LastName,

 sum(ii.quantity * ii.unitprice) as Total

 from

 customers as c

 join

 invoices as i

 on c.customerid = i.customerid

 join

 invoice_items as ii

 on i.invoiceid = ii.invoiceid

 group by

 c.customerid, c.FirstName, c.LastName

 order by

 Total desc

'''

>>> pd.read_sql_query(sql_string2, engine)

Combining Pandas Objects

[385]

See also
All engine configurations for SQLAlchemy (http://bit.ly/2kb07vV)
Pandas official documentation on SQL Queries (http://bit.ly/2fFsOQ8

http://docs.sqlalchemy.org/en/latest/core/engines.html
http://docs.sqlalchemy.org/en/latest/core/engines.html
http://docs.sqlalchemy.org/en/latest/core/engines.html
http://docs.sqlalchemy.org/en/latest/core/engines.html
http://docs.sqlalchemy.org/en/latest/core/engines.html
http://docs.sqlalchemy.org/en/latest/core/engines.html
http://docs.sqlalchemy.org/en/latest/core/engines.html
http://docs.sqlalchemy.org/en/latest/core/engines.html
http://docs.sqlalchemy.org/en/latest/core/engines.html
http://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries
http://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries
http://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries
http://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries
http://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries
http://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries
http://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries
http://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries
http://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries

10
Time Series Analysis

In this chapter, we will cover the following topics:

Understanding the difference between Python and pandas date tools
Slicing time series intelligently
Using methods that only work with a DatetimeIndex
Counting the number of weekly crimes
Aggregating weekly crime and traffic accidents separately
Measuring crime by weekday and year
Grouping with anonymous functions with a DatetimeIndex
Grouping by a Timestamp and another column
Finding the last time crime was 20% lower with merge_asof

Introduction
The roots of pandas lay in analyzing financial time series data. The author, Wes McKinney,
was not satisfied with the available Python tools at that time, and decided to build pandas
to support his own needs at the hedge fund he was working at. Broadly speaking, time
series are simply points of data gathered over time. Most typically, the time is evenly
spaced between each data point. Pandas has excellent functionality with regards to
manipulating dates, aggregating over different time periods, sampling different periods of
time, and much more.

Time Series Analysis

[387]

Understanding the difference between
Python and pandas date tools
Before we get to pandas, it can help to be aware of and understand core Python's date and
time functionality. The datetime module provides three distinct data types, date, time,
and datetime. Formally, a date is a moment in time consisting of just the year, month, and
day. For instance, June 7, 2013 would be a date. A time consists of hours, minutes, seconds,
and microseconds (one-millionth of a second) and is unattached to any date. An example of
time would be 12 hours and 30 minutes. A datetime consists of both the elements of a date
and time together.

On the other hand, pandas has a single object to encapsulate date and time called a
Timestamp. It has nanosecond (one-billionth of a second) precision and is derived from
NumPy's datetime64 data type. Both Python and pandas each have a timedelta object
that is useful when doing date addition/subtraction.

Getting ready
In this recipe, we will first explore Python's datetime module and then turn to the
corresponding and superior date tools in pandas.

How to do it...
Let's begin by importing the datetime module into our namespace and creating1.
a date, time, and datetime object:

>>> import datetime

>>> date = datetime.date(year=2013, month=6, day=7)

>>> time = datetime.time(hour=12, minute=30,

 second=19, microsecond=463198)

>>> dt = datetime.datetime(year=2013, month=6, day=7,

 hour=12, minute=30, second=19,

 microsecond=463198)

>>> print("date is ", date)

>>> print("time is", time)

>>> print("datetime is", dt)

date is 2013-06-07

Time Series Analysis

[388]

time is 12:30:19.463198

datetime is 2013-06-07 12:30:19.463198

Let's construct and print out a timedelta object, the other major data type from2.
the datetime module:

>>> td = datetime.timedelta(weeks=2, days=5, hours=10,

 minutes=20, seconds=6.73,

 milliseconds=99, microseconds=8)

>>> print(td)

19 days, 10:20:06.829008

Add/subtract this timedelta to the date and datetime objects from step 1:3.

>>> print('new date is', date + td)

>>> print('new datetime is', dt + td)

new date is 2013-06-26

new datetime is 2013-06-26 22:50:26.292206

Attempting to add a timedelta to a time object isn't possible:4.

>>> time + td

TypeError: unsupported operand type(s) for +: 'datetime.time' and

'datetime.timedelta'

Let's turn to pandas and its Timestamp object, which is a moment in time with5.
nanosecond precision. The Timestamp constructor is very flexible, and handles a
wide variety of inputs:

>>> pd.Timestamp(year=2012, month=12, day=21, hour=5,

 minute=10, second=8, microsecond=99)

Timestamp('2012-12-21 05:10:08.000099')

>>> pd.Timestamp('2016/1/10')

Timestamp('2016-01-10 00:00:00')

>>> pd.Timestamp('2014-5/10')

Timestamp('2014-05-10 00:00:00')

>>> pd.Timestamp('Jan 3, 2019 20:45.56')

Timestamp('2019-01-03 20:45:33')

>>> pd.Timestamp('2016-01-05T05:34:43.123456789')

Timestamp('2016-01-05 05:34:43.123456789')

Time Series Analysis

[389]

It's also possible to pass in a single integer or float to the Timestamp constructor6.
which returns a date equivalent to the number of nanoseconds after the Unix
epoch, which is January 1, 1970:

>>> pd.Timestamp(500)

Timestamp('1970-01-01 00:00:00.000000500')

>>> pd.Timestamp(5000, unit='D')

Timestamp('1983-09-10 00:00:00')

Pandas provides the to_datetime function that works fairly similarly to the7.
Timestamp constructor, but comes with a few different parameters for special
situations. See the following examples:

>>> pd.to_datetime('2015-5-13')

Timestamp('2015-05-13 00:00:00')

>>> pd.to_datetime('2015-13-5', dayfirst=True)

Timestamp('2015-05-13 00:00:00')

>>> pd.to_datetime('Start Date: Sep 30, 2017 Start Time: 1:30 pm',

 format='Start Date: %b %d, %Y Start Time: %I:%M %p')

Timestamp('2017-09-30 13:30:00')

>>> pd.to_datetime(100, unit='D', origin='2013-1-1')

Timestamp('2013-04-11 00:00:00')

The to_datetime function comes equipped with even more functionality. It is8.
capable of converting entire lists or Series of strings or integers to Timestamps.
Since we are far more likely to interact with Series or DataFrames and not single
scalar values, you are far more likely to use to_datetime than Timestamp:

>>> s = pd.Series([10, 100, 1000, 10000])

>>> pd.to_datetime(s, unit='D')

0 1970-01-11

1 1970-04-11

2 1972-09-27

3 1997-05-19

dtype: datetime64[ns]

>>> s = pd.Series(['12-5-2015', '14-1-2013',

 '20/12/2017', '40/23/2017'])

>>> pd.to_datetime(s, dayfirst=True, errors='coerce')

0 2015-05-12

1 2013-01-14

2 2017-12-20

Time Series Analysis

[390]

3 NaT

dtype: datetime64[ns]

>>> pd.to_datetime(['Aug 3 1999 3:45:56', '10/31/2017'])

DatetimeIndex(['1999-08-03 03:45:56',

 '2017-10-31 00:00:00'], dtype='datetime64[ns]',

freq=None)

Analogously to the Timestamp constructor and the to_datetime function,9.
pandas has Timedelta and to_timedelta to represent an amount of time. Both
the Timedelta constructor and the to_timedelta function can create a single
Timedelta object. Like to_datetime, to_timedelta has quite a bit more
functionality and can convert entire lists or Series into Timedelta objects.

>>> pd.Timedelta('12 days 5 hours 3 minutes 123456789 nanoseconds')

Timedelta('12 days 05:03:00.123456')

>>> pd.Timedelta(days=5, minutes=7.34)

Timedelta('5 days 00:07:20.400000')

>>> pd.Timedelta(100, unit='W')

Timedelta('700 days 00:00:00')

>>> pd.to_timedelta('67:15:45.454')

Timedelta('2 days 19:15:45.454000')

>>> s = pd.Series([10, 100])

>>> pd.to_timedelta(s, unit='s')

0 00:00:10

1 00:01:40

dtype: timedelta64[ns]

>>> time_strings = ['2 days 24 minutes 89.67 seconds',

 '00:45:23.6']

>>> pd.to_timedelta(time_strings)

TimedeltaIndex(['2 days 00:25:29.670000',

 '0 days 00:45:23.600000'], dtype='timedelta64[ns]',

freq=None)

Timedeltas may be added or subtracted from Timestamps and from each other.10.
They may even be divided from each other to return a float:

>>> pd.Timedelta('12 days 5 hours 3 minutes') * 2

Timedelta('24 days 10:06:00')

>>> pd.Timestamp('1/1/2017') + \

 pd.Timedelta('12 days 5 hours 3 minutes') * 2

Time Series Analysis

[391]

Timestamp('2017-01-25 10:06:00')

>>> td1 = pd.to_timedelta([10, 100], unit='s')

>>> td2 = pd.to_timedelta(['3 hours', '4 hours'])

>>> td1 + td2

TimedeltaIndex(['03:00:10', '04:01:40'],

 dtype='timedelta64[ns]', freq=None)

>>> pd.Timedelta('12 days') / pd.Timedelta('3 days')

4.0

Both Timestamps and Timedeltas have a large numbera of features available as11.
attributes and methods. Let's sample a few of them:

>>> ts = pd.Timestamp('2016-10-1 4:23:23.9')

>>> ts.ceil('h')

Timestamp('2016-10-01 05:00:00'

>>> ts.year, ts.month, ts.day, ts.hour, ts.minute, ts.second

(2016, 10, 1, 4, 23, 23)

>>> ts.dayofweek, ts.dayofyear, ts.daysinmonth

(5, 275, 31)

>>> ts.to_pydatetime()

datetime.datetime(2016, 10, 1, 4, 23, 23, 900000)

>>> td = pd.Timedelta(125.8723, unit='h')

>>> td

Timedelta('5 days 05:52:20.280000')

>>> td.round('min')

Timedelta('5 days 05:52:00')

>>> td.components

Components(days=5, hours=5, minutes=52, seconds=20,

milliseconds=280, microseconds=0, nanoseconds=0)

>>> td.total_seconds()

453140.28

Time Series Analysis

[392]

How it works...
The datetime module is part of the Python standard library, and is very popular and
widely used. For this reason, it is a good idea to have some familiarity with it, as you will
likely cross paths with it. The datetime module is actually fairly simple with a total of only
six types of objects: date, time, datetime, timedelta along with two others on
timezones. The pandas Timestamp and Timedelta objects have all the functionality of
their datetime module counterparts and more. It will be possible to remain completely in
pandas when working with time series.

Step 1 shows how to create datetimes, dates, times, and timedeltas with the datetime
module. Only integers may be used as each component of the date or time, and are passed
as separate arguments. Compare this to step 5 where the pandas Timestamp constructor
can accept the same components as arguments, as well as a wide variety of date strings. In
addition to integer components and strings, step 6 shows how a single numeric scalar can
be used as a date. The units of this scalar are defaulted to nanoseconds (ns) but are changed
to days (D) in the second statement with the other options being hours (h), minutes (m),
seconds (s), milliseconds (ms), and microseconds (µs).

Step 2 details the construction of the datetime module's timedelta object with all of its
parameters. Again, compare this to the pandas Timedelta constructor shown in step 9,
which accepts these same parameters along with strings and scalar numerics.

In addition to the Timestamp and Timedelta constructors, which are only capable of
creating a single object, the to_datetime and to_timedelta functions can convert entire
sequences of integers or strings to the desired type. These functions also provide several
more parameters not available with the constructors. One of these parameters is errors,
which is defaulted to the string value raise but can also be set to ignore or coerce. Whenever a
string date is unable to be converted, the errors parameter determines what action to take.
When set to raise, an exception is raised and program execution stops. When set to ignore,
the original sequence gets returned as it was prior to entering the function. When set to
coerce, the NaT (not a time) object is used to represent the new value. The second statement
of step 8 converts all values to a Timestamp correctly, except for the last one, which is
forced to become NaT.

Another one of these parameters available only to to_datetime is format, which is
particularly useful whenever a string contains a particular date pattern that is not
automatically recognized by pandas. In the third statement of step 7, we have a datetime
enmeshed inside some other characters. We substitute the date and time pieces of the string
with their respective formatting directives.

Time Series Analysis

[393]

A date formatting directive appears as a single percentage sign, %,
followed by a single character. Each directive specifies some part of a date
or time. See the official Python documentation for a table of all the
directives (http://bit.ly/2kePoRe).

There's more...
The date formatting directive can actually make quite a large difference when converting a
large sequence of strings to Timestamps. Whenever pandas uses to_datetime to convert a
sequence of strings to Timestamps, it searches a large number of different string
combinations that represent dates. This is true even if all the strings have the same format.
With the format parameter, we can specify the exact date format, so that pandas doesn't
have to search for the correct one each time. Let's create a list of dates as strings and time
their conversion to Timestamps both with and without a formatting directive:

>>> date_string_list = ['Sep 30 1984'] * 10000

>>> %timeit pd.to_datetime(date_string_list, format='%b %d %Y')

35.6 ms ± 1.47 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

>>> %timeit pd.to_datetime(date_string_list)

1.31 s ± 63.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Providing the formatting directive resulted in a 40 times improvement in performance.

See also
Python official documentation of the datetime module (http://bit.ly/
2xIjd2b)
Pandas official documentation for Time Series (http://bit.ly/2xQcani)
Pandas official for Time Deltas (http://bit.ly/2yQTVMQ)

Slicing time series intelligently
DataFrame selection and slicing was thoroughly covered in Chapter 4, Selecting Subsets of
Data. When the DataFrame posses a DatetimeIndex, even more opportunities arise for
selection and slicing.

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/datetime.html
http://pandas.pydata.org/pandas-docs/stable/timeseries.html
http://pandas.pydata.org/pandas-docs/stable/timeseries.html
http://pandas.pydata.org/pandas-docs/stable/timeseries.html
http://pandas.pydata.org/pandas-docs/stable/timeseries.html
http://pandas.pydata.org/pandas-docs/stable/timeseries.html
http://pandas.pydata.org/pandas-docs/stable/timeseries.html
http://pandas.pydata.org/pandas-docs/stable/timeseries.html
http://pandas.pydata.org/pandas-docs/stable/timeseries.html
http://pandas.pydata.org/pandas-docs/stable/timeseries.html
http://pandas.pydata.org/pandas-docs/stable/timedeltas.html
http://pandas.pydata.org/pandas-docs/stable/timedeltas.html
http://pandas.pydata.org/pandas-docs/stable/timedeltas.html
http://pandas.pydata.org/pandas-docs/stable/timedeltas.html
http://pandas.pydata.org/pandas-docs/stable/timedeltas.html
http://pandas.pydata.org/pandas-docs/stable/timedeltas.html
http://pandas.pydata.org/pandas-docs/stable/timedeltas.html
http://pandas.pydata.org/pandas-docs/stable/timedeltas.html
http://pandas.pydata.org/pandas-docs/stable/timedeltas.html

Time Series Analysis

[394]

Getting ready
In this recipe, we will use partial date matching to select and slice a DataFrame with a
DatetimeIndex.

How to do it...
Read in the Denver crimes dataset from the hdf5 file crimes.h5, and output1.
the column data types and the first few rows. The hdf5 file format allows
efficient storage of large scientific data and is completely different from a CSV
text file.

>>> crime = pd.read_hdf('data/crime.h5', 'crime')

>>> crime.dtypes

OFFENSE_TYPE_ID category

OFFENSE_CATEGORY_ID category

REPORTED_DATE datetime64[ns]

GEO_LON float64

GEO_LAT float64

NEIGHBORHOOD_ID category

IS_CRIME int64

IS_TRAFFIC int64

dtype: object

Notice that there are three categorical columns and a Timestamp (denoted by2.
NumPy's datetime64 object). These data types were stored whenever the data
file was created, unlike a CSV file, which only stores raw text. Set the
REPORTED_DATE column as the index in order to make intelligent Timestamp
slicing possible:

>>> crime = crime.set_index('REPORTED_DATE')

>>> crime.head()

Time Series Analysis

[395]

As usual, it is possible to select all the rows equal to a single index by passing that3.
value to the .loc indexing operator:

>>> crime.loc['2016-05-12 16:45:00']

With a Timestamp in the index, it is possible to select all rows that partially4.
match an index value. For instance, if we wanted all the crimes from May 5, 2016,
we would simply select it as follows:

>>> crime.loc['2016-05-12']

Time Series Analysis

[396]

Not only can you select a single date inexactly, but you can do so for an entire5.
month, year, or even hour of the day:

>>> crime.loc['2016-05'].shape

(8012, 7)

>>> crime.loc['2016'].shape

(91076, 7)

>>> crime.loc['2016-05-12 03'].shape

(4, 7)

The selection strings may also contain the name of the month:6.

>>> crime.loc['Dec 2015'].sort_index()

Many other string patterns with month name included also work:7.

>>> crime.loc['2016 Sep, 15'].shape

(252, 7)

>>> crime.loc['21st October 2014 05'].shape

(4, 7)

In addition to selection, you may use the slice notation to select precise ranges of8.
data:

>>> crime.loc['2015-3-4':'2016-1-1'].sort_index()

Time Series Analysis

[397]

Notice that all crimes committed on the end date regardless of the time are9.
included in the returned result. This is true for any result using the label-based
.loc indexer. You can provide as much precision (or lack thereof) to any start or
end portion of the slice:

>>> crime.loc['2015-3-4 22':'2016-1-1 11:45:00'].sort_index()

How it works...
One of the many nice features of hdf5 files is their ability to preserve the data types of each
column, which substantially reduces the memory needed. In this case, three of these
columns are stored as a pandas category instead of as an object. Storing them as object will
lead to a four times increase in memory usage:

>>> mem_cat = crime.memory_usage().sum()

>>> mem_obj = crime.astype({'OFFENSE_TYPE_ID':'object',

 'OFFENSE_CATEGORY_ID':'object',

 'NEIGHBORHOOD_ID':'object'}) \

 .memory_usage(deep=True).sum()

>>> mb = 2 ** 20

>>> round(mem_cat / mb, 1), round(mem_obj / mb, 1)

(29.4, 122.7)

Time Series Analysis

[398]

In order to intelligently select and slice rows by date using the indexing operator, the index
must contain date values. In step 2, we move the REPORTED_DATE column into the index
and formally create a DatetimeIndex as the new index:

>>> crime.index[:2]

DatetimeIndex(['2014-06-29 02:01:00', '2014-06-29 01:54:00'],

dtype='datetime64[ns]', name='REPORTED_DATE', freq=None)

With a DatetimeIndex, a huge variety of strings may be used to select rows with the .loc
indexer. In fact, all strings that can be sent to the pandas Timestamp constructor will work
here. Surprisingly, it is actually not necessary to use the .loc indexer for any of the
selections or slices in this recipe. The indexing operator by itself will work in exactly the
same manner. For instance, the second statement of step 6 may be written as crime['21st
October 2014 05']. The indexing operator is normally reserved for columns but flexibly
allows for Timestamps to be used whenever there exists a DatetimeIndex.

Personally, I prefer using the .loc indexer when selecting rows and would always use it
over the indexing operator by itself. The .loc indexer is explicit and the first value passed
to it is always used to select rows.

Steps 8 and 9 show how slicing works in the same manner as selection from the previous
steps. Any date that partially matches either the start or end value of the slice is included in
the result.

There's more...
Our original crimes DataFrame was not sorted and slicing still worked as expected. Sorting
the index will lead to large gains in performance. Let's see the difference with slicing done
from step 8:

>>> %timeit crime.loc['2015-3-4':'2016-1-1']

39.6 ms ± 2.77 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

>>> crime_sort = crime.sort_index()

>>> %timeit crime_sort.loc['2015-3-4':'2016-1-1']

758 µs ± 42.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

The sorted DataFrame provides an impressive 50 times performance improvement over the
original.

Time Series Analysis

[399]

See also
Refer to Chapter 4, Selecting Subsets of Data

Using methods that only work with a
DatetimeIndex
There are a number of DataFrame/Series methods that only work with a DatetimeIndex. If
the index is of any other type, these methods will fail.

Getting ready
In this recipe, we will first use methods to select rows of data by their time component. We
will then learn about the powerful DateOffset objects and their aliases.

How to do it...
Read in the crime hdf5 dataset, set the index as REPORTED_DATE, and ensure that1.
we have a DatetimeIndex:

>>> crime = pd.read_hdf('data/crime.h5', 'crime') \

 .set_index('REPORTED_DATE')

>>> print(type(crime.index))

<class 'pandas.core.indexes.datetimes.DatetimeIndex'>

Use the between_time method to select all crimes that occurred between 2 a.m.2.
and 5 a.m., regardless of the date:

>>> crime.between_time('2:00', '5:00', include_end=False).head()

Time Series Analysis

[400]

Select all dates at a specific time with at_time:3.

>>> crime.at_time('5:47').head()

The first methods provide an elegant way of selecting the first n segments of4.
time, where n is an integer. These segments of time are formally represented by
DateOffset objects that can be in the pd.offsets module. The DataFrame must
be sorted on its index to guarantee that this method will work. Let's select the
first six months of crime data:

>>> crime_sort = crime.sort_index()

>>> crime_sort.first(pd.offsets.MonthBegin(6))

Time Series Analysis

[401]

This captured the data from January through June but also, surprisingly, selected5.
a single row in July. The reason for this is that pandas actually uses the time
component of the first element in the index, which, in this example, is 6 minutes.
Let's use MonthEnd, a slightly different offset:

>>> crime_sort.first(pd.offsets.MonthEnd(6))

Time Series Analysis

[402]

This captured nearly the same amount of data but if you look closely, only a6.
single row from June 30th was captured. Again, this is because the time
component of the first index was preserved. The exact search went to 2012-06-30
00:06:00. So, how do we get exactly six months of data? There are a couple of
ways. All DateOffsets have a normalize parameter that, when set to True, sets
all the time components to zero. The following should get us very close to what
we want:

>>> crime_sort.first(pd.offsets.MonthBegin(6, normalize=True))

This method has successfully captured all the data for the first six months of the7.
year. With normalize set to True, the search went to 2012-07-01 00:00:00, which
would actually include any crimes reported exactly on this date and time.
Actually, there is no possible way to use the first method to ensure that only data
from January to June is captured. The following very simple slice would yield the
exact result:

>>> crime_sort.loc[:'2012-06']

Time Series Analysis

[403]

There are a dozen DateOffset objects for very precisely moving forward or8.
backward to the next nearest offset. Instead of hunting down the DateOffset
objects in pd.offsets, you can use a string called an offset alias instead. For
instance, the string for MonthEnd is M and for MonthBegin is MS. To denote the
number of these offset aliases, simply place an integer in front of it. Use this table
to find all the aliases (http://bit.ly/2xO5Yg0). Let's see some examples of offset
aliases with the description of what is being selected in the comments:

>>> crime_sort.first('5D') # 5 days

>>> crime_sort.first('5B') # 5 business days

>>> crime_sort.first('7W') # 7 weeks, with weeks ending on Sunday

>>> crime_sort.first('3QS') # 3rd quarter start

>>> crime_sort.first('A') # one year end

How it works...
Once we ensure that our index is a DatetimeIndex, we can take advantage of all the
methods in this recipe. It is impossible to do selection or slicing based on just the time
component of a Timestamp with the .loc indexer. To select all dates by a range of time,
you must use the between_time method, or to select an exact time, use at_time. Make
sure that the passed string for start and end times consists of at least the hour and minute. It
is also possible to use time objects from the datetime module. For instance, the following
command would yield the same result as in step 2:

>>> import datetime

>>> crime.between_time(datetime.time(2,0), datetime.time(5,0),

 include_end=False)

In step 4, we begin using the simple first method, but with a complicated parameter
offset. It must be a DateOffset object or an offset alias as a string. To help understand
DateOffset objects, it's best to see what they do to a single Timestamp. For example, let's
take the first element of the index and add six months to it in two different ways:

>>> first_date = crime_sort.index[0]

>>> first_date

Timestamp('2012-01-02 00:06:00')

>>> first_date + pd.offsets.MonthBegin(6)

Timestamp('2012-07-01 00:06:00')

>>> first_date + pd.offsets.MonthEnd(6)

Timestamp('2012-06-30 00:06:00')

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

Time Series Analysis

[404]

Both the MonthBegin and MonthEnd offsets don't add or subtract an exact amount of time
but effectively round up to the next beginning or end of the month regardless of what day it
is. Internally, the first method uses the very first index element of the DataFrame and
adds the DateOffset passed to it. It then slices up until this new date. For instance, step 4 is
equivalent to the following:

>>> step4 = crime_sort.first(pd.offsets.MonthEnd(6))

>>> end_dt = crime_sort.index[0] + pd.offsets.MonthEnd(6)

>>> step4_internal = crime_sort[:end_dt]

>>> step4.equals(step4_internal)

True

Steps 5 through 7 follow from this preceding equivalence directly. In step 8, offset aliases
make for a much more compact method of referencing DateOffsets.

The counterpart to the first method is the last method, which selects
the last n time segments from a DataFrame given a DateOffset. The
groupby object has two methods with the exact same name but with a
completely different functionality. They return the first or last element of
each group and have nothing to do with having a DatetimeIndex.

There's more...
It is possible to build a custom DateOffset when those available don't exactly suit your
needs:

>>> dt = pd.Timestamp('2012-1-16 13:40')

>>> dt + pd.DateOffset(months=1)

Timestamp('2012-02-16 13:40:00')

Notice that this custom DateOffset increased the Timestamp by exactly one month. Let's
look at one more example using many more date and time components:

>>> do = pd.DateOffset(years=2, months=5, days=3,

 hours=8, seconds=10)

>>> pd.Timestamp('2012-1-22 03:22') + do

Timestamp('2014-06-25 11:22:10')

See also
Pandas official documentation of DateOffsets objects (http://bit.ly/2fOintG)

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#dateoffset-objects
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#dateoffset-objects
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#dateoffset-objects
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#dateoffset-objects
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#dateoffset-objects
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#dateoffset-objects
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#dateoffset-objects
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#dateoffset-objects
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#dateoffset-objects

Time Series Analysis

[405]

Counting the number of weekly crimes
The raw Denver crime dataset is huge with over 460,000 rows each marked with a reported
date. Counting the number of weekly crimes is one of many queries that can be answered
by grouping according to some period of time. The resample method provides an easy
interface to grouping by any possible span of time.

Getting ready
In this recipe, we will use both the resample and groupby methods to count the number of
weekly crimes.

How to do it...
Read in the crime hdf5 dataset, set the index as the REPORTED_DATE, and then1.
sort it to increase performance for the rest of the recipe:

>>> crime_sort = pd.read_hdf('data/crime.h5', 'crime') \

 .set_index('REPORTED_DATE') \

 .sort_index()

In order to count the number of crimes per week, we need to form a group for2.
each week. The resample method takes a DateOffset object or alias and returns
an object ready to perform an action on all groups. The object returned from the
resample method is very similar to the object produced after calling the
groupby method:

>>> crime_sort.resample('W')

DatetimeIndexResampler [freq=<Week: weekday=6>, axis=0,

closed=right, label=right, convention=start, base=0]

The offset alias, W, was used to inform pandas that we want to group by each3.
week. There isn't much that happened in the preceding step. Pandas has simply
validated our offset and returned an object that is ready to perform an action on
each week as a group. There are several methods that we can chain after calling
resample to return some data. Let's chain the size method to count the number
of weekly crimes:

>>> weekly_crimes = crime_sort.resample('W').size()

>>> weekly_crimes.head()

Time Series Analysis

[406]

REPORTED_DATE

2012-01-08 877

2012-01-15 1071

2012-01-22 991

2012-01-29 988

2012-02-05 888

Freq: W-SUN, dtype: int64

We now have the weekly crime count as a Series with the new index4.
incrementing one week at a time. There are a few things that happen by default
that are very important to understand. Sunday is chosen as the last day of the
week and is also the date used to label each element in the resulting Series. For
instance, the first index value January 8, 2012 is a Sunday. There were 877 crimes
committed during that week ending on the 8th. The week of Monday, January
9th to Sunday, January 15th recorded 1,071 crimes. Let's do some sanity checks
and ensure that our resampling is doing exactly this:

>>> len(crime_sort.loc[:'2012-1-8'])

877

>>> len(crime_sort.loc['2012-1-9':'2012-1-15'])

1071

Let's choose a different day to end the week besides Sunday with an anchored5.
offset:

>>> crime_sort.resample('W-THU').size().head()

REPORTED_DATE

2012-01-05 462

2012-01-12 1116

2012-01-19 924

2012-01-26 1061

2012-02-02 926

Freq: W-THU, dtype: int64

Nearly all the functionality of resample may be reproduced by the groupby6.
method. The only difference is that you must pass the offset in the pd.Grouper
object:

>>> weekly_crimes_gby = crime_sort.groupby(pd.Grouper(freq='W')) \

 .size()

>>> weekly_crimes_gby.head()

REPORTED_DATE

2012-01-08 877

2012-01-15 1071

2012-01-22 991

Time Series Analysis

[407]

2012-01-29 988

2012-02-05 888

Freq: W-SUN, dtype: int64

>>> weekly_crimes.equal(weekly_crimes_gby)

True

How it works...
The resample method, by default, works implicitly with a DatetimeIndex, which is why
we set it to REPORTED_DATE in step 1. In step 2, we created an intermediate object that helps
us understand how to form groups within the data. The first parameter to resample is the
rule determining how the Timestamps in the index will be grouped. In this instance, we
use the offset alias W to form groups one week in length ending on Sunday. The default
ending day is Sunday, but may be changed with an anchored offset by appending a dash
and the first three letters of a day of the week.

Once we have formed groups with resample, we must chain a method to take action on
each of them. In step 3, we use the size method to count the number of crimes per week.
You might be wondering what are all the possible attributes and methods available to use
after calling resample. The following examines the resample object and outputs them:

>>> r = crime_sort.resample('W')

>>> resample_methods = [attr for attr in dir(r) if attr[0].islower()]

>>> print(resample_methods)

['agg', 'aggregate', 'apply', 'asfreq', 'ax', 'backfill', 'bfill', 'count',

'ffill', 'fillna', 'first', 'get_group', 'groups', 'indices',

'interpolate', 'last', 'max', 'mean', 'median', 'min', 'ndim', 'ngroups',

'nunique', 'obj', 'ohlc', 'pad', 'plot', 'prod', 'sem', 'size', 'std',

'sum', 'transform', 'var']

Step 4 verifies the accuracy of the count from step 3 by manually slicing the data by week
and counting the number of rows. The resample method is actually not even necessary to
group by Timestamp as the functionality is available directly from the groupby method
itself. However, you must pass an instance of pd.Grouper to the groupby method using
the freq parameter for the offset, as done in step 6.

A very similar object called pd.TimeGrouper is capable of grouping by
time in the exact same fashion as pd.Grouper, but as of pandas version
0.21 it is deprecated and should not be used. Unfortunately, there are
many examples online that use pd.TimeGrouper but do not let them
tempt you.

Time Series Analysis

[408]

There's more...
It is possible to use resample even when the index does not contain a Timestamp. You can
use the on parameter to select the column with Timestamps that will be used to form
groups:

>>> crime = pd.read_hdf('data/crime.h5', 'crime')

>>> weekly_crimes2 = crime.resample('W', on='REPORTED_DATE').size()

>>> weekly_crimes2.equals(weekly_crimes)

True

Similarly, this is possible using groupby with pd.Grouper by selecting the Timestamp
column with the key parameter:

>>> weekly_crimes_gby2 = crime.groupby(pd.Grouper(key='REPORTED_DATE',

 freq='W')).size()

>>> weekly_crimes_gby2.equals(weekly_crimes_gby)

True

We can also easily produce a line plot of all the crimes in Denver (including traffic
accidents) by calling the plot method on our Series of weekly crimes:

>>> weekly_crimes.plot(figsize=(16, 4), title='All Denver Crimes')

See also
Pandas official documentation on Resampling (http://bit.ly/2yHXrbz)
Table of all Anchored Offsets (http://bit.ly/2xg20h2)

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#anchored-offsets
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#anchored-offsets
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#anchored-offsets
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#anchored-offsets
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#anchored-offsets
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#anchored-offsets
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#anchored-offsets
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#anchored-offsets
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#anchored-offsets

Time Series Analysis

[409]

Aggregating weekly crime and traffic
accidents separately
The Denver crime dataset has all crime and traffic accidents together in one table, and
separates them through the binary columns, IS_CRIME and IS_TRAFFIC. The resample
method allows you to group by a period of time and aggregate specific columns separately.

Getting ready
In this recipe, we will use the resample method to group by each quarter of the year and
then sum up the number of crimes and traffic accidents separately.

How to do it...
Read in the crime hdf5 dataset, set the index as REPORTED_DATE, and then sort it1.
to increase performance for the rest of the recipe:

>>> crime_sort = pd.read_hdf('data/crime.h5', 'crime') \

 .set_index('REPORTED_DATE') \

 .sort_index()

Use the resample method to group by each quarter of the year and then sum the2.
IS_CRIME and IS_TRAFFIC columns for each group:

>>> crime_quarterly = crime_sort.resample('Q')['IS_CRIME',

 'IS_TRAFFIC'].sum()

>>> crime_quarterly.head()

Time Series Analysis

[410]

Notice that the dates all appear as the last day of the quarter. This is because the3.
offset alias, Q, represents the end of the quarter. Let's use the offset alias QS to
represent the start of the quarter:

>>> crime_sort.resample('QS')['IS_CRIME',

'IS_TRAFFIC'].sum().head()

Let's verify these results by checking whether the second quarter of data is4.
correct:

>>> crime_sort.loc['2012-4-1':'2012-6-30',

 ['IS_CRIME', 'IS_TRAFFIC']].sum()

IS_CRIME 9641

IS_TRAFFIC 5255

dtype: int64

It is possible to replicate this operation using the groupby method:5.

>>> crime_quarterly2 = crime_sort.groupby(pd.Grouper(freq='Q')) \

 ['IS_CRIME', 'IS_TRAFFIC'].sum()

>>> crime_quarterly2.equals(crime_quarterly)

True

Let's make a plot to better analyze the trends in crime and traffic accidents over6.
time:

>>> plot_kwargs = dict(figsize=(16,4),

 color=['black', 'lightgrey'],

 title='Denver Crimes and Traffic Accidents')

>>> crime_quarterly.plot(**plot_kwargs)

Time Series Analysis

[411]

How it works...
After reading in and preparing our data in step 1, we begin grouping and aggregating in
step 2. Immediately after calling the resample method, we can continue either by chaining
a method or by selecting a group of columns to aggregate. We choose to select the
IS_CRIME and IS_TRAFFIC columns to aggregate. If we didn't select just these two, then all
of the numeric columns would have been summed with the following outcome:

>>> crime_sort.resample('Q').sum().head()

Time Series Analysis

[412]

By default, the offset alias Q technically uses December 31st as the last day of the year. The
span of dates that represent a single quarter are all calculated using this ending date. The
aggregated result uses the last day of the quarter as its label. Step 3 uses the offset alias QS,
which, by default, calculates quarters using January 1st as the first day of the year.

Most public businesses report quarterly earnings but they don't all have the same calendar
year beginning in January. For instance, if we wanted our quarters to begin March 1st, then
we could use QS-MAR to anchor our offset alias:

>>> crime_sort.resample('QS-MAR')['IS_CRIME', 'IS_TRAFFIC'] \

 .sum().head()

As in the preceding recipe, we verify our results via manual slicing and replicate the result
with the groupby method using pd.Grouper to set our group length. In step 6, we make a
single call to the DataFrame plot method. By default, a line is plotted for each column of
data. The plot clearly shows a sharp increase in reported crimes during the first three
quarters of the year. There also appears to be a seasonal component to both crime and
traffic, with numbers lower in the cooler months and higher in the warmer months.

There's more...
To get a different visual perspective, we can plot the percentage increase in crime and
traffic, instead of the raw count. Let's divide all the data by the first row and plot again:

>>> crime_begin = crime_quarterly.iloc[0]

>>> crime_begin

IS_CRIME 7882

IS_TRAFFIC 4726

Name: 2012-03-31 00:00:00, dtype: int64

>>> crime_quarterly.div(crime_begin) \

 .sub(1) \

 .round(2) \

 .plot(**plot_kwargs)

Time Series Analysis

[413]

Measuring crime by weekday and year
Measuring crimes by weekday and by year simultaneously necessitate the functionality to
pull this information directly from a Timestamp. Thankfully, this functionality is built into
any column consisting of Timestamps with the dt accessor.

Getting ready
In this recipe, we will use the dt accessor to provide us with both the weekday name and
year of each crime as a Series. We count all of the crimes by forming groups using both of
these Series. Finally, we adjust the data to consider partial years and population before
creating a heatmap of the total amount of crime.

How to do it...
Read in the Denver crime hdf5 dataset leaving the REPORTED_DATE as a column:1.

>>> crime = pd.read_hdf('data/crime.h5', 'crime')

>>> crime.head()

Time Series Analysis

[414]

All Timestamp columns have a special attribute called the dt accessor, which2.
gives access to a variety of extra attributes and methods specifically designed for
them. Let's find the weekday name of each REPORTED_DATE and then count these
values:

>>> wd_counts = crime['REPORTED_DATE'].dt.weekday_name \

 .value_counts()

>>> wd_counts

Monday 70024

Friday 69621

Wednesday 69538

Thursday 69287

Tuesday 68394

Saturday 58834

Sunday 55213

Name: REPORTED_DATE, dtype: int64

The weekends appear to have substantially less crime and traffic accidents. Let's3.
put this data in correct weekday order and make a horizontal bar plot:

>>> days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',

 'Friday', 'Saturday', 'Sunday']

>>> title = 'Denver Crimes and Traffic Accidents per Weekday'

>>> wd_counts.reindex(days).plot(kind='barh', title=title)

Time Series Analysis

[415]

We can do a very similar procedure to plot the count by year:4.

>>> title = 'Denver Crimes and Traffic Accidents per Year'

>>> crime['REPORTED_DATE'].dt.year.value_counts() \

 .sort_index() \

 .plot(kind='barh', title=title)

Time Series Analysis

[416]

We need to group by both weekday and year. One way of doing this is saving the5.
weekday and year Series to separate variables and then using these variables
with the groupby method:

>>> weekday = crime['REPORTED_DATE'].dt.weekday_name

>>> year = crime['REPORTED_DATE'].dt.year

>>> crime_wd_y = crime.groupby([year, weekday]).size()

>>> crime_wd_y.head(10)

REPORTED_DATE REPORTED_DATE

2012 Friday 8549

 Monday 8786

 Saturday 7442

 Sunday 7189

 Thursday 8440

 Tuesday 8191

 Wednesday 8440

2013 Friday 10380

 Monday 10627

 Saturday 8875

dtype: int64

We have aggregated the data correctly but the structure isn't exactly conducive to6.
make comparisons easily. Let's first rename those meaningless index level names
and then unstack the weekday level to get us a more readable table:

>>> crime_table = crime_wd_y.rename_axis(['Year', 'Weekday']) \

 .unstack('Weekday')

>>> crime_table

Time Series Analysis

[417]

We now have a nicer representation that is easier to read but noticeably, the 20177.
numbers are incomplete. To help make a fairer comparison, we can make a
simple linear extrapolation to estimate the final number of crimes. Let's first find
the last day that we have data for in 2017:

>>> criteria = crime['REPORTED_DATE'].dt.year == 2017

>>> crime.loc[criteria, 'REPORTED_DATE'].dt.dayofyear.max()

272

A naive estimate would be to assume a constant rate of crime throughout the year8.
and simply multiply all values in the 2017 table by 365/272. However, we can do
a little better and look at our historical data and calculate the average percentage
of crimes that have taken place through the first 272 days of the year:

>>> round(272 / 365, 3)

.745

>>> crime_pct = crime['REPORTED_DATE'].dt.dayofyear.le(272) \

 .groupby(year) \

 .mean() \

 .round(3)

>>> crime_pct

REPORTED_DATE

2012 0.748

2013 0.725

2014 0.751

2015 0.748

2016 0.752

2017 1.000

Name: REPORTED_DATE, dtype: float64

>>> crime_pct.loc[2012:2016].median()

.748

It turns out, perhaps very coincidentally, that the percentage of crimes that9.
happen during the first 272 days of the year is almost exactly proportional to the
percentage of days passed in the year. Let's now update the row for 2017 and
change the column order to match the weekday order:

>>> crime_table.loc[2017] = crime_table.loc[2017].div(.748) \

 .astype('int')

>>> crime_table = crime_table.reindex(columns=days)

>>> crime_table

Time Series Analysis

[418]

We could make a bar or line plot but this is also a good situation for a heatmap,10.
which is available with the seaborn library:

>>> import seaborn as sns

>>> sns.heatmap(crime_table, cmap='Greys')

Time Series Analysis

[419]

Crime seems to be rising every year but this data does not account for rising11.
population. Let's read in a table for the Denver population for each year that we
have data:

>>> denver_pop = pd.read_csv('data/denver_pop.csv',

 index_col='Year')

>>> denver_pop

Many crime metrics are reported as rates per 100,000 residents. Let's divide the12.
population by 100,000 and then divide the raw crime counts by this number to
get the crime rate per 100,000 residents:

>>> den_100k = denver_pop.div(100000).squeeze()

>>> crime_table2 = crime_table.div(den_100k, axis='index') \

 .astype('int')

>>> crime_table2

Time Series Analysis

[420]

Once again, we can make a heatmap that, even after adjusting for population13.
increase, looks nearly identical to the first one:

>>> sns.heatmap(crime_table2, cmap='Greys')

How it works...
All DataFrame columns containing Timestamps have access to numerous other attributes
and methods with the dt accessor. In fact, all of these methods and attributes available from
the dt accessor are also available directly from a single Timestamp object.

In step 2, we use the dt accessor, which only works on a Series, to extract the weekday
name and simply count the occurrences. Before making a plot in step 3, we manually
rearrange the order of the index with the reindex method, which, in its most basic use
case, accepts a list containing the desired order. This task could have also been
accomplished with the .loc indexer like this:

>>> wd_counts.loc[days]

Monday 70024

Tuesday 68394

Wednesday 69538

Thursday 69287

Friday 69621

Time Series Analysis

[421]

Saturday 58834

Sunday 55213

Name: REPORTED_DATE, dtype: int64

The reindex method is actually more performant and has many parameters for more
diverse situations than .loc. We then use the weekday_name attribute of the dt accessor to
retrieve the name of each day of the week, and count the occurrences before making a
horizontal bar plot.

In step 4, we do a very similar procedure, and retrieve the year using the dt accessor again,
and then count the occurrences with the value_counts method. In this instance, we use
sort_index over reindex, as years will naturally sort in the desired order.

The goal of the recipe is to group by both weekday and year together so this is exactly what
we do in step 5. The groupby method is very flexible and can form groups in multiple
ways. In this recipe, we pass it two Series, year and weekday, from which all unique
combinations form a group. We then chain the size method to it, which returns a single
value, the length of each group.

After step 5, our Series is long with only a single column of data, which makes it difficult to
make comparisons by year and weekday. To ease the readability, we pivot the weekday
level into horizontal column names with unstack.

In step 7, we use boolean indexing to select only the crimes in 2017 and then use dayofyear
from the dt accessor again to find the total elapsed days from the beginning of the year. The
maximum of this Series should tell us how many days we have data for in 2017.

Step 8 is quite complex. We first create a boolean Series by testing whether each crime was
committed on or before the 272nd day of the year with
crime['REPORTED_DATE'].dt.dayofyear.le(272). From here, we again use the
flexible groupby method to form groups by the previously calculated year Series and then
use the mean method to find the percentage of crimes committed on or before the 272nd day
for each year.

The .loc indexer selects the entire 2017 row of data in step 9. We adjust this row by
dividing by the median percentage found in step 8.

Lots of crime visualizations are done with heatmaps and one is done here in step 10 with
the help of the seaborn visualization library. The cmap parameter takes a string name of
the several dozen available matplotlib colormaps (http://bit.ly/2yJZOvt).

https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html

Time Series Analysis

[422]

In step 12, we create a crime rate per 100k residents by dividing by the population of that
year. This is actually a fairly tricky operation. Normally, when you divide one DataFrame
by another, they align on their columns and index. However, in this step, crime_table has
no columns in common denver_pop so no values will align if we try and divide them. To
work around this, we create the den_100k Series with the squeeze method. We still can't
simply divide these two objects as, by default, division between a DataFrame and a Series
aligns the columns of the DataFrame with the index of the Series, like this:

>>> crime_table / den_100k

We need the index of the DataFrame to align with the index of Series and to do this, we use
the div method, which allows us to change the direction of alignment with the axis
parameter. A heatmap of the adjusted crime rate is plotted in step 13.

There's more...
Let's finalize this analysis by writing a function to complete all the steps of this recipe at
once and add the ability to choose a specific type of crime:

>>> ADJ_2017 = .748

>>> def count_crime(df, offense_cat):

 df = df[df['OFFENSE_CATEGORY_ID'] == offense_cat]

 weekday = df['REPORTED_DATE'].dt.weekday_name

 year = df['REPORTED_DATE'].dt.year

 ct = df.groupby([year, weekday]).size().unstack()

 ct.loc[2017] = ct.loc[2017].div(ADJ_2017).astype('int')

 pop = pd.read_csv('data/denver_pop.csv', index_col='Year')

Time Series Analysis

[423]

 pop = pop.squeeze().div(100000)

 ct = ct.div(pop, axis=0).astype('int')

 ct = ct.reindex(columns=days)

 sns.heatmap(ct, cmap='Greys')

 return ct

>>> count_crime(crime, 'auto-theft')

Time Series Analysis

[424]

See also
Pandas official documentation of the reindex method (http://bit.ly/2y40eyE)
The seaborn official documentation of the heatmap function (http://bit.ly/
2ytbMNe)

Grouping with anonymous functions with a
DatetimeIndex
Using DataFrames with a DatetimeIndex opens the door to many new and different
operations as seen with several recipes in this chapter.

Getting ready
In this recipe, we will show the versatility of using the groupby method for DataFrames
that have a DatetimeIndex.

How to do it...
Read in the Denver crime hdf5 file, place the REPORTED_DATE column in the1.
index, and sort it:

>>> crime_sort = pd.read_hdf('data/crime.h5', 'crime') \

 .set_index('REPORTED_DATE') \

 .sort_index()

The DatetimeIndex itself has many of the same attributes and methods as a2.
pandas Timestamp. Let's take a look at some that they have in common:

>>> common_attrs = set(dir(crime_sort.index)) & \

 set(dir(pd.Timestamp))

>>> print([attr for attr in common_attrs if attr[0] != '_'])

['to_pydatetime', 'normalize', 'day', 'dayofyear', 'freq', 'ceil',

'microsecond', 'tzinfo', 'weekday_name', 'min', 'quarter', 'month',

'tz_convert', 'tz_localize', 'is_month_start', 'nanosecond', 'tz',

'to_datetime', 'dayofweek', 'year', 'date', 'resolution',

'is_quarter_end',

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reindex.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reindex.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reindex.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reindex.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reindex.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reindex.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reindex.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reindex.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reindex.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html

Time Series Analysis

[425]

'weekofyear', 'is_quarter_start', 'max', 'is_year_end', 'week',

'round',

'strftime', 'offset', 'second', 'is_leap_year', 'is_year_start',

'is_month_end', 'to_period', 'minute', 'weekday', 'hour',

'freqstr',

'floor', 'time', 'to_julian_date', 'days_in_month', 'daysinmonth']

We can then use the index to find weekday names, similarly to what was done in3.
step 2 of the preceding recipe:

>>> crime_sort.index.weekday_name.value_counts()

Monday 70024

Friday 69621

Wednesday 69538

Thursday 69287

Tuesday 68394

Saturday 58834

Sunday 55213

Name: REPORTED_DATE, dtype: int64

Somewhat surprisingly, the groupby method has the ability to accept a function4.
as an argument. This function will be implicitly passed the index and its return
value is used to form groups. Let's see this in action by grouping with a function
that turns the index into a weekday name and then counts the number of crimes
and traffic accidents separately:

>>> crime_sort.groupby(lambda x: x.weekday_name) \

 ['IS_CRIME', 'IS_TRAFFIC'].sum()

Time Series Analysis

[426]

You can use a list of functions to group by both the hour of day and year, and5.
then reshape the table to make it more readable:

>>> funcs = [lambda x: x.round('2h').hour, lambda x: x.year]

>>> cr_group = crime_sort.groupby(funcs) \

 ['IS_CRIME', 'IS_TRAFFIC'].sum()

>>> cr_final = cr_group.unstack()

>>> cr_final.style.highlight_max(color='lightgrey')

How it works...
In step 1, we read in our data and place a column of Timestamps into the index to create a
DatetimeIndex. In step 2, we see that a DatetimeIndex has lots of the same functionality that
a single Timestamp object has. In step 3, we directly use these extra features of the
DatetimeIndex to extract the weekday name.

Time Series Analysis

[427]

In step 4, we take advantage of the special ability of the groupby method to accept a
function that is passed the DatetimeIndex. The x in the anonymous function is literally the
DatetimeIndex and we use it to retrieve the weekday name. It is possible to pass groupby a
list of any number of custom functions, as done in step 5. Here, the first function uses the
round DatetimeIndex method to round each value to the nearest second hour. The second
function retrieves the year. After the grouping and aggregating, we unstack the years as
columns. We then highlight the maximum value of each column. Crime is reported most
often between 3 and 5 p.m. Most traffic accidents occur between 5 p.m. and 7 p.m.

There's more...
The final result of this recipe is a DataFrame with MultiIndex columns. Using this
DataFrame, it is possible to select just the crime or traffic accidents separately. The xs
method allows you to select a single value from any index level. Let's see an example where
we select only the section of data dealing with traffic:

>>> cr_final.xs('IS_TRAFFIC', axis='columns', level=0).head()

This is referred to as taking a cross section in pandas. We must use the axis and level
parameters to specifically denote where our value is located. Let's use xs again to select
only data from 2016, which is in a different level:

>>> cr_final.xs(2016, axis='columns', level=1).head()

Time Series Analysis

[428]

See also
Pandas official documentation of the cross section method xs (http://bit.ly/
2xkLzLv)

Grouping by a Timestamp and another
column
The resample method on its own, is unable to group by anything other than periods of
time. The groupby method, however, has the ability to group by both periods of time and
other columns.

Getting ready
In this recipe, we will show two very similar but different approaches to group by
Timestamps and another column.

How to do it...
Read in the employee dataset, and create a DatetimeIndex with the HIRE_DATE1.
column:

>>> employee = pd.read_csv('data/employee.csv',

 parse_dates=['JOB_DATE', 'HIRE_DATE'],

 index_col='HIRE_DATE')

>>> employee.head()

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.xs.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.xs.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.xs.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.xs.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.xs.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.xs.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.xs.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.xs.html

Time Series Analysis

[429]

Let's first do a simple grouping by just gender, and find the average salary for2.
each:

>>> employee.groupby('GENDER')['BASE_SALARY'].mean().round(-2)

GENDER

Female 52200.0

Male 57400.0

Name: BASE_SALARY, dtype: float64

Let's find the average salary based on hire date, and group everyone into 10-year3.
buckets:

>>> employee.resample('10AS')['BASE_SALARY'].mean().round(-2)

HIRE_DATE

1958-01-01 81200.0

1968-01-01 106500.0

1978-01-01 69600.0

1988-01-01 62300.0

1998-01-01 58200.0

2008-01-01 47200.0

Freq: 10AS-JAN, Name: BASE_SALARY, dtype: float64

Time Series Analysis

[430]

If we wanted to group by both gender and a five-year time span, we can call4.
resample directly after calling groupby:

>>> employee.groupby('GENDER').resample('10AS')['BASE_SALARY'] \

 .mean().round(-2)

GENDER HIRE_DATE

Female 1975-01-01 51600.0

 1985-01-01 57600.0

 1995-01-01 55500.0

 2005-01-01 51700.0

 2015-01-01 38600.0

Male 1958-01-01 81200.0

 1968-01-01 106500.0

 1978-01-01 72300.0

 1988-01-01 64600.0

 1998-01-01 59700.0

 2008-01-01 47200.0

Name: BASE_SALARY, dtype: float64

Now, this does what we set out to do, but we run into a slight issue whenever we5.
want to compare female to male salaries. Let's unstack the gender level and see
what happens:

>>> sal_avg.unstack('GENDER')

Time Series Analysis

[431]

The 10-year periods for males and females do not begin on the same date. This6.
happened because the data was first grouped by gender and then, within each
gender, more groups were formed based on hire dates. Let's verify that the first
hired male was in 1958 and the first hired female was in 1975:

>>> employee[employee['GENDER'] == 'Male'].index.min()

Timestamp('1958-12-29 00:00:00')

>>> employee[employee['GENDER'] == 'Female'].index.min()

Timestamp('1975-06-09 00:00:00')

To resolve this issue, we must group the date together with the gender, and this7.
is only possible with the groupby method:

>>> sal_avg2 = employee.groupby(['GENDER',

 pd.Grouper(freq='10AS')]) \

 ['BASE_SALARY'].mean().round(-2)

>>> sal_avg2

GENDER HIRE_DATE

Female 1968-01-01 NaN

 1978-01-01 57100.0

 1988-01-01 57100.0

 1998-01-01 54700.0

 2008-01-01 47300.0

Male 1958-01-01 81200.0

 1968-01-01 106500.0

 1978-01-01 72300.0

 1988-01-01 64600.0

 1998-01-01 59700.0

 2008-01-01 47200.0

Name: BASE_SALARY, dtype: float64

Now we can unstack the gender and get our rows aligned perfectly:8.

>>> sal_final = sal_avg2.unstack('GENDER')

>>> sal_final

Time Series Analysis

[432]

How it works...
The read_csv function in step 1 allows to both convert columns into Timestamps and put
them in the index at the same time creating a DatetimeIndex. Steps 2 does a simple
groupby operation with a single grouping column, gender. Step 3 uses the resample
method with the offset alias 10AS to form groups in 10-year increments of time. The A is the
alias for year and the S informs us that the beginning of the period is used as the label. For
instance, the data for the label 1988-01-01 spans that date until December 31, 1997.

Interestingly, the object returned from a call to the groupby method has its own resample
method, but the reverse is not true:

>>> 'resample' in dir(employee.groupby('GENDER'))

True

>>> 'groupby' in dir(employee.resample('10AS'))

False

In step 4, for each gender, male and female, completely different starting dates for the 10-
year periods are calculated based on the earliest hired employee. Step 6 verifies that the
year of the earliest hired employee for each gender matches the output from step 4. Step 5
shows how this causes misalignment when we try to compare salaries of females to males.
They don't have the same 10-year periods.

Time Series Analysis

[433]

To alleviate this issue, we must group both the gender and Timestamp together. The
resample method is only capable of grouping by a single column of Timestamps. We can
only complete this operation with the groupby method. With pd.Grouper, we can
replicate the functionality of resample. We simply pass the offset alias to the freq
parameter and then place the object in a list with all the other columns that we wish to
group, as done in step 7. As both males and females now have the same starting dates for
the 10-year period, the reshaped data in step 8 will align for each gender making
comparisons much easier. It appears that male salaries tend to be higher given a longer
length of employment, though both genders have the same average salary with under 10
years of employment.

There's more...
From an outsider's perspective, it would not be obvious that the rows from the output in
step 8 represented 10-year intervals. One way to improve the index labels would be to show
the beginning and end of each time interval. We can achieve this by concatenating the
current index year with 9 added to itself:

>>> years = sal_final.index.year

>>> years_right = years + 9

>>> sal_final.index = years.astype(str) + '-' + years_right.astype(str)

>>> sal_final

Time Series Analysis

[434]

There is actually a completely different way to do this recipe. We can use the cut function
to create equal-width intervals based on the year that each employee was hired and form
groups from it:

>>> cuts = pd.cut(employee.index.year, bins=5, precision=0)

>>> cuts.categories.values

array([Interval(1958.0, 1970.0, closed='right'),

 Interval(1970.0, 1981.0, closed='right'),

 Interval(1981.0, 1993.0, closed='right'),

 Interval(1993.0, 2004.0, closed='right'),

 Interval(2004.0, 2016.0, closed='right')], dtype=object)

>>> employee.groupby([cuts, 'GENDER'])['BASE_SALARY'] \

 .mean().unstack('GENDER').round(-2)

Finding the last time crime was 20% lower
with merge_asof
There are frequently times where we would like to know when the last time something
happened. For example, we might be interested in the last time unemployment was below
5% or the last time the stock market went up five days in a row or the last time you had
eight hours of sleep. The merge_asof function provides answers to these types of
questions.

Getting ready
In this recipe, we will find the current month's total number of crimes for each offense
category and then find the last time there were 20% fewer incidences.

Time Series Analysis

[435]

How to do it...
Read in the Denver crime dataset, place the REPORTED_DATE in the index, and1.
sort it:

>>> crime_sort = pd.read_hdf('data/crime.h5', 'crime') \

 .set_index('REPORTED_DATE') \

 .sort_index()

Find the last full month of data:2.

>>> crime_sort.index.max()

Timestamp('2017-09-29 06:16:00')

As we don't quite have all of September's data, let's drop it from our dataset:3.

>>> crime_sort = crime_sort[:'2017-8']

>>> crime_sort.index.max()

Timestamp('2017-08-31 23:52:00')

Let's count the number of crimes and traffic accidents for every month:4.

>>> all_data = crime_sort.groupby([pd.Grouper(freq='M'),

 'OFFENSE_CATEGORY_ID']).size()

>>> all_data.head()

REPORTED_DATE OFFENSE_CATEGORY_ID

2012-01-31 aggravated-assault 113

 all-other-crimes 124

 arson 5

 auto-theft 275

 burglary 343

dtype: int64

Although the merge_asof function can work with the index, it will be easier to5.
just reset it:

>>> all_data = all_data.sort_values().reset_index(name='Total')

>>> all_data.head()

Time Series Analysis

[436]

Let's get the current month's crime count and make a new column to represent6.
the goal:

>>> goal = all_data[all_data['REPORTED_DATE'] == '2017-8-31'] \

 .reset_index(drop=True)

>>> goal['Total_Goal'] = goal['Total'].mul(.8).astype(int)

>>> goal.head()

Now use the merge_asof function to find the last time a monthly crime total was7.
less than the column Total_Goal for each offense category:

>>> pd.merge_asof(goal, all_data, left_on='Total_Goal',

 right_on='Total', by='OFFENSE_CATEGORY_ID',

 suffixes=('_Current', '_Last'))

Time Series Analysis

[437]

How it works...
After reading in our data, we decide not to include the 2017 September data, as it is not
quite a complete month. We use a partial date string to slice all the way up to and including
any crimes in August of 2017. In step 4, we tally all the crimes for each offense category per
month, and in step 5, we sort by this total, which is required for merge_asof.

In step 6, we select the most recent data into a separate DataFrame. We will use this month
of August as our baseline and create a column, Total_Goal, that is 20% less than the
current. In step 7, we use merge_asof to find the last time a monthly crime count was less
than the Total_Goal column.

Time Series Analysis

[438]

There's more...
In addition to the Timestamp and Timedelta data types, pandas offers the Period type to
represent an exact time period. For example, 2012-05 would represent the entire month of
May, 2012. You can manually construct a Period in the following manner:

>>> pd.Period(year=2012, month=5, day=17, hour=14, minute=20, freq='T')

Period('2012-05-17 14:20', 'T')

This object represents the entire minute of May 17, 2012 at 2:20 p.m. It is possible to use
these Periods in step 4 instead of grouping by date with pd.Grouper. DataFrames with a
DatetimeIndex have the to_period method to convert Timestamps to Periods. It accepts an
offset alias to determine the exact length of the time period.

>>> ad_period = crime_sort.groupby([lambda x: x.to_period('M'),

 'OFFENSE_CATEGORY_ID']).size()

>>> ad_period = ad_period.sort_values() \

 .reset_index(name='Total') \

 .rename(columns={'level_0':'REPORTED_DATE'})

>>> ad_period.head()

Let's verify that the last two columns from this DataFrame are equivalent to all_data from
step 5:

>>> cols = ['OFFENSE_CATEGORY_ID', 'Total']

>>> all_data[cols].equals(ad_period[cols])

True

Steps 6 and 7 can now be replicated in almost the exact same manner with the following
code:

>>> aug_2018 = pd.Period('2017-8', freq='M')

>>> goal_period = ad_period[ad_period['REPORTED_DATE'] == aug_2018] \

 .reset_index(drop=True)

>>> goal_period['Total_Goal'] = goal_period['Total'].mul(.8).astype(int)

>>> pd.merge_asof(goal_period, ad_period, left_on='Total_Goal',

Time Series Analysis

[439]

 right_on='Total', by='OFFENSE_CATEGORY_ID',

 suffixes=('_Current', '_Last')).head()

11
Visualization with Matplotlib,

Pandas, and Seaborn
In this chapter, we will cover the following topics:

Getting started with matplotlib
Visualizing data with matplotlib
Plotting basics with pandas
Visualizing the flights dataset
Stacking area charts to discover emerging trends
Understanding the differences between seaborn and pandas
Doing multivariate analysis with seaborn grids
Uncovering Simpson's paradox in the diamonds dataset with seaborn

Introduction
Visualization is a critical component in exploratory data analysis, as well as presentations
and applications. During exploratory data analysis, you are usually working alone or in
small groups and need to create plots quickly to help you better understand your data. It
can help you identify outliers and missing data, or it can spark other questions of interest
that will lead to further analysis and more visualizations. This type of visualization is
usually not done with the end user in mind. It is strictly to help you better your current
understanding. The plots don't have to be perfect.

Visualization with Matplotlib, Pandas, and Seaborn

[441]

When preparing visualizations for a report or application, a different approach must be
used. Attention to small details must be paid. In addition, you usually will have to narrow
down all possible visualizations to only the select few that best represent your data. Good
data visualizations have the viewer enjoying the experience of extracting information.
Almost like movies that make viewers get lost in, good visualizations will have lots of
information that really sparks interest.

The primary data visualization library in Python is matplotlib, a project begun in the early
2000s, that was built to mimic the plotting capabilities from Matlab. Matplotlib is
enormously capable of plotting most things you can imagine and it gives its users
tremendous power to control every aspect of the plotting surface. That said, it isn't quite the
friendliest library for beginners to grasp. Thankfully, pandas makes visualizing data very
easy for us and usually plots what we want with a single call to the plot method. Pandas
actually does no plotting on its own. It internally calls matplotlib functions to create the
plots. Pandas also adds its own style that, in my opinion, is a bit nicer than the defaults
from matplotlib.

Seaborn is also a visualization library that internally calls matplotlib functions and does not
do any actual plotting itself. Seaborn makes beautiful plots very easily and allows for the
creation of many new types of plots that are not available directly from matplotlib or
pandas. Seaborn works with tidy (long) data, while pandas works best with aggregated
(wide) data. Seaborn also accepts pandas DataFrame objects in its plotting functions.

Although it is possible to create plots without ever directly running any matplotlib code,
from time to time it will be necessary to use it to tweak finer plot details manually. For this
reason, the first two recipes will cover some basics of matplotlib that will come in handy if
you need to use it directly. Other than the first two recipes, all plotting examples will use
pandas or seaborn.

Visualization in Python does not have to rely on matplotlib necessarily. Bokeh is quickly
becoming a very popular interactive visualization library targeted for the web. It is
completely independent of matplotlib, and it’s capable of producing entire applications.

Visualization with Matplotlib, Pandas, and Seaborn

[442]

Getting started with matplotlib
For many data scientists, the vast majority of their plotting commands will come directly
from pandas or seaborn, which both rely completely on matplotlib to do the actual plotting.
However, neither pandas nor seaborn offers a complete replacement for matplotlib, and
occasionally you will need to use it directly. For this reason, this recipe will offer a short
introduction to the most crucial aspects of matplotlib.

Getting ready
Let's begin our introduction with a look at the anatomy of a matplotlib plot in the following
figure:

Matplotlib uses a hierarchy of objects to display all of its plotting items in the output. This
hierarchy is key to understanding everything about matplotlib. The Figure and Axes objects
are the two main components of the hierarchy. The Figure object is at the top of the
hierarchy. It is the container for everything that will be plotted. Contained within the Figure
is one or more Axes object(s). The Axes is the primary object that you will interact with
when using matplotlib and can be more commonly thought of as the actual plotting surface.
The Axes contains the x/y axis, points, lines, markers, labels, legends, and any other useful
item that is plotted.

Visualization with Matplotlib, Pandas, and Seaborn

[443]

In early 2017, matplotlib underwent a major change when it released
version 2.0. Much of the default plotting parameters were changed. The
anatomy figure is actually from the documentation of version 1 but does a
better job at distinguishing between the Figure and the Axes than the
updated anatomy figure from version 2 (http:/ /bit. ly/2gmNV7h).

A very clear distinction needs to be made between an Axes object and an axis. They are
completely separate objects. An Axes object, using matplotlib terminology, is not the plural
of axis but instead, as mentioned earlier, the object that creates and controls most of the
useful plotting elements. An axis simply refers to the x or y (or even z) axis of a plot.

It is unfortunate that matplotlib chose to use axes, the plural of the word
axis, to refer to a completely different object, but it is central to the library
and unlikely to be changed at this point.

All of these useful plotting elements created by an Axes object are called artists. Even the
Figure and the Axes objects themselves are artists. This distinction for artists won't be
critical to this recipe but will be useful when doing more advanced matplotlib plotting and
especially when reading through the documentation.

Object-oriented guide to matplotlib
Matplotlib provides two distinct interfaces for users to develop plots with. The stateful
interface makes all of its calls directly with the pyplot module. This interface is called
stateful because matplotlib implicitly keeps track of the current state of the plotting
environment. Whenever a plot is created in the stateful interface, matplotlib finds the
current Figure or current Axes and makes changes to it. This approach is fine to plot a few
things quickly but can become unwieldy when dealing with multiple Figures and Axes.

Matplotlib also offers a stateless, or object-oriented, interface in which you explicitly use
variables that reference specific plotting objects. Each variable can then be used to change
some property of the plot. The object-oriented approach is explicit, and you are always
aware of exactly what object is being modified.

Unfortunately, having both options has lead to lots of confusion, and matplotlib has a
reputation for being difficult to learn. The documentation has examples using both
approaches. Tutorials, blog posts, and Stack Overflow posts abound on the web,
perpetuating the confusion. This recipe focuses solely on the object-oriented approach, as it
is much more Pythonic and much more similar to how we interact with pandas.

http://bit.ly/2gmNV7h
http://bit.ly/2gmNV7h
http://bit.ly/2gmNV7h
http://bit.ly/2gmNV7h
http://bit.ly/2gmNV7h
http://bit.ly/2gmNV7h
http://bit.ly/2gmNV7h
http://bit.ly/2gmNV7h
http://bit.ly/2gmNV7h

Visualization with Matplotlib, Pandas, and Seaborn

[444]

If you are new to matplotlib, you might not know how to recognize the difference between
each approach. With the stateful interface, all commands will be given directly from
pyplot, which is usually aliased plt. Making a simple line plot and adding some labels to
each axis would look like this:

>>> import matplotlib.pyplot as plt

>>> x = [-3, 5, 7]

>>> y = [10, 2, 5]

>>> plt.figure(figsize=(15,3))

>>> plt.plot(x, y)

>>> plt.xlim(0, 10)

>>> plt.ylim(-3, 8)

>>> plt.xlabel('X Axis')

>>> plt.ylabel('Y axis')

>>> plt.title('Line Plot')

>>> plt.suptitle('Figure Title', size=20, y=1.03)

The object-oriented approach still uses pyplot, but typically, it is only to create the Figure
and Axes objects during the first step. After creation, methods from these objects are called
directly to alter the plot. The following code uses the object-oriented approach to make an
exact replication of the previous plot:

>>> fig, ax = plt.subplots(figsize=(15,3))

>>> ax.plot(x, y)

>>> ax.set_xlim(0, 10)

>>> ax.set_ylim(-3, 8)

>>> ax.set_xlabel('X axis')

>>> ax.set_ylabel('Y axis')

>>> ax.set_title('Line Plot')

>>> fig.suptitle('Figure Title', size=20, y=1.03)

Visualization with Matplotlib, Pandas, and Seaborn

[445]

In this simple example, we directly use only two objects, the Figure, and Axes, but in
general, plots can have many hundreds of objects; each one can be used to make
modifications in an extremely finely-tuned manner, not easily doable with the stateful
interface. In this chapter, we build an empty plot and modify several of its basic properties
using the object-oriented interface.

How to do it...
To get started with matplotlib using the object-oriented approach, you will need1.
to import the pyplot module and alias plt:

>>> import matplotlib.pyplot as plt

Typically, when using the object-oriented approach, we will create a Figure and2.
one or more Axes objects. Let's use the subplots function to create a Figure with
a single Axes:

>>> fig, ax = plt.subplots(nrows=1, ncols=1)

Visualization with Matplotlib, Pandas, and Seaborn

[446]

The subplots function returns a two-item tuple object containing the Figure and3.
one or more Axes objects (here it is just one), which is unpacked into the
variables fig and ax. From here on out, we will directly use these objects by
calling methods in a normal object-oriented approach. Let's take a look at the type
of each of these objects to ensure that we are actually working with a Figure and
an Axes:

>>> type(fig)

matplotlib.figure.Figure

>>> type(ax)

matplotlib.axes._subplots.AxesSubplot

Although you will be calling more Axes than Figure methods, you might still4.
need to interact with them. Let's find the size of the Figure and then enlarge it:

>>> fig.get_size_inches()

array([6., 4.])

>>> fig.set_size_inches(14, 4)

>>> fig

Before we start plotting, let's examine the matplotlib hierarchy. You can collect all5.
the Axes of the Figure with the axes attribute:

>>> fig.axes

[<matplotlib.axes._subplots.AxesSubplot at 0x112705ba8>]

Visualization with Matplotlib, Pandas, and Seaborn

[447]

This command returns a list of all the Axes objects. However, we already have6.
our Axes object stored in the ax variable. Let's verify that they are actually the
same object:

>>> fig.axes[0] is ax

True

To help visibly differentiate the Figure from the Axes, we can give each one a7.
unique facecolor. Matplotlib accepts a variety of different input types for color.
Approximately 140 HTML colors are supported by their string name (see this
list: http://bit.ly/2y52UtO). You may also use a string containing a float from
zero to one to represent shades of gray:

>>> fig.set_facecolor('.9')

>>> ax.set_facecolor('.7')

>>> fig

Now that we have differentiated between the Figure and the Axes, let's take a8.
look at all of the immediate children of the Axes with the get_children
method:

>>> ax_children = ax.get_children()

>>> ax_children

[<matplotlib.spines.Spine at 0x11145b358>,

 <matplotlib.spines.Spine at 0x11145b0f0>,

 <matplotlib.spines.Spine at 0x11145ae80>,

 <matplotlib.spines.Spine at 0x11145ac50>,

 <matplotlib.axis.XAxis at 0x11145aa90>,

 <matplotlib.axis.YAxis at 0x110fa8d30>,

 ...]

http://bit.ly/2y52UtO
http://bit.ly/2y52UtO
http://bit.ly/2y52UtO
http://bit.ly/2y52UtO
http://bit.ly/2y52UtO
http://bit.ly/2y52UtO
http://bit.ly/2y52UtO
http://bit.ly/2y52UtO
http://bit.ly/2y52UtO

Visualization with Matplotlib, Pandas, and Seaborn

[448]

Every basic plot has four spines and two axis objects. The spines represent the9.
data boundaries and are the four physical lines that you see bordering the darker
gray rectangle (the Axes). The x and y axis objects contain more plotting objects
such as the ticks and their labels and the label of the entire axis. We can select the
spines from this list, but that isn't generally how it's done. We can access them
directly with the spines attribute:

>>> spines = ax.spines

>>> spines

OrderedDict([('left', <matplotlib.spines.Spine at 0x11279e320>),

 ('right', <matplotlib.spines.Spine at 0x11279e0b8>),

 ('bottom', <matplotlib.spines.Spine at 0x11279e048>),

 ('top', <matplotlib.spines.Spine at 0x1127eb5c0>)])

The spines are contained in an ordered dictionary. Let's select the left spine and10.
change its position and width so that it is more prominent and also make the
bottom spine invisible:

>>> spine_left = spines['left']

>>> spine_left.set_position(('outward', -100))

>>> spine_left.set_linewidth(5)

>>> spine_bottom = spines['bottom']

>>> spine_bottom.set_visible(False)

>>> fig

Visualization with Matplotlib, Pandas, and Seaborn

[449]

Now, let's focus on the axis objects. We can access each axis directly through the11.
xaxis and yaxis attributes. Some axis properties are also available directly with
the Axes object. In this step, we change some properties of each axis in both
manners:

>>> ax.xaxis.grid(True, which='major', linewidth=2,

 color='black', linestyle='--')

>>> ax.xaxis.set_ticks([.2, .4, .55, .93])

>>> ax.xaxis.set_label_text('X Axis', family='Verdana',

fontsize=15)

>>> ax.set_ylabel('Y Axis', family='Calibri', fontsize=20)

>>> ax.set_yticks([.1, .9])

>>> ax.set_yticklabels(['point 1', 'point 9'], rotation=45)

>>> fig

How it works...
One of the crucial ideas to grasp with the object-oriented approach is that each plotting
element has both getter and setter methods. The getter methods all begin with get_ and
either retrieve a specific property or retrieve other plotting objects. For instance,
ax.get_yscale() retrieves the type of scale that the y axis is plotted with as a string
(default is linear), while ax.get_xticklabels() retrieves a list of matplotlib text objects
that each have their own getter and setter methods. Setter methods modify a specific
property or an entire group of objects. A lot of matplotlib boils down to latching onto a
specific plotting element and then examining and modifying it via the getter and setter
methods.

Visualization with Matplotlib, Pandas, and Seaborn

[450]

It might be useful to make an analogy of the matplotlib hierarchy as a
home. The home and all of its contents would be the Figure. Each
individual room would be the Axes and the contents of the room would be
the artists.

The easiest way to begin using the object-oriented interface is with the pyplot module,
which is commonly aliased plt, as done in step 1. Step 2 shows one of the most common
methods to initiate the object-oriented approach. The plt.subplots function creates a
single Figure, along with a grid of Axes objects. The first two parameters, nrows and ncols,
define a uniform grid of Axes objects. For example, plt.subplots(2,4) creates eight total
Axes objects of the same size inside one Figure.

The plt.subplots function is somewhat of an oddity in that it returns a two-item tuple.
The first element is the Figure, and the second element is the Axes object. This tuple gets
unpacked as two distinct variables, fig and ax. If you are not accustomed to tuple
unpacking, it may help to see step 2 written like this:

>>> plot_objects = plt.subplots(nrows=1, ncols=1)

>>> type(plot_objects)

tuple

>>> fig = plot_objects[0]

>>> ax = plot_objects[1]

If you create more than one Axes with plt.subplots , then the second item in the tuple is
a NumPy array containing all the Axes. Let's demonstrate that here:

>>> plot_objects = plt.subplots(2, 4)

Visualization with Matplotlib, Pandas, and Seaborn

[451]

The plot_objects variable is a tuple containing a Figure as its first element and a Numpy
array as its second:

>>> plot_objects[1]

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x133b70a20>,

 <matplotlib.axes._subplots.AxesSubplot object at 0x135d6f9e8>,

 <matplotlib.axes._subplots.AxesSubplot object at 0x1310e4668>,

 <matplotlib.axes._subplots.AxesSubplot object at 0x133565ac8>],

 [<matplotlib.axes._subplots.AxesSubplot object at 0x133f67898>,

 <matplotlib.axes._subplots.AxesSubplot object at 0x1326d30b8>,

 <matplotlib.axes._subplots.AxesSubplot object at 0x1335d5eb8>,

 <matplotlib.axes._subplots.AxesSubplot object at 0x133f78f28>]],

dtype=object)

Step 3 verifies that we indeed have Figure and Axes objects referenced by the appropriate
variables. In step 4, we come across the first example of getter and setter methods.
Matplotlib defaults all Figures to 6 inches in width by 4 inches in height, which is not the
actual size of it on the screen, but would be the exact size if you saved the Figure to a file.

Step 5 shows that, in addition to the getter method, you can sometimes directly access
another plotting object by its attribute. Often, there exist both an attribute and a getter
method to retrieve the same object. For instance, look at these examples:

>>> fig.axes == fig.get_axes()

True

>>> ax.xaxis == ax.get_xaxis()

True

>>> ax.yaxis == ax.get_yaxis()

True

Many artists have a facecolor property that can be set to cover the entire surface one
particular color, as in step 7. In step 8, the get_children method can be used to get a
better understanding of the object hierarchy. A list of all the objects directly below the Axes
is returned. It is possible to select all of the objects from this list and start using the setter
methods to modify properties, but this isn't customary. We usually collect our objects
directly from the attributes or getter methods.

Often, when retrieving a plotting object, they will be returned in a container like a list or a
dictionary. This is what happens when collecting the spines in step 9. You will have to select
the individual objects from their respective containers in order to use the getter or setter
methods on them, as done in step 10. It is also common to use a for-loop to iterate through
each of them one at a time.

Visualization with Matplotlib, Pandas, and Seaborn

[452]

Step 11 adds grid lines in a peculiar way. We would expect there to be a get_grid and
set_grid method, but instead, there is just a grid method, which accepts a boolean as the
first argument to turn on/off the grid lines. Each axis has both major and minor ticks,
though by default the minor ticks are turned off. The which parameter is used to select
which type of tick has a grid line.

Notice that the first three lines of step 11 select the xaxis attribute and call methods from it,
while the last three lines call equivalent methods directly from the Axes object itself. This
second set of methods is a convenience provided by matplotlib to save a few keystrokes.
Normally, most objects can only set their own properties, not those of their children. Many
of the axis-level properties are not able to be set from the Axes, but in this step, some are.
Either method is acceptable.

When adding the grid lines with the first line in step 11, we set the properties linewidth,
color, and linestyle. These are all properties of a matplotlib line, formally a Line2D
object. You can view all of the available properties here: http://bit.ly/2kE6MiG. The
set_ticks method accepts a sequence of floats and draws tick marks for only those
locations. Using an empty list will completely remove all ticks.

Each axis may be labeled with some text, for which matplotlib formally uses a Text object.
Only a few of all the available text properties (http://bit.ly/2yXIZfP) are changed. The
set_yticklabels Axes method takes in a list of strings to use as the labels for each of the
ticks. You may set any number of text properties along with it.

There's more...
To help find all the possible properties of each of your plotting objects, simply make a call
to the properties method, which displays all of them as a dictionary. Let's see a curated list
of the properties of an axis object:

>>> ax.xaxis.properties()

{'alpha': None,

 'gridlines': <a list of 4 Line2D gridline objects>,

 'label': Text(0.5,22.2,'X Axis'),

 'label_position': 'bottom',

 'label_text': 'X Axis',

 'tick_padding': 3.5,

 'tick_space': 26,

 'ticklabels': <a list of 4 Text major ticklabel objects>,

 'ticklocs': array([0.2 , 0.4 , 0.55, 0.93]),

 'ticks_position': 'bottom',

 'visible': True}

http://bit.ly/2kE6MiG
http://bit.ly/2kE6MiG
http://bit.ly/2kE6MiG
http://bit.ly/2kE6MiG
http://bit.ly/2kE6MiG
http://bit.ly/2kE6MiG
http://bit.ly/2kE6MiG
http://bit.ly/2kE6MiG
http://bit.ly/2kE6MiG
http://bit.ly/2yXIZfP
http://bit.ly/2yXIZfP
http://bit.ly/2yXIZfP
http://bit.ly/2yXIZfP
http://bit.ly/2yXIZfP
http://bit.ly/2yXIZfP
http://bit.ly/2yXIZfP
http://bit.ly/2yXIZfP
http://bit.ly/2yXIZfP

Visualization with Matplotlib, Pandas, and Seaborn

[453]

See also
Matplotlib official documentation of its usage guide (http://bit.ly/2xrKjeE)
Categorized list of all the methods of an Axes object (http://bit.ly/2kEhi9w)
Anatomy of Matplotlib tutorial by key contributor, Ben Root (http://bit.ly/
2y86c1M)
Matplotlib official documentation of the stateful pyplot module and the object-
oriented approach (http://bit. ly/2xqYnVR)
Matplotlib official documentation of the Artist tutorial (http://bit.ly/2kwS2SI)

Visualizing data with matplotlib
Matplotlib has a few dozen plotting methods that make nearly any kind of plot imaginable.
Line, bar, histogram, scatter, box, violin, contour, pie, and many more plots are available as
methods from the Axes object. It was only in version 1.5 (released in 2015) that matplotlib
began accepting data from pandas DataFrames. Before this, data had to be passed to it from
NumPy arrays or Python lists.

Getting ready
In this recipe, we will visualize the trend in movie budgets over time by reducing our data
from pandas DataFrames down to NumPy arrays, which we will then pass to matplotlib
plotting functions.

How to do it...
Now that we know how to select plotting elements and change their attributes,1.
let's actually create a data visualization. Let's read in the movie dataset, calculate
the median budget for each year, and then find the five year rolling average to
smooth the data:

>>> movie = pd.read_csv('data/movie.csv')

>>> med_budget = movie.groupby('title_year')['budget'].median() /

1e6

>>> med_budget_roll = med_budget.rolling(5, min_periods=1).mean()

>>> med_budget_roll.tail()

title_year

http://bit.ly/2xrKjeE
http://bit.ly/2xrKjeE
http://bit.ly/2xrKjeE
http://bit.ly/2xrKjeE
http://bit.ly/2xrKjeE
http://bit.ly/2xrKjeE
http://bit.ly/2xrKjeE
http://bit.ly/2xrKjeE
http://bit.ly/2xrKjeE
http://bit.ly/2kEhi9w
http://bit.ly/2kEhi9w
http://bit.ly/2kEhi9w
http://bit.ly/2kEhi9w
http://bit.ly/2kEhi9w
http://bit.ly/2kEhi9w
http://bit.ly/2kEhi9w
http://bit.ly/2kEhi9w
http://bit.ly/2kEhi9w
http://bit.ly/2y86c1M
http://bit.ly/2y86c1M
http://bit.ly/2y86c1M
http://bit.ly/2y86c1M
http://bit.ly/2y86c1M
http://bit.ly/2y86c1M
http://bit.ly/2y86c1M
http://bit.ly/2y86c1M
http://bit.ly/2xqYnVR
http://bit.ly/2xqYnVR
http://bit.ly/2xqYnVR
http://bit.ly/2xqYnVR
http://bit.ly/2xqYnVR
http://bit.ly/2xqYnVR
http://bit.ly/2xqYnVR
http://bit.ly/2xqYnVR
http://bit.ly/2xqYnVR
http://bit.ly/2kwS2SI
http://bit.ly/2kwS2SI
http://bit.ly/2kwS2SI
http://bit.ly/2kwS2SI
http://bit.ly/2kwS2SI
http://bit.ly/2kwS2SI
http://bit.ly/2kwS2SI
http://bit.ly/2kwS2SI
http://bit.ly/2kwS2SI

Visualization with Matplotlib, Pandas, and Seaborn

[454]

2012.0 20.893

2013.0 19.893

2014.0 19.100

2015.0 17.980

2016.0 17.780

Name: budget, dtype: float64

Let's get our data into NumPy arrays:2.

>>> years = med_budget_roll.index.values

>>> years[-5:]

array([2012., 2013., 2014., 2015., 2016.])

>>> budget = med_budget_roll.values

>>> budget[-5:]

array([20.893, 19.893, 19.1 , 17.98 , 17.78])

The plot method is used to create line plots. Let's use it to plot the rolling3.
median of budgets over time in a new Figure:

>>> fig, ax = plt.subplots(figsize=(14,4), linewidth=5,

 edgecolor='.5')

>>> ax.plot(years, budget, linestyle='--',

 linewidth=3, color='.2', label='All Movies')

>>> text_kwargs=dict(fontsize=20, family='cursive')

>>> ax.set_title('Median Movie Budget', **text_kwargs)

>>> ax.set_ylabel('Millions of Dollars', **text_kwargs)

Visualization with Matplotlib, Pandas, and Seaborn

[455]

It's quite interesting that the median movie budget peaked in the year 2000 and4.
has subsequently fallen. Perhaps this is just an artifact of the dataset, in which we
have more data in recent years of all the movies, not just the most popular ones.
Let's find the count of the number of movies per year:

>>> movie_count = movie.groupby('title_year')['budget'].count()

>>> movie_count.tail()

title_year

2012.0 191

2013.0 208

2014.0 221

2015.0 192

2016.0 86

Name: budget, dtype: int64

Any number of plots may be put on a single Axes, and these counts can be5.
plotted directly with the median budget as a bar chart. As the units for both plots
are completely different (dollars versus count), we can either create a secondary y
axis or scale the counts to be in the same range as the budget. We choose the
latter and label each bar with its value as text, directly preceding it. As the vast
majority of the data is contained in recent years, we can also limit the data to
those movies made from 1970 onward:

>>> ct = movie_count.values

>>> ct_norm = ct / ct.max() * budget.max()

>>> fifth_year = (years % 5 == 0) & (years >= 1970)

>>> years_5 = years[fifth_year]

>>> ct_5 = ct[fifth_year]

>>> ct_norm_5 = ct_norm[fifth_year]

>>> ax.bar(years_5, ct_norm_5, 3, facecolor='.5',

 alpha=.3, label='Movies per Year')

>>> ax.set_xlim(1968, 2017)

>>> for x, y, v in zip(years _5, ct_norm_5, ct_5):

 ax.text(x, y + .5, str(v), ha='center')

>>> ax.legend()

>>> fig

Visualization with Matplotlib, Pandas, and Seaborn

[456]

This trend might not hold if we just look at the top 10 budgeted movies per year.6.
Let's find the five year rolling median for just the top 10 movies per year:

>>> top10 = movie.sort_values('budget', ascending=False) \

 .groupby('title_year')['budget'] \

 .apply(lambda x: x.iloc[:10].median() / 1e6)

>>> top10_roll = top10.rolling(5, min_periods=1).mean()

>>> top10_roll.tail()

title_year

2012.0 192.9

2013.0 195.9

2014.0 191.7

2015.0 186.8

2016.0 189.1

Name: budget, dtype: float64

These numbers represent an order of a magnitude higher than those found in7.
step 13 for all the data. Plotting both lines on the same scale would not look good.
Let's create an entirely new Figure with two subplots (Axes) and plot the data
from the previous step in the second Axes:

>>> fig2, ax_array = plt.subplots(2, 1, figsize=(14,8),

sharex=True)

>>> ax1 = ax_array[0]

>>> ax2 = ax_array[1]

>>> ax1.plot(years, budget, linestyle='--', linewidth=3,

 color='.2', label='All Movies')

>>> ax1.bar(years_5, ct_norm_5, 3, facecolor='.5',

 alpha=.3, label='Movies per Year')

>>> ax1.legend(loc='upper left')

>>> ax1.set_xlim(1968, 2017)

>>> plt.setp(ax1.get_xticklines(), visible=False)

Visualization with Matplotlib, Pandas, and Seaborn

[457]

>>> for x, y, v in zip(years_5, ct_norm_5, ct_5):

 ax1.text(x, y + .5, str(v), ha='center')

>>> ax2.plot(years, top10_roll.values, color='.2',

 label='Top 10 Movies')

>>> ax2.legend(loc='upper left')

>>> fig2.tight_layout()

>>> fig2.suptitle('Median Movie Budget', y=1.02, **text_kwargs)

>>> fig2.text(0, .6, 'Millions of Dollars', rotation='vertical',

 ha='center', **text_kwargs)

>>> import os

>>> path = os.path.expanduser('~/Desktop/movie_budget.png')

>>> fig2.savefig(path, bbox_inches='tight')

How it works...
In step 1, we begin with a quest to analyze movie budgets by finding the median budget per
year in millions of dollars. After finding the median budget for each year, we decided to
smooth it out, as there is going to be quite a lot of variability from year to year. We choose
to smooth the data because we are looking for a general trend and are not necessarily
interested in the exact value of any one year.

Visualization with Matplotlib, Pandas, and Seaborn

[458]

In this step, we use the rolling method to calculate a new value for each year based on the
average of the last five years of data. For example, the median budgets from the years 2011
through 2015 are grouped together and averaged. The result is the new value for the year
2015. The only required parameter for the rolling method is the size of the window,
which, by default, ends at the current year.

The rolling method returns a groupby-like object that must have its groups acted on with
another function to produce a result. Let's manually verify that the rolling method works
as expected for a few of the previous years:

>>> med_budget.loc[2012:2016].mean()

17.78

>>> med_budget.loc[2011:2015].mean()

17.98

>>> med_budget.loc[2010:2014].mean()

19.1

These values are the same as the output from step 1. In step 2, we get ready to use
matplotlib by putting our data into NumPy arrays. In step 3, we create our Figure and Axes
to set up the object-oriented interface. The plt.subplots method supports a large number
of inputs. See the documentation to view all possible parameters for both this and for the
figure function (http://bit.ly/2ydM8ZU and http://bit.ly/2ycno40).

The first two parameters in the plot method represent the x and y values for a line plot. All
of the line properties are available to be changed inside the call to plot. The set_title
Axes method provides a title and can set all the available text properties inside its call. The
same goes for the set_ylablel method. If you are setting the same properties for many
objects, you can pack them together into a dictionary and pass this dictionary as one of the
arguments, as done with **text_kwargs.

In step 4, we notice an unexpected downward trend in median budget beginning around
the year 2000 and suspect that the number of movies collected per year might play an
explanatory role. We choose to add this dimension to the graph by creating a bar plot of
every fifth year of data beginning from 1970. We use boolean selection on our NumPy data
arrays in the same manner as we do for the pandas Series in step 5.

http://bit.ly/2ydM8ZU
http://bit.ly/2ydM8ZU
http://bit.ly/2ydM8ZU
http://bit.ly/2ydM8ZU
http://bit.ly/2ydM8ZU
http://bit.ly/2ydM8ZU
http://bit.ly/2ydM8ZU
http://bit.ly/2ydM8ZU
http://bit.ly/2ydM8ZU
http://bit.ly/2ycno40
http://bit.ly/2ycno40
http://bit.ly/2ycno40
http://bit.ly/2ycno40
http://bit.ly/2ycno40
http://bit.ly/2ycno40
http://bit.ly/2ycno40
http://bit.ly/2ycno40
http://bit.ly/2ycno40

Visualization with Matplotlib, Pandas, and Seaborn

[459]

The bar method takes the x-value the height, and the width of the bars as its first three
arguments and places the center of the bars directly at each x-value. The bar height was
derived from the movie count that was first scaled down to be between zero and one, and
then multiplied by the maximum median budget. These bar heights are stored in the
variable ct_norm_5. To label each bar correctly, we first zip together the bar center, its
height, and the actual movie count. We then loop through this zipped object and place the
count preceding the bar with the text method, which accepts an x-value, y-value, and a
string. We adjust the y-value slightly upwards and use the horizontal alignment parameter,
ha, to center the text.

Look back at step 3, and you will notice the plot method with the label parameter equal
to All Movies. This is the value that matplotlib uses when you create a legend for your
plot. A call to the legend Axes method puts all the plots with assigned labels in the legend.

To investigate the unexpected dip in the median budget, we can focus on just the top 10
budgeted movies for each year. Step 6 uses a custom aggregation function after grouping by
year to do so, and then smooths the result in the same manner as before. These results could
be plotted directly on the same graph, but because the values are so much greater, we opt to
create an entire new Figure with two Axes.

We start step 7 by creating a Figure with two subplots in a two row by one column grid.
Remember that when creating more than one subplot, all the Axes get stored in a NumPy
array. The final result from step 5 is recreated in the top Axes. We plot the top 10 budgeted
movies in the bottom Axes. Notice that the years align for both the bottom and top Axes
because the sharex parameter was set to True in the Figure creation. When sharing an axis,
matplotlib removes the labels for all the ticks but keeps those tiny vertical lines for each tick.
To remove these tick lines, we use the setp pyplot function. Although this isn't directly
object-oriented, it is explicit and very useful when we want to set properties for an entire
sequence of plotting objects. We set all the tick lines to invisible with this useful function.

Finally, we then make several calls to Figure methods. This is a departure from our normal
calling of Axes methods. The tight_layout method adjusts the subplots to look much
nicer by removing extra space and ensuring that different Axes don't overlap. The
suptitle method creates a title for the entire Figure, as opposed to the set_title Axes
method, which creates titles for individual Axes. It accepts an x and y location to represent a
place in the figure coordinate system, in which (0, 0) represents the bottom left and (1, 1)
represents the top right. By default, the y-value is 0.98, but we move it up a few points to
1.02.

Visualization with Matplotlib, Pandas, and Seaborn

[460]

Each Axes also has a coordinate system in which (0, 0) is used for the
bottom left and (1, 1) for the top right. In addition to those coordinate
system, each Axes also has a data coordinate system, which is more
natural to most people and represents the bounds of the x and y-axis.
These bounds may be retrieved with ax.get_xlim() and
ax.get_ylim() respectively. All the plotting before this used the data
coordinate system. See the Transformations tutorial to learn more about the
coordinate systems (http://bit.ly/2gxDkX3).

As both Axes use the same units for the y axis, we use the text Figure method to place a
custom y axis label directly between each Axes, using the figure coordinate system. Finally,
we save the Figure to our desktop. The tilde, ~, in the path represents the home directory,
but the savefig method won't understand what this means. You must use the
expanduser function from the os library to create the full path. For instance, the path
variable becomes the following on my machine:

>>> os.path.expanduser('~/Desktop/movie_budget.png')

'/Users/Ted/Desktop/movie_budget.png'

The savefig method can now create the file in the correct location. By default, savefig
will save only what is plotted within (0, 0) to (1, 1) of the figure coordinate system. As our
title is slightly outside of this area, some of it will be cropped. Setting the bbox_inches
parameter to tight will have matplotlib include any titles or labels that are extending outside
of this region.

There's more...
Matplotlib began accepting pandas DataFrames for all of its plotting functions after the
release of version 1.5. The DataFrame gets passed to the plotting method through the data
parameter. Doing so allows you to reference the columns with string names. The following
script creates a scatter plot of the IMDB score against the year for a random selection of 100
movies made from 2000 onwards. The sizes of each point are proportional to the budget:

>>> cols = ['budget', 'title_year', 'imdb_score', 'movie_title']

>>> m = movie[cols].dropna()

>>> m['budget2'] = m['budget'] / 1e6

>>> np.random.seed(0)

>>> movie_samp = m.query('title_year >= 2000').sample(100)

>>> fig, ax = plt.subplots(figsize=(14,6))

>>> ax.scatter(x='title_year', y='imdb_score',

 s='budget2', data=movie_samp)

http://bit.ly/2gxDkX3
http://bit.ly/2gxDkX3
http://bit.ly/2gxDkX3
http://bit.ly/2gxDkX3
http://bit.ly/2gxDkX3
http://bit.ly/2gxDkX3
http://bit.ly/2gxDkX3
http://bit.ly/2gxDkX3
http://bit.ly/2gxDkX3

Visualization with Matplotlib, Pandas, and Seaborn

[461]

>>> idx_min = movie_samp['imdb_score'].idxmin()

>>> idx_max = movie_samp['imdb_score'].idxmax()

>>> for idx, offset in zip([idx_min, idx_max], [.5, -.5]):

 year = movie_samp.loc[idx, 'title_year']

 score = movie_samp.loc[idx, 'imdb_score']

 title = movie_samp.loc[idx, 'movie_title']

 ax.annotate(xy=(year, score),

 xytext=(year + 1, score + offset),

 s=title + ' ({})'.format(score),

 ha='center',

 size=16,

 arrowprops=dict(arrowstyle="fancy"))

>>> ax.set_title('IMDB Score by Year', size=25)

>>> ax.grid(True)

After creating the scatter plot, the highest and lowest scoring movies are labeled with the
annotate method. The xy parameter is a tuple of the point that we would like to annotate.
The xytext parameter is another tuple coordinate of the text location. The text is centered
there due to ha being set to center.

Visualization with Matplotlib, Pandas, and Seaborn

[462]

See also
Matplotlib official Legend guide (http://bit.ly/2yGvKUu)
Matplotlib official documentation of the scatter method (http:/ /bit. ly/
2i3N2nI)
Matplotlib official Annotation guide (http://bit.ly/2yhYHoP)

Plotting basics with pandas
Pandas makes plotting quite easy by automating much of the procedure for you. All pandas
plotting is handled internally by matplotlib and is publicly accessed through the DataFrame
or Series plot method. We say that the pandas plot method is a wrapper around
matplotlib. When you create a plot in pandas, you will be returned a matplotlib Axes or
Figure. You can use the full power of matplotlib to modify this object until you get the
desired result.

Pandas is only able to produce a small subset of the plots available with matplotlib, such as
line, bar, box, and scatter plots, along with kernel density estimates (KDEs) and
histograms. Pandas excels at the plots it does create by making the process very easy and
efficient, usually taking just a single line of code, saving lots of time when exploring data.

Getting ready
One of the keys to understanding plotting in pandas is to know whether the plotting
method requires one or two variables to make the plot. For instance, line and scatter plots
require two variables to plot each point. The same holds true for bar plots, which require
some x-coordinates to locate the bar and another variable for the height of the bar. Boxplots,
histograms, and KDEs use only a single variable to make their plots.

The two-variable line and scatter plots, by default, use the index as the x axis and the values
of the columns as the y axis. The one-variable plots ignore the index and apply a
transformation or aggregation to each variable to make their plots. In this recipe, we will
look at the differences between two-variable and one-variable plots in pandas.

http://bit.ly/2yGvKUu
http://bit.ly/2yGvKUu
http://bit.ly/2yGvKUu
http://bit.ly/2yGvKUu
http://bit.ly/2yGvKUu
http://bit.ly/2yGvKUu
http://bit.ly/2yGvKUu
http://bit.ly/2yGvKUu
http://bit.ly/2yGvKUu
http://bit.ly/2i3N2nI
http://bit.ly/2i3N2nI
http://bit.ly/2i3N2nI
http://bit.ly/2i3N2nI
http://bit.ly/2i3N2nI
http://bit.ly/2i3N2nI
http://bit.ly/2i3N2nI
http://bit.ly/2i3N2nI
http://bit.ly/2yhYHoP
http://bit.ly/2yhYHoP
http://bit.ly/2yhYHoP
http://bit.ly/2yhYHoP
http://bit.ly/2yhYHoP
http://bit.ly/2yhYHoP
http://bit.ly/2yhYHoP
http://bit.ly/2yhYHoP
http://bit.ly/2yhYHoP

Visualization with Matplotlib, Pandas, and Seaborn

[463]

How to do it..
Create a small DataFrame with a meaningful index:1.

>>> df = pd.DataFrame(index=['Atiya', 'Abbas', 'Cornelia',

 'Stephanie', 'Monte'],

 data={'Apples':[20, 10, 40, 20, 50],

 'Oranges':[35, 40, 25, 19, 33]})

Bar plots use the index of the labels for the x axis and the column values as the2.
bar heights. Use the plot method with the kind parameter set to bar:

>>> color = ['.2', '.7']

>>> df.plot(kind='bar', color=color, figsize=(16,4))

Visualization with Matplotlib, Pandas, and Seaborn

[464]

A KDE plot ignores the index and uses the values of each column as the x axis3.
and calculates a probability density for the y values:

>>> df.plot(kind='kde', color=color, figsize=(16,4))

Let's plot all two-variable plots together in a single Figure. The scatter plot is the4.
only one that requires you to specify columns for the x and y values. If you wish
to use the index for a scatter plot, you will have to use the reset_index method
to make it a column. The other two plots use the index for the x axis and make a
new set of lines/bars for every single numeric column:

>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(16,4))

>>> fig.suptitle('Two Variable Plots', size=20, y=1.02)

>>> df.plot(kind='line', color=color, ax=ax1, title='Line plot')

>>> df.plot(x='Apples', y='Oranges', kind='scatter', color=color,

 ax=ax2, title='Scatterplot')

>>> df.plot(kind='bar', color=color, ax=ax3, title='Bar plot')

Visualization with Matplotlib, Pandas, and Seaborn

[465]

Let's put all the one-variable plots in the same Figure as well:5.

>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(16,4))

>>> fig.suptitle('One Variable Plots', size=20, y=1.02)

>>> df.plot(kind='kde', color=color, ax=ax1, title='KDE plot')

>>> df.plot(kind='box', ax=ax2, title='Boxplot')

>>> df.plot(kind='hist', color=color, ax=ax3, title='Histogram')

How it works...
Step 1 creates a small sample DataFrame that will help us illustrate the differences between
two and one-variable plotting with pandas. By default, pandas will use each numeric
column of the DataFrame to make a new set of bars, lines, KDEs, boxplots, or histograms
and use the index as the x values when it is a two-variable plot. One of the exceptions is the
scatter plot, which must be explicitly given a single column for the x and y values.

The pandas plot method is very versatile and has a large number of parameters that allow
you to customize the result to your liking. For instance, you can set the Figure size, turn the
gridlines on and off, set the range of the x and y axis, color the plot, rotate the tick marks,
and much more.

You can also use any of the arguments available to the specific matplotlib plotting method.
The extra arguments will be collected by the **kwds parameter from the plot method and
correctly passed to the underlying matplotlib function. For example, In step 2, we create a
bar plot. This means that we can use all of the parameters available in the matplotlib bar
function as well as the ones available in the pandas plot method (http://bit.ly/2z2l3rJ).

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html

Visualization with Matplotlib, Pandas, and Seaborn

[466]

In step 3, we create a single-variable KDE plot, which creates a density estimate for each
numeric column in the DataFrame. Step 4 places all the two-variable plots in the same
Figure. Likewise, step 5 places all the one-variable plots together. Each of steps 4 and 5
creates a Figure with three Axes objects. The command plt.subplots(1, 3) creates a
Figure with three Axes spread over a single row and three columns. It returns a two-item
tuple consisting of the Figure and a one-dimensional NumPy array containing the Axes.
The first item of the tuple is unpacked into the variable fig. The second item of the tuple is
unpacked into three more variables, one for each Axes. The pandas plot method handily
comes with an ax parameter, allowing us to place the result of the plot into a specific Axes
in the Figure.

There's more...
With the exception of the scatter plot, all the plots did not specify the columns to be used.
Pandas defaulted to using every single numeric column, as well as the index in the case of
two-variable plots. You can, of course, specify the exact columns that you would like to use
for each x or y value:

>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(16,4))

>>> df.sort_values('Apples').plot(x='Apples', y='Oranges',

 kind='line', ax=ax1)

>>> df.plot(x='Apples', y='Oranges', kind='bar', ax=ax2)

>>> df.plot(x='Apples', kind='kde', ax=ax3)

See also
Pandas official documentation on Visualization (http://bit.ly/2zhUqQv)

http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://pandas.pydata.org/pandas-docs/stable/visualization.html

Visualization with Matplotlib, Pandas, and Seaborn

[467]

Visualizing the flights dataset
Exploratory data analysis is mainly guided by visualizations, and pandas provides a great
interface for quickly and effortlessly creating them. A simple strategy when beginning a
visualization of any dataset is to focus only on univariate plots. The most popular
univariate plots tend to be bar charts for categorical data (usually strings) and histograms,
boxplots, or KDEs for continuous data (always numeric). Attempting to analyze multiple
variables at the same time, directly at the start of a project, can be quite overwhelming.

Getting ready
In this recipe, we do some basic exploratory data analysis on the flights dataset by creating
univariate and multivariate plots directly with pandas.

How to do it...
Read in the flights dataset, and output the first five rows:1.

>>> flights = pd.read_csv('data/flights.csv')

>>> flights.head()

Visualization with Matplotlib, Pandas, and Seaborn

[468]

Before we start plotting, let's calculate the number of diverted, cancelled, delayed,2.
and ontime flights. We already have binary columns for diverted and cancelled.
Flights are considered delayed whenever they arrive 15 minutes or more later
than scheduled. Let's create two new binary columns to track delayed and on-
time arrivals:

>>> flights['DELAYED'] = flights['ARR_DELAY'].ge(15).astype(int)

>>> cols = ['DIVERTED', 'CANCELLED', 'DELAYED']

>>> flights['ON_TIME'] = 1 - flights[cols].any(axis=1)

>>> cols.append('ON_TIME')

>>> status = flights[cols].sum()

>>> status

DIVERTED 137

CANCELLED 881

DELAYED 11685

ON_TIME 45789

dtype: int64

Let's now make several plots on the same Figure for both categorical and3.
continuous columns:

>>> fig, ax_array = plt.subplots(2, 3, figsize=(18,8))

>>> (ax1, ax2, ax3), (ax4, ax5, ax6) = ax_array

>>> fig.suptitle('2015 US Flights - Univariate Summary', size=20)

>>> ac = flights['AIRLINE'].value_counts()

>>> ac.plot(kind='barh', ax=ax1, title='Airline')

>>> oc = flights['ORG_AIR'].value_counts()

>>> oc.plot(kind='bar', ax=ax2, rot=0, title='Origin City')

>>> dc = flights['DEST_AIR'].value_counts().head(10)

>>> dc.plot(kind='bar', ax=ax3, rot=0, title='Destination City')

>>> status.plot(kind='bar', ax=ax4, rot=0,

 log=True, title='Flight Status')

>>> flights['DIST'].plot(kind='kde', ax=ax5, xlim=(0, 3000),

 title='Distance KDE')

>>> flights['ARR_DELAY'].plot(kind='hist', ax=ax6,

 title='Arrival Delay',

 range=(0,200))

Visualization with Matplotlib, Pandas, and Seaborn

[469]

This is not an exhaustive look at all the univariate statistics but gives us a good4.
amount of detail on some of the variables. Before we move on to multivariate
plots, let's plot the number of flights per week. This is the right situation to use a
time series plot with the dates on the x axis. Unfortunately, we don't have pandas
Timestamps in any of the columns, but we do have the month and day. The
to_datetime function has a nifty trick that identifies column names that match
Timestamp components. For instance, if you have a DataFrame with exactly three
columns titled year, month, and day, then passing this DataFrame to the
to_datetime function will return a sequence of Timestamps. To prepare our
current DataFrame, we need to add a column for the year and use the scheduled
departure time to get the hour and minute:

>>> hour = flights['SCHED_DEP'] // 100

>>> minute = flights['SCHED_DEP'] % 100

>>> df_date = flights[['MONTH', 'DAY']].assign(YEAR=2015,

HOUR=hour,

 MINUTE=minute)

>>> df_date.head()

Visualization with Matplotlib, Pandas, and Seaborn

[470]

Then, almost by magic, we can turn this DataFrame into a proper Series of5.
Timestamps with the to_datetime function:

>>> flight_dep = pd.to_datetime(df_date)

>>> flight_dep.head()

0 2015-01-01 16:25:00

1 2015-01-01 08:23:00

2 2015-01-01 13:05:00

3 2015-01-01 15:55:00

4 2015-01-01 17:20:00

dtype: datetime64[ns]

Let's use this result as our new index and then find the count of flights per week6.
with the resample method:

>>> flights.index = flight_dep

>>> fc = flights.resample('W').size()

>>> fc.plot(figsize=(12,3), title='Flights per Week', grid=True)

Visualization with Matplotlib, Pandas, and Seaborn

[471]

This plot is quite revealing. It appears that we have no data for the month of7.
October. Due to this missing data, it's quite difficult to analyze any trend visually,
if one exists. The first and last weeks are also lower than normal, likely because
there isn't a full week of data for them. Let's make any week of data with fewer
than 1,000 flights missing. Then, we can use the interpolate method to fill in
this missing data:

>>> fc_miss = fc.where(fc > 1000)

>>> fc_intp = fc_miss.interpolate(limit_direction='both')

>>> ax = fc_intp.plot(color='black', figsize=(16,4))

>>> fc_intp[fc < 500].plot(linewidth=10, grid=True,

 color='.8', ax=ax)

>>> ax.annotate(xy=(.8, .55), xytext=(.8, .77),

 xycoords='axes fraction', s='missing data',

 ha='center', size=20, arrowprops=dict())

>>> ax.set_title('Flights per Week (Interpolated Missing Data)')

Visualization with Matplotlib, Pandas, and Seaborn

[472]

Let's change directions and focus on multivariable plotting. Let's find the 108.
airports that:

Have the longest average distance traveled for inbound flights
Have a minimum of 100 total flights:

>>> flights.groupby('DEST_AIR')['DIST'] \

 .agg(['mean', 'count']) \

 .query('count > 100') \

 .sort_values('mean') \

 .tail(10) \

 .plot(kind='bar', y='mean', rot=0, legend=False,

 title='Average Distance per Destination')

It's no surprise that the top two destination airports are in Hawaii. Now let's9.
analyze two variables at the same time by making a scatter plot between distance
and airtime for all flights under 2,000 miles:

>>> fs = flights.reset_index(drop=True)[['DIST', 'AIR_TIME']] \

 .query('DIST <= 2000').dropna()

>>> fs.plot(x='DIST', y='AIR_TIME', kind='scatter',

 s=1, figsize=(16,4))

Visualization with Matplotlib, Pandas, and Seaborn

[473]

As expected, a tight linear relationship exists between distance and airtime,10.
though the variance seems to increase as the number of miles increases. There are
a few flights that are quite far outside the trendline. Let's try and identify them. A
linear regression model may be used to formally identify them, but as pandas
doesn't directly support linear regression, we will take a more manual approach.
Let's use the cut function to place the flight distances into one of eight groups:

>>> fs['DIST_GROUP'] = pd.cut(fs['DIST'], bins=range(0, 2001, 250))

>>> fs['DIST_GROUP'].value_counts().sort_index()

(0, 250] 6529

(250, 500] 12631

(500, 750] 11506

(750, 1000] 8832

(1000, 1250] 5071

(1250, 1500] 3198

(1500, 1750] 3885

(1750, 2000] 1815

Name: DIST_GROUP, dtype: int64

We will assume that all flights within each group should have similar flight11.
times, and thus calculate for each flight the number of standard deviations if the
flight time deviates from the mean of that group:

>>> normalize = lambda x: (x - x.mean()) / x.std()

>>> fs['TIME_SCORE'] = fs.groupby('DIST_GROUP')['AIR_TIME'] \

 .transform(normalize)

>>> fs.head()

Visualization with Matplotlib, Pandas, and Seaborn

[474]

We now need a way to discover the outliers. A box plot provides a nice visual for12.
detecting outliers. Unfortunately, a bug exists when attempting to make a box
plot with the plot method, but thankfully, there is a DataFrame boxplot
method that works:

>>> ax = fs.boxplot(by='DIST_GROUP', column='TIME_SCORE',

 figsize=(16,4))

>>> ax.set_title('Z-Scores for Distance Groups')

>>> ax.figure.suptitle('')

Let's arbitrarily choose to examine the points that are greater than six standard13.
deviations away from the mean. Because we reset the index in the fs DataFrame
in step 9, we can use it to identify each unique row in the flights DataFrame. Let's
create a separate DataFrame with just the outliers:

>>> outliers = flights.iloc[fs[fs['TIME_SCORE'] > 6].index]

>>> outliers = outliers[['AIRLINE','ORG_AIR', 'DEST_AIR',

'AIR_TIME',

 'DIST', 'ARR_DELAY', 'DIVERTED']]

>>> outliers['PLOT_NUM'] = range(1, len(outliers) + 1)

>>> outliers

Visualization with Matplotlib, Pandas, and Seaborn

[475]

We can use this table to identify the outliers on the plot from step 9. Pandas also 14.
provides a way to attach tables to the bottom of the graph:

>>> ax = fs.plot(x='DIST', y='AIR_TIME',

 kind='scatter', s=1,

 figsize=(16,4), table=outliers)

>>> outliers.plot(x='DIST', y='AIR_TIME',

 kind='scatter', s=25, ax=ax, grid=True)

>>> outs = outliers[['AIR_TIME', 'DIST', 'PLOT_NUM']]

>>> for t, d, n in outs.itertuples(index=False):

 ax.text(d + 5, t + 5, str(n))

>>> plt.setp(ax.get_xticklabels(), y=.1)

>>> plt.setp(ax.get_xticklines(), visible=False)

>>> ax.set_xlabel('')

>>> ax.set_title('Flight Time vs Distance with Outliers')

How it works...
After reading in our data in step 1 and calculating columns for delayed and on-time flights,
we are ready to begin making univariate plots. The call to the subplots function in step 3
creates a 2 x 3 grid of equal-sized Axes. We unpack each Axes into its own variable to
reference it. Each of the calls to the plot method references the specific Axes in the Figure
with the ax parameter. The value_counts method is used to create the three Series that
form the plots in the top row. The rot parameter rotates the tick labels to the given angle.

Visualization with Matplotlib, Pandas, and Seaborn

[476]

The plot in the bottom left-hand corner uses a logarithmic scale for the y axis, as the number
of on-time flights is about two orders of magnitude greater than the number of cancelled
flights. Without the log scale, the left two bars would be difficult to see. By default, KDE
plots may result in positive areas for impossible values, such as negative miles in the plot
on the bottom row. For this reason, we limit the range of the x values with the xlim
parameter.

The histogram created in the bottom right-hand corner on arrival delays was passed the
range parameter. This is not directly part of the method signature of the pandas plot
method. Instead, this parameter gets collected by the **kwds argument and then passed
along to the matplotlib hist function. Using xlim, as done in the previous plot would not
work in this case.The plot would simply be cropped without recalculating the new bin
widths for just that portion of the graph. The range parameter, however, both limits the x-
axis and calculates the bin widths for just that range.

Step 4 creates a special extra DataFrame to hold columns with only datetime components so
that we can instantly turn each row into a Timestamp with the to_datetime function in
step 5. The resample method, by default, uses the index to form groups based on the date
offset passed. We return the number of flights per week (W) as a Series and then call the
plot method on it, which nicely formats the index as the x-axis. A glaring hole for the
month of October appears.

To fill this hole, we use the where method to set only value less than 1,000 to missing in the
first line of step 7. We then fill in the missing data through linear interpolation. By default,
the interpolate method only interpolates in a forward direction, so any missing values at
the start of the DataFrame will remain. By setting the limit_direction parameter to
both, we ensure that there are no missing values. The new data, now stored in fc_intp, is
plotted. To show the missing data more clearly, we select the points that were missing from
the original and make a line plot on the same Axes directly on top of the previous line.
Typically, when we annotate the plot, we can use the data coordinates, but in this instance,
it isn't obvious what the coordinates of the x-axis are. To use the Axes coordinate system
(the one that ranges from (0,0), to (1,1)), the xycoords parameter is set to axes fraction.
This new plot now excludes the erroneous data and it makes it is much easier to spot a
trend. The summer months have much more air traffic than any other time of the year.

Visualization with Matplotlib, Pandas, and Seaborn

[477]

In step 8, we use a long chain of methods to group by each destination airport and apply
two functions, mean and count, to the distance column. The query method is especially
nice when for use in a method chain, as it clearly and succinctly selects the desired rows of
data of a given condition. We have two columns in our DataFrame when we get to the plot
method, which, by default, would make a bar plot for each column. We are not interested in
the count column and therefore select only the mean column to form the bars. Also, when
plotting with a DataFrame, each column name appears in the legend. This would put the
word mean in the legend, which would not be useful, so we remove it by setting the legend
parameter to False.

Step 9 begins a new analysis by looking at the relationship between distance traveled and
flight airtime. Due to the huge number of points, we shrink their size with the s parameter.
To find the flights that took much longer on average to reach their destination, we group
each flight into 250 mile chunks in step 10 and find the number of standard deviations from
their group mean in step 11.

In step 12, a new box plot is created in the same Axes for every unique value of the by
parameter. We capture the Axes object by saving it to a variable after the call to boxplot.
This method creates an unnecessary title over the Figure, which is erased by first accessing
the Figure and then setting the suptitle to an empty string.

In step 13, the current DataFrame, fs, contains the information we need to find the slowest
flights, but it does not possess all of the original data that we might want to investigate
further. Because we reset the index of fs in step 9, we can use it to identify the same row
from the original. The first line in this step does this for us. We also give each of the outlier
rows a unique integer to identify it later on when plotting.

In step 14, we begin with the same scatter plot as in step 9 but use the table parameter to
append the outlier table to the bottom of the plot. We then plot our outliers as a scatter plot
directly on top and ensure that their points are larger to identify them easily. The
itertuples method loops through each DataFrame row and returns its values as a tuple.
We unpack the corresponding x and y values for our plot and label it with the number we
assigned to it.

As the table is placed directly underneath of the plot, it interferes with the plotting objects
on the x axis. We move the tick labels to the inside of the axis and remove the tick lines and
axis label. This table provides some nice information to anyone who is interested in these
outlying events.

Visualization with Matplotlib, Pandas, and Seaborn

[478]

See also
Pandas official documentation of plotting with tables (http://bit.ly/2yhdBd7)

Stacking area charts to discover emerging
trends
Stacked area charts are great visualizations to discover emerging trends, especially in the
marketplace. It is a common choice to show the percentage of the market share for things
such as internet browsers, cell phones, or vehicles.

Getting ready
In this recipe, we will use data gathered from the popular website meetup.com. Using a
stacked area chart, we will show membership distribution between five data science-related
meetup groups.

How to do it...
Read in the meetup dataset, convert the join_date column into a Timestamp,1.
place it in the index, and output the first five rows:

>>> meetup = pd.read_csv('data/meetup_groups.csv',

 parse_dates=['join_date'],

 index_col='join_date')

>>> meetup.head()

http://bit.ly/2yhdBd7
http://bit.ly/2yhdBd7
http://bit.ly/2yhdBd7
http://bit.ly/2yhdBd7
http://bit.ly/2yhdBd7
http://bit.ly/2yhdBd7
http://bit.ly/2yhdBd7
http://bit.ly/2yhdBd7
http://bit.ly/2yhdBd7

Visualization with Matplotlib, Pandas, and Seaborn

[479]

Let's get the number of people who joined each group each week:2.

>>> group_count = meetup.groupby([pd.Grouper(freq='W'), 'group']) \

 .size()

>>> group_count.head()

join_date group

2010-11-07 houstonr 5

2010-11-14 houstonr 11

2010-11-21 houstonr 2

2010-12-05 houstonr 1

2011-01-16 houstonr 2

dtype: int64

Unstack the group level so that each meetup group has its own column of data:3.

>>> gc2 = group_count.unstack('group', fill_value=0)

>>> gc2.tail()

This data represents the number of members who joined that particular week.4.
Let's take the cumulative sum of each column to get the grand total number of
members:

>>> group_total = gc2.cumsum()

>>> group_total.tail()

Visualization with Matplotlib, Pandas, and Seaborn

[480]

Many stacked area charts use the percentage of the total so that each row always5.
adds up to 100 percent. Let's divide each row by the row total to find this
percentage:

>>> row_total = group_total.sum(axis='columns')

>>> group_cum_pct = group_total.div(row_total, axis='index')

>>> group_cum_pct.tail()

We can now create our stacked area plot, which will continually accumulate the6.
columns, one on top of the other:

>>> ax = group_cum_pct.plot(kind='area', figsize=(18,4),

 cmap='Greys', xlim=('2013-6', None),

 ylim=(0, 1), legend=False)

>>> ax.figure.suptitle('Houston Meetup Groups', size=25)

>>> ax.set_xlabel('')

>>> ax.yaxis.tick_right()

>>> plot_kwargs = dict(xycoords='axes fraction', size=15)

>>> ax.annotate(xy=(.1, .7), s='R Users',

 color='w', **plot_kwargs)

>>> ax.annotate(xy=(.25, .16), s='Data Visualization',

 color='k', **plot_kwargs)

>>> ax.annotate(xy=(.5, .55), s='Energy Data Science',

 color='k', **plot_kwargs)

>>> ax.annotate(xy=(.83, .07), s='Data Science',

 color='k', **plot_kwargs)

>>> ax.annotate(xy=(.86, .78), s='Machine Learning',

 color='w', **plot_kwargs)

Visualization with Matplotlib, Pandas, and Seaborn

[481]

How it works...
Our goal is to determine the distribution of members among the five largest data science
meetup groups in Houston over time. To do this, we need to find the total membership at
every point in time since each group began. We have the exact date and time when each
person joined each group. In step 2, we group by each week (offset alias W) and meetup
group and return the number of sign-ups for that week with the size method.

The resulting Series is not suitable to make plots with pandas. Each meetup group needs its
own column, so we reshape the group index level as columns. We set the option
fill_value to zero so that groups with no memberships during a particular week will not
have missing values.

We are in need of the total number of members each week. The cumsum method in step 4
provides this for us. We could create our stacked area plot directly after this step, which
would be a nice way to visualize the raw total membership. In step 5, we find the
distribution of each group as a percentage of the total members in all groups by dividing
each value by its row total. By default, pandas automatically aligns objects by their
columns, so we cannot use the division operator. Instead, we must use the div method to
change the axis of alignment to the index

The data is now perfectly suited for a stacked area plot, which we create in step 6. Notice
that pandas allows you to set the axis limits with a datetime string. This will not work if
done directly in matplotlib using the ax.set_xlim method. The starting date for the plot is
moved up a couple years because the Houston R Users group began much earlier than any
of the other groups.

Visualization with Matplotlib, Pandas, and Seaborn

[482]

There's more...
Although typically frowned upon by data visualization gurus, pandas can create pie charts.
In this instance, we use them to see snapshots of the total group distribution over time. Let's
first select every third month of data, beginning 18 months prior to the end of data
collection. We use the asfreq method, which only works on DataFrames with datetime
values in the index. The offset alias 3MS is used to represent the start of every third month.
Because group_cum_pct is aggregated by week, the first day of the month is not always
present. We set the method parameter to bfill, which stands for backfill; it will look back
in time to find the first day of the month that has data in it. We then use the to_period
method (which also only works with datetimes in the index) to change the values in the
index to a pandas period of time. Finally, we transpose the data so that each column
represents the distribution of members in the meetup group for that month:

>>> pie_data = group_cum_pct.asfreq('3MS', method='bfill') \

 .tail(6).to_period('M').T

>>> pie_data

From here, we can use the plot method to create the pie charts:

>>> from matplotlib.cm import Greys

>>> greys = Greys(np.arange(50,250,40))

>>> ax_array = pie_data.plot(kind='pie', subplots=True,

 layout=(2,3), labels=None,

 autopct='%1.0f%%', pctdistance=1.22,

 colors=greys)

>>> ax1 = ax_array[0, 0]

>>> ax1.figure.legend(ax1.patches, pie_data.index, ncol=3)

>>> for ax in ax_array.flatten():

 ax.xaxis.label.set_visible(True)

Visualization with Matplotlib, Pandas, and Seaborn

[483]

 ax.set_xlabel(ax.get_ylabel())

 ax.set_ylabel('')

>>> ax1.figure.subplots_adjust(hspace=.3)

Understanding the differences between
seaborn and pandas
Outside of pandas, the seaborn library is one of the most popular in the Python data science
community to create visualizations. Like pandas, it does not do any actual plotting itself
and is completely reliant on matplotlib for the heavy lifting. Seaborn plotting functions
work directly with pandas DataFrames to create aesthetically pleasing visualizations.

While seaborn and pandas both reduce the overhead of matplotlib, the way they approach
data is completely different. Nearly all of the seaborn plotting functions require tidy (or
long) data. When data is in tidy form, it is not ready for consumption or interpretation until
some function is applied to it to yield a result. Tidy data is the raw building blocks that
makes all other analysis possible. Processing tidy data during data analysis often creates
aggregated or wide data. This data, in wide format, is what pandas uses to make its plots.

Visualization with Matplotlib, Pandas, and Seaborn

[484]

Getting ready
In this recipe, we will build similar plots with both seaborn and matplotlib to show
definitively that they accept tidy versus wide data.

How to do it...
Read in the employee dataset, and output the first five rows:1.

>>> employee = pd.read_csv('data/employee.csv',

 parse_dates=['HIRE_DATE', 'JOB_DATE'])

>>> employee.head()

Import the seaborn library, and alias it sns:2.

>>> import seaborn as sns

Visualization with Matplotlib, Pandas, and Seaborn

[485]

Let's make a bar chart of the count of each department with seaborn:3.

>>> sns.countplot(y='DEPARTMENT', data=employee)

Visualization with Matplotlib, Pandas, and Seaborn

[486]

To reproduce this plot with pandas, we will need to aggregate the data4.
beforehand:

>>> employee['DEPARTMENT'].value_counts().plot('barh')

Visualization with Matplotlib, Pandas, and Seaborn

[487]

Now, let's find the average salary for each race with seaborn:5.

>>> ax = sns.barplot(x='RACE', y='BASE_SALARY', data=employee)

>>> ax.figure.set_size_inches(16, 4)

To replicate this with pandas, we will need to group by each race first:6.

>>> avg_sal = employee.groupby('RACE', sort=False) \

 ['BASE_SALARY'].mean()

>>> ax = avg_sal.plot(kind='bar', rot=0, figsize=(16,4), width=.8)

>>> ax.set_xlim(-.5, 5.5)

>>> ax.set_ylabel('Mean Salary')

Visualization with Matplotlib, Pandas, and Seaborn

[488]

Seaborn also has the ability to distinguish groups within the data through a third7.
variable, hue, in most of its plotting functions. Let's find the mean salary by race
and gender:

>>> ax = sns.barplot(x='RACE', y='BASE_SALARY', hue='GENDER',

 data=employee, palette='Greys')

>>> ax.figure.set_size_inches(16,4)

With pandas, we will have to group by both race and gender and then unstack8.
the genders as column names:

>>> employee.groupby(['RACE', 'GENDER'], sort=False) \

 ['BASE_SALARY'].mean().unstack('GENDER') \

 .plot(kind='bar', figsize=(16,4), rot=0,

 width=.8, cmap='Greys')

Visualization with Matplotlib, Pandas, and Seaborn

[489]

A box plot is another type of plot that seaborn and pandas have in common. Let's9.
create a box plot of salary by race and gender with seaborn:

>>> sns.boxplot(x='GENDER', y='BASE_SALARY', data=employee,

 hue='RACE', palette='Greys')

>>> ax.figure.set_size_inches(14,4)

Visualization with Matplotlib, Pandas, and Seaborn

[490]

Pandas is not easily able to produce an exact replication for this box plot. It can10.
create two separate Axes for gender and then make box plots of the salary by
race:

>>> fig, ax_array = plt.subplots(1, 2, figsize=(14,4), sharey=True)

>>> for g, ax in zip(['Female', 'Male'], ax_array):

 employee.query('GENDER== @g') \

 .boxplot(by='RACE', column='BASE_SALARY',

 ax=ax, rot=20)

 ax.set_title(g + ' Salary')

 ax.set_xlabel('')

>>> fig.suptitle('')

Visualization with Matplotlib, Pandas, and Seaborn

[491]

How it works...
Importing seaborn in step 2 changes many of the default properties of matplotlib. There are
about 300 default plotting parameters that can be accessed within the dictionary-like
object plt.rcParams. To restore the matplotlib defaults, call the plt.rcdefaults
function with no arguments. The style of pandas plots will also be affected when importing
seaborn. Our employee dataset meets the requirements for tidy data and thus makes it
perfect to use for nearly all seaborn's plotting functions.

Seaborn will do all the aggregation; you just need to supply your DataFrame to the data
parameter and refer to the columns with their string names. For instance, in step 3, the
countplot function effortlessly counts each occurrence of a DEPARTMENT to create a bar
chart. All seaborn plotting functions have x and y parameters. We could have made a
vertical bar plot using x instead of y. Pandas forces you to do a bit more work to get the
same plot. In step 4, we must precalculate the height of the bins using the value_counts
method.

Seaborn is able to do more complex aggregations, as seen in steps 5 and 7, with the
barplot function. The hue parameter further splits each of the groups on the x axis. Pandas
is capable of nearly replicating these plots by grouping by the x and hue variables in steps 6
and 8.

Box plots are available in both seaborn and pandas and can be plotted directly with tidy
data without any aggregation. Even though no aggregation is necessary, seaborn still has
the upper hand, as it can split data neatly into separate groups using the hue parameter.
Pandas cannot easily replicate this function from seaborn, as seen in step 10. Each group
needs to be split with the query method and plotted on its own Axes. It is actually possible
for pandas to split on multiple variables, passing a list to the by parameter, but the result is
not nearly as elegant:

>>> ax = employee.boxplot(by=['GENDER', 'RACE'],

 column='BASE_SALARY',

 figsize=(16,4), rot=15)

>>> ax.figure.suptitle('')

Visualization with Matplotlib, Pandas, and Seaborn

[492]

See also
Seaborn official tutorial (http://bit.ly/2yhwuPy)
Seaborn complete API (http://bit.ly/2ghWN0T)

Doing multivariate analysis with seaborn
Grids
To understand seaborn further, it is helpful to be aware of the hierarchy between the
functions that return multiple Axes as a seaborn Grid and those that return single Axes:

Grid type Grid function Axes functions Variable type

FacetGrid factorplot stripplot, swarmplot, boxplot,
violinplot,
lvplot, pointplot, barplot, countplot

Categorical

FacetGrid lmplot regplot Continuous

PairGrid pairplot regplot, distplot, kdeplot Continuous

JointGrid jointplot regplot, kdeplot, residplot Continuous

ClusterGrid clustermap heatmap Continuous

http://seaborn.pydata.org/tutorial.html
http://seaborn.pydata.org/tutorial.html
http://seaborn.pydata.org/tutorial.html
http://seaborn.pydata.org/tutorial.html
http://seaborn.pydata.org/tutorial.html
http://seaborn.pydata.org/tutorial.html
http://seaborn.pydata.org/tutorial.html
http://seaborn.pydata.org/tutorial.html
http://seaborn.pydata.org/tutorial.html
http://seaborn.pydata.org/api.html
http://seaborn.pydata.org/api.html
http://seaborn.pydata.org/api.html
http://seaborn.pydata.org/api.html
http://seaborn.pydata.org/api.html
http://seaborn.pydata.org/api.html
http://seaborn.pydata.org/api.html
http://seaborn.pydata.org/api.html
http://seaborn.pydata.org/api.html

Visualization with Matplotlib, Pandas, and Seaborn

[493]

The seaborn Axes functions may all be called independently to produce a single plot. The
Grid functions, for the most part, use the Axes functions to build the grid. The final objects
returned from the Grid functions are of Grid type, of which there are four different kinds.
Advanced use cases necessitate the direct use of Grid types, but the vast majority of the
time, you will call the underlying Grid functions to produce the actual Grid and not the
constructor itself.

Getting ready
In this recipe, we will examine the relationship between years of experience and salary by
gender and race. We will begin by creating a simple regression plot with a seaborn Axes
function and then add more dimensions to the plot with Grid functions.

How to do it...
Read in the employee dataset, and create a column for years of experience:1.

>>> employee = pd.read_csv('data/employee.csv',

 parse_dates=['HIRE_DATE', 'JOB_DATE'])

>>> days_hired = pd.to_datetime('12-1-2016') -

employee['HIRE_DATE']

>>> one_year = pd.Timedelta(1, unit='Y')

>>> employee['YEARS_EXPERIENCE'] = days_hired / one_year

>>> employee[['HIRE_DATE', 'YEARS_EXPERIENCE']].head()

Visualization with Matplotlib, Pandas, and Seaborn

[494]

Let's create a basic scatter plot with a fitted regression line to represent the2.
relationship between years of experience and salary:

>>> ax = sns.regplot(x='YEARS_EXPERIENCE', y='BASE_SALARY',

 data=employee)

>>> ax.figure.set_size_inches(14,4)

The regplot function cannot plot multiple regression lines for different levels of3.
a third variable. Let's use its parent function, lmplot, to plot a seaborn Grid that
adds the same regression lines for males and females:

>>> g = sns.lmplot('YEARS_EXPERIENCE', 'BASE_SALARY',

 hue='GENDER', palette='Greys',

 scatter_kws={'s':10}, data=employee)

>>> g.fig.set_size_inches(14, 4)

>>> type(g)

seaborn.axisgrid.FacetGrid

Visualization with Matplotlib, Pandas, and Seaborn

[495]

The real power of the seaborn Grid functions is their ability to add more Axes4.
based on another variable. Each seaborn Grid has the col and row parameters
available to divide the data further into different groups. For instance, we can
create a separate plot for each unique race in the dataset and still fit
the regression lines by gender:

>>> grid = sns.lmplot(x='YEARS_EXPERIENCE', y='BASE_SALARY',

 hue='GENDER', col='RACE', col_wrap=3,

 palette='Greys', sharex=False,

 line_kws = {'linewidth':5},

 data=employee)

>>> grid.set(ylim=(20000, 120000))

Visualization with Matplotlib, Pandas, and Seaborn

[496]

How it works...
In step 1, we create another continuous variable by using pandas date functionality. This
data was collected from the city of Houston on December 1, 2016. We use this date to
determine how long each employee has worked for the city. When we subtract dates, as
done in the second line of code, we are returned a Timedelta object whose largest unit is
days. We could have simply divided this number by 365 to calculate the years of
experience. Instead, we use Timedelta(1, unit='Y') to get a more precise
measurement, which happens to be 365 days, 5 hours, 42 minutes and 19 seconds if you are
counting at home.

Step 2 uses the seaborn Axes function regplot to create a scatter plot with the estimated
regression line. It returns an Axes, which we use to change the size of the Figure. In order to
create two separate regression lines for each gender, we must use its parent function,
lmplot. It contains the hue parameter, which creates a new regression line for each unique
value of that variable. At the end of step 3, we verify that lmplot does indeed return a
seaborn Grid object.

The seaborn Grid is essentially a wrapper around the entire Figure, with a few convenience
methods to alter its elements. All seaborn Grids may access the underlying Figure with their
fig attribute. Step 4 shows a common use-case for seaborn Grid functions, which is to
create multiple plots based on a third or even fourth variable. We set the col parameter to
RACE. Six regression plots are created for each of the six unique races in the dataset.
Normally, this would return a grid consisting of 1 row and 6 columns, but we use the
col_wrap parameter to limit the number of columns to 3.

There are several more available parameters to control most of the important aspects of the
Grid. It is possible to change use parameters from the underlying line and scatter plot
matplotlib functions. To do so, set the scatter_kws or the line_kws parameters equal to a
dictionary that has the matplotlib parameter as a string paired to the value you want it to
be.

There's more...
We can do a similar type of analysis when we have categorical features. First, let's reduce
the number of levels in the categorical variables race and department to the top two and
three most common, respectively:

>>> deps = employee['DEPARTMENT'].value_counts().index[:2]

>>> races = employee['RACE'].value_counts().index[:3]

>>> is_dep = employee['DEPARTMENT'].isin(deps)

>>> is_race = employee['RACE'].isin(races)

Visualization with Matplotlib, Pandas, and Seaborn

[497]

>>> emp2 = employee[is_dep & is_race].copy()

>>> emp2['DEPARTMENT'] = emp2['DEPARTMENT'].str.extract('(HPD|HFD)',

 expand=True)

>>> emp2.shape

(968, 11)

>>> emp2['DEPARTMENT'].value_counts()

HPD 591

HFD 377

Name: DEPARTMENT, dtype: int64

>>> emp2['RACE'].value_counts()

White 478

Hispanic/Latino 250

Black or African American 240

Name: RACE, dtype: int64

Let's use one of the simpler Axes-level functions, such as a violin plot to view the
distribution of years of experience by gender:

>>> common_depts = employee.groupby('DEPARTMENT') \

 .filter(lambda x: len(x) > 50)

>>> ax = sns.violinplot(x='YEARS_EXPERIENCE', y='GENDER',

 data=common_depts)

>>> ax.figure.set_size_inches(10,4)

Visualization with Matplotlib, Pandas, and Seaborn

[498]

We can then use the Grid function factorplot to add a violin plot for each unique
combination of department and race with the col and row parameters:

>>> sns.factorplot(x='YEARS_EXPERIENCE', y='GENDER',

 col='RACE', row='DEPARTMENT',

 size=3, aspect=2,

 data=emp2, kind='violin')

Take a look at the table from the beginning of the recipe. The factorplot function must
use one of those eight seaborn Axes functions. To do so, you pass its name as a string to the
kind parameter.

Visualization with Matplotlib, Pandas, and Seaborn

[499]

Uncovering Simpson's paradox in the
diamonds dataset with seaborn
It is unfortunately quite easy to report erroneous results when doing data analysis.
Simpson's paradox is one of the more common phenomena a that can appear in a data
analysis. It occurs when one group shows a higher result than another group, when all the
data is aggregated, but it shows the opposite when the data is subdivided into different
segments. For instance, let's say we have two students, A and B, who have each been given
a test with 100 questions on it. Student A answers 50% of the questions correct, while
Student B gets 80% correct. This obviously suggests Student B has greater aptitude:

Let's say that the two tests were very different. Student A's test consisted of 95 problems
that were difficult and only five that were easy. Student B was given a test with the exact
opposite ratio.

This paints a completely different picture. Student A now has a higher percentage of both
the difficult and easy problems but has a much lower percentage as a whole. This is a
quintessential example of Simpson's paradox. The aggregated whole shows the opposite of
each individual segment.

Getting ready
In this recipe, we will first reach a perplexing result that appears to suggest that higher
quality diamonds are worth less than lower quality ones. We uncover Simpson's paradox
by taking more finely grained glimpses into the data that suggest the opposite is actually
true.

Visualization with Matplotlib, Pandas, and Seaborn

[500]

How to do it...
Read in the diamonds dataset, and output the first five rows:1.

>>> diamonds = pd.read_csv('data/diamonds.csv')

>>> diamonds.head()

Before we begin analysis, let's change the cut, color, and clarity columns into2.
ordered categorical variables:

>>> cut_cats = ['Fair', 'Good', 'Very Good', 'Premium', 'Ideal']

>>> color_cats = ['J', 'I', 'H', 'G', 'F', 'E', 'D']

>>> clarity_cats = ['I1', 'SI2', 'SI1', 'VS2',

 'VS1', 'VVS2', 'VVS1', 'IF']

>>> diamonds['cut'] = pd.Categorical(diamonds['cut'],

 categories=cut_cats,

 ordered=True)

>>> diamonds['color'] = pd.Categorical(diamonds['color'],

 categories=color_cats,

 ordered=True)

>>> diamonds['clarity'] = pd.Categorical(diamonds['clarity'],

 categories=clarity_cats,

 ordered=True)

Visualization with Matplotlib, Pandas, and Seaborn

[501]

Seaborn uses category orders for its plots. Let's make a bar plot of the mean price3.
for each level of cut, color, and clarity:

>>> import seaborn as sns

>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(14,4))

>>> sns.barplot(x='color', y='price', data=diamonds, ax=ax1)

>>> sns.barplot(x='cut', y='price', data=diamonds, ax=ax2)

>>> sns.barplot(x='clarity', y='price', data=diamonds, ax=ax3)

>>> fig.suptitle('Price Decreasing with Increasing Quality?')

There seems to be a decreasing trend for color and price. The highest quality cut4.
and clarity levels also have low prices. How can this be? Let's dig a little deeper
and plot the price for each diamond color again, but make a new plot for each
level of clarity:

>>> sns.factorplot(x='color', y='price', col='clarity',

 col_wrap=4, data=diamonds, kind='bar')

Visualization with Matplotlib, Pandas, and Seaborn

[502]

This plot is a little more revealing. Although price appears to decrease as the5.
quality of color increases, it does not do so when clarity is at its highest level.
There is actually a substantial increase in price. We have yet to look at just the
price of the diamond without paying any attention to its size. Let's recreate the
plot from step 3 but use the carat size in place of price:

>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(14,4))

>>> sns.barplot(x='color', y='carat', data=diamonds, ax=ax1)

>>> sns.barplot(x='cut', y='carat', data=diamonds, ax=ax2)

>>> sns.barplot(x='clarity', y='carat', data=diamonds, ax=ax3)

>>> fig.suptitle('Diamond size decreases with quality')

Visualization with Matplotlib, Pandas, and Seaborn

[503]

Now our story is starting to make a bit more sense. Higher quality diamonds6.
appear to be smaller in size, which intuitively makes sense. Let's create a new
variable that segments the carat values into five distinct sections, and then
create a point plot. The plot that follows accurately reveals that higher quality
diamonds do, in fact, cost more money when they are segmented based on size:

>>> diamonds['carat_category'] = pd.qcut(diamonds.carat, 5)

>>> from matplotlib.cm import Greys

>>> greys = Greys(np.arange(50,250,40))

>>> g = sns.factorplot(x='clarity', y='price', data=diamonds,

 hue='carat_category', col='color',

 col_wrap=4, kind='point', palette=greys)

>>> g.fig.suptitle('Diamond price by size, color and clarity',

 y=1.02, size=20)

Visualization with Matplotlib, Pandas, and Seaborn

[504]

How it works...
In this recipe, it is very important to create categorical columns, as they are allowed to be
ordered. Seaborn uses this ordering to place the labels on the plot. Steps 3 and 4 show what
clearly appears to be a downward trend for increasing diamond quality. This is where
Simpson's paradox takes center stage. This aggregated result of the whole is being
confounded by other variables not yet examined.

The key to uncovering this paradox is to focus on carat size. Step 5 reveals to us that carat
size is also decreasing with increasing quality. To account for this fact, we cut the diamond
size into five equally-sized bins with the qcut function. By default, this function cuts the
variable into discrete categories based on the given quantiles. By passing it an integer, as
was done in this step, it creates equally-spaced quantiles. You also have the option of
passing it a sequence of explicit non-regular quantiles.

With this new variable, we can make a plot of the mean price per diamond size per group,
as done in step 6. The point plot in seaborn creates a line plot connecting the means of each
category. The vertical bar at each point is the standard deviation for that group. This plot
confirms that diamonds do indeed become more expensive as their quality increases, as
long as we hold the carat size as the constant.

Visualization with Matplotlib, Pandas, and Seaborn

[505]

There's more...
The bar plots in steps 3 and 5 could have been created with the more advanced seaborn
PairGrid constructor, which can plot a bivariate relationship. Using PairGrid is a two-
step process. The first call to PairGrid prepares the grid by alerting it to which variables
will be x and which will be y. The second step applies a plot to all of the combinations of x
and y columns:

>>> g = sns.PairGrid(diamonds,size=5,

 x_vars=["color", "cut", "clarity"],

 y_vars=["price"])

>>> g.map(sns.barplot)

>>> g.fig.suptitle('Replication of Step 3 with PairGrid', y=1.02)

Index

*
**kwargs
 used, for customizing aggregating functions 233,

235

*args
 used, for customizing aggregating functions 233,

235

A
aggregating columns 218
aggregating functions 218
aggregation function
 customizing 229, 230, 231
 customizing, with **kwargs 233, 235
 customizing, with *args 233, 235
aggregation
 defining 218, 219, 221
 reference 221
apply
 weighted mean SAT scores per state, calculating

with 254, 256, 258
approval ratings
 comparing 351, 353, 354, 355, 365
area charts
 stacking 478, 479, 480
artists 443
assert statement
 reference 175
assert_frame_equal
 reference 175
axis levels
 renaming, for easy reshaping 306, 308, 309,

311

B
binary search 150
Binary search algorithm
 reference 151
Boolean indexing
 about 135
 filtering with 142, 143, 144
 readability, improving with query method 165,

166

 reference 145
 replicating, with index selection 145, 147
Boolean selection 135
boolean statistics
 calculating 136, 137, 138
booleans
 data, selecting with 175, 176, 179

C
Cartesian products
 producing 185, 186
categorical columns 92
college campus diversity
 determining 80, 81, 83, 85
column names
 ordering 58, 61
columns
 appending, from DataFrames 197, 199
 maximum value, highlighting from 201, 202, 206
 selecting, with methods 53, 56
concat method 368
continuous variables
 grouping by 260, 261
cumprod
 reference 112
cumsum
 reference 80, 112

[507]

D
data analysis routine
 developing 88, 91
data dictionaries 93
data
 selecting, with both integers and labels 124, 125
 visualizing, with matplotlib 453, 455, 458, 459,

460

DataFrame methods
 chaining 65, 67
 comparing 368, 369, 370, 371, 372, 374, 375,

377

DataFrame operation
 direction, transposing of 77, 79
DataFrame rows, and columns
 selecting, simultaneously 122, 123
DataFrame rows
 masking 171, 173, 174
 selecting 118, 119, 120
DataFrames
 columns, appending from 197, 199
 groupby method, using for 424, 426
 operating on 62, 63, 64
 rows, appending to 338, 341, 342, 343, 344,

345

DatetimeIndex
 methods, using 399, 403
dictionary unpacking 366
dt accessor
 crime, measuring by weekday and year 413, 417

E
Exploratory Data Analysis (EDA) 88

F
figure coordinate system 459
filter method 56, 243
flights dataset
 visualizing 469, 472, 473, 474, 475, 477
flights
 counting, between cities 264
floating-point arithmetic
 reference 72

G
groupby aggregation
 pivot_table method, replicating with 303, 305
groupby method
 using, for DataFrames 424, 426
groupby object
 examining 238, 239, 241
groupby Transformation
 reference 254
grouping columns 218
grouping
 by continuous variables 260, 261

I
idxmax
 replicating, with method chaining 207, 209, 210,

212, 213
Index object
 examining 182, 183
 reference 184
index selection
 Boolean indexing, replicating with 145, 147
indexes
 exploding 188, 189, 190
indexing
 reference 117
integer location
 data, selecting with 175, 176, 179
isin method
 reference 160

J
join method 368

K
kernel density estimates (KDEs) 462

L
labels
 data, selecting with 175, 176, 179
longest streak
 finding, of on-time flights 268

[508]

M
many-to-many relationship 335
matplotlib
 about 441, 442
 anatomy 442
 data, visualizing with 453, 455, 458, 459, 460
 object-oriented approach 445, 446, 447, 448
 object-oriented guide 443, 444
 references 453, 462
 working 449, 450, 451, 452
maximum value
 highlighting, from column 201, 202, 206
melt
 used, for tidying variable values as column

names 284, 285, 286, 287
memory
 reducing, by changing data types 94, 95, 97, 98
merge method 368
merge_asof
 data analysis tasks, performing 435
metadata 88
method chaining
 idxmax, replicating with 207, 209, 210, 212, 213
methods
 columns, selecting with 53, 56
missing values
 comparing 73, 74, 75, 76
most common maximum
 finding 214, 215
MultiIndex
 removing, after grouping 225, 226, 228
multiple boolean conditions
 constructing 139, 140, 141
multiple columns
 grouping with 222
multiple DataFrame columns
 selecting 51
multiple DataFrames
 concatenating 347, 348, 349, 350
multiple groups of variables
 stacking, simultaneously 289, 290, 291
multiple observational units, stored in same table
 tidying scenario 329, 330, 335
multiple values, stored in same cell

 tidying scenario 322, 323, 324, 325
multiple variables, stored as column names
 tidying scenario 312, 316
multiple variables, stored as column values
 tidying scenario 317, 320, 321
multivariate analysis
 performing, with seaborn grids 492, 493, 494,

495, 496

N
nlargest
 replicating, with sort_values 106, 108
normality
 determining, of stock market returns 160, 161,

163

O
object-oriented guide
 to matplotlib 443, 444
operators, on DataFrame
 working with 71

P
pandas date tools
 versus Python date tools 387, 389
pandas
 used, for plotting basics 462, 463, 464, 466
 versus seaborn 483, 484, 487, 488, 489, 491
pct_change Series method
 reference 164
perspective
 gaining, on stock prices 151, 153, 154
pivot_table method
 replicating, with groupby aggregation 303, 304,

305

primary keys 335

Q
query method
 readability, improving of Boolean indexing 165,

166

 reference 167

[509]

R
resample method
 number of weekly crimes, counting 405
 weekly crime and traffic accidents, aggregating

separately 409, 410, 411, 412
rows
 appending, to DataFrames 338, 345
 slicing, lazily 128, 129, 131

S
scalar selection
 speeding up 126, 127, 128
schemas 94
seaborn grids
 used, for performing multivariate analysis 492,

493, 494, 495, 496
seaborn
 about 441
 references 492
 Simpson's paradox, uncovering in diamond

dataset 499, 501, 503, 504
 versus pandas 483, 484, 487, 488, 489, 491
Series data
 selecting 114, 115, 116
Series
 preserving, with where method 167, 168, 169,

170

slicing
 lexicographically 131, 133
smallest of largest
 selecting 101, 102
sort_values
 nlargest, replicating with 106, 108
sorted indexes 148
sorting
 smallest of largest 103, 105
split-apply-combine 217
SQL BETWEEN operator
 reference 160
SQL databases
 connecting to 379, 380, 383
SQL IN operator
 reference 160
SQL WHERE clauses

 translating 155, 156, 158
stack
 used, for tidying variable values as column

names 279, 280, 281, 282
stacked data
 inverting 293, 294, 295, 297
standardization 231
states
 finding, for majority 243
 finding, with minority 243
stock market returns
 normality, determining of 160, 161, 163
stock prices
 perspective, gaining on 151, 154
Structured Query Language (SQL) 155

T
time series
 slicing 393, 394, 395
Timestamps
 grouping by 428, 429, 430, 432
trailing stop order price
 calculating 109, 111

U
unequal indexes
 values, filling with 191, 192
unique indexes 148
unit tests 76
univariate descriptive statistics 88
unstacking
 after groupby aggregation 299, 300, 301

V
values
 filling, with unequal indexes 191
variables, stored in column names and values
 tidying scenario 326, 327
visualization
 about 440, 441
 reference 466

W
weight loss bet

 transforming through 247, 248, 251, 252
weighted mean SAT scores per state
 calculating, with apply 254, 256, 258

where method
 reference 171
 Series, preserving with 167, 168, 169, 170

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgements
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Pandas Foundations
	Introduction
	Dissecting the anatomy of a DataFrame
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Accessing the main DataFrame components
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Understanding data types
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Selecting a single column of data as a Series
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Calling Series methods
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Working with operators on a Series
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chaining Series methods together
	Getting ready
	How to do it...
	How it works...
	There's more...

	Making the index meaningful
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Renaming row and column names
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating and deleting columns
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Essential Chapter 2: DataFrame Operations
	Introduction
	Selecting multiple DataFrame columns
	Getting ready
	How to do it...
	How it works...
	There's more...

	Selecting columns with methods
	Getting ready
	How it works...
	How it works...
	There's more...
	See also

	Ordering column names sensibly
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Operating on the entire DataFrame
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chaining DataFrame methods together
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Working with operators on a DataFrame
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Comparing missing values
	Getting ready
	How to do it...
	How it works...
	There's more...

	Transposing the direction of a DataFrame operation
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Determining college campus diversity
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 3: Beginning Data Analysis
	Introduction
	Developing a data analysis routine
	Getting ready
	How to do it...
	How it works...
	There's more...
	Data dictionaries

	See also

	Reducing memory by changing data types
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Selecting the smallest of the largest
	Getting ready
	How to do it...
	How it works...
	There's more...

	Selecting the largest of each group by sorting
	Getting ready
	How to do it...
	How it works...
	There's more...

	Replicating nlargest with sort_values
	Getting ready
	How to do it...
	How it works...
	There's more...

	Calculating a trailing stop order price
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 4: Selecting Subsets of Data
	Introduction
	Selecting Series data
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Selecting DataFrame rows
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Selecting DataFrame rows and columns simultaneously
	Getting ready
	How to do it...
	How it works...
	There's more...

	Selecting data with both integers and labels
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Speeding up scalar selection
	Getting ready
	How to do it...
	How it works...
	There's more...

	Slicing rows lazily
	Getting ready
	How to do it...
	How it works...
	There's more...

	Slicing lexicographically
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 5: Boolean Indexing
	Introduction
	Calculating boolean statistics
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Constructing multiple boolean conditions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Filtering with boolean indexing
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Replicating boolean indexing with index selection
	Getting ready
	How to do it...
	How it works...
	There's more...

	Selecting with unique and sorted indexes
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Gaining perspective on stock prices
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Translating SQL WHERE clauses
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Determining the normality of stock market returns
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Improving readability of boolean indexing with the query method
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Preserving Series with the where method
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Masking DataFrame rows
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Selecting with booleans, integer location, and labels
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 6: Index Alignment
	Introduction
	Examining the Index object
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Producing Cartesian products
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Exploding indexes
	Getting ready
	How to do it...
	How it works...
	There's more...

	Filling values with unequal indexes
	Getting ready
	How to do it...
	How it works...
	There's more...

	Appending columns from different DataFrames
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Highlighting the maximum value from each column
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Replicating idxmax with method chaining
	Getting ready
	How to do it...
	How it works...
	There's more...

	Finding the most common maximum
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 7: Grouping for Aggregation, Filtration, and Transformation
	Introduction
	Defining an aggregation
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Grouping and aggregating with multiple columns and functions
	Getting ready
	How to do it...
	How it works...
	There's more...

	Removing the MultiIndex after grouping
	Getting ready
	How to do it...
	How it works...
	There's more...

	Customizing an aggregation function
	Getting ready
	How to do it...
	How it works...
	There's more...

	Customizing aggregating functions with *args and **kwargs
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Examining the groupby object
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Filtering for states with a minority majority
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Transforming through a weight loss bet
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Calculating weighted mean SAT scores per state with apply
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Grouping by continuous variables
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Counting the total number of flights between cities
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Finding the longest streak of on-time flights
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 8: Restructuring Data into a Tidy Form
	Introduction
	Tidying variable values as column names with stack
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Tidying variable values as column names with melt
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Stacking multiple groups of variables simultaneously
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Inverting stacked data
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Unstacking after a groupby aggregation
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Replicating pivot_table with a groupby aggregation
	Getting ready
	How to do it...
	How it works...
	There's more...

	Renaming axis levels for easy reshaping
	Getting ready
	How to do it...
	How it works...
	There's more...

	Tidying when multiple variables are stored as column names
	Getting ready...
	How to do it...
	How it works...
	There's more...
	See also

	Tidying when multiple variables are stored as column values
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Tidying when two or more values are stored in the same cell
	Getting ready...
	How to do it..
	How it works...
	There's more...

	Tidying when variables are stored in column names and values
	Getting ready
	How to do it...
	How it works...
	There's more...

	Tidying when multiple observational units are stored in the same table
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 9: Combining Pandas Objects
	Introduction
	Appending new rows to DataFrames
	Getting ready
	How to do it...
	How it works...
	There's more...

	Concatenating multiple DataFrames together
	Getting ready
	How to do it...
	How it works...
	There's more...

	Comparing President Trump's and Obama's approval ratings
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Understanding the differences between concat, join, and merge
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Connecting to SQL databases
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 10: Time Series Analysis
	Introduction
	Understanding the difference between Python and pandas date tools
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Slicing time series intelligently
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using methods that only work with a DatetimeIndex
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Counting the number of weekly crimes
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Aggregating weekly crime and traffic accidents separately
	Getting ready
	How to do it...
	How it works...
	There's more...

	Measuring crime by weekday and year
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Grouping with anonymous functions with a DatetimeIndex
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Grouping by a Timestamp and another column
	Getting ready
	How to do it...
	How it works...
	There's more...

	Finding the last time crime was 20% lower with merge_asof
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 11: Visualization with Matplotlib, Pandas, and Seaborn
	Introduction
	Getting started with matplotlib
	Getting ready
	Object-oriented guide to matplotlib

	How to do it...
	How it works...
	There's more...
	See also

	Visualizing data with matplotlib
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Plotting basics with pandas
	Getting ready
	How to do it..
	How it works...
	There's more...
	See also

	Visualizing the flights dataset
	Getting ready
	How to do it...
	How it works...
	See also

	Stacking area charts to discover emerging trends
	Getting ready
	How to do it...
	How it works...
	There's more...

	Understanding the differences between seaborn and pandas
	Getting ready
	How to do it...
	How it works...
	See also

	Doing multivariate analysis with seaborn Grids
	Getting ready
	How to do it...
	How it works...
	There's more...

	Uncovering Simpson's paradox in the diamonds dataset with seaborn
	How to do it...
	How it works...
	There's more...

	Index

