
Neural Networks for Epidemic Modelling
Alan Reyes-Figueroa
Modelación Epidemiológica, CIMAT 17.noviembre.2020

Table of Contents

1. Review of Session 1
- Fully connected neural networks
- Implementation in Keras
- Hyperparameters and learning curves

2. Dropout
- Dropout layers
- Implementation in Keras

3. Neural networks for SIR Model
- Di�erent architectures
- Trying to estimate parameters

Review of Session 1

Fully connected networks

A fully connected neural networks consist of a sequence of Dense layers.

Fully connected networks

Implementation in Keras

def FC_model(input_shape, output_shape):
I = Input(input_shape, name=’input’
X = Dense(128, activation=’relu’, name=’dense1’)(I)
X = Dense(128, activation=’relu’, name=’dense2’)(X)
X = Dense(64, activation=’relu’, name=’dense3’)(X)
X = Dense(32, activation=’relu’, name=’dense4’)(X)
X = Dense(output_shape, activation=None, name=’output’)(X)

model = Model(I, X, name=’FC_model’)
return model

Geometry of fully connected networks
There is a geometric interpretation of fully
connected, and in general, for all neural
networks.

We work under the manifold hypothesis:
We have data (X, Y), and we assume this
data lives in an smooth (or almost smooth)
low dimensional manifold S , but S is
represented immersed in a
high-dimensional space S ⊂ Rp.

The neural networks will tray to estimate
the shape and find this manifold S . To do
this, each dense layer folds and twists its
subjacent space Rm. This sequence of folds
will approximate the shape of the manifold
S.

A fully connected neural networks consist of
a sequence of Dense layers.

Geometry of fully connected networks
There is a geometric interpretation of fully
connected, and in general, for all neural
networks.

We work under the manifold hypothesis:
We have data (X, Y), and we assume this
data lives in an smooth (or almost smooth)
low dimensional manifold S , but S is
represented immersed in a
high-dimensional space S ⊂ Rp.

The neural networks will tray to estimate
the shape and find this manifold S . To do
this, each dense layer folds and twists its
subjacent space Rm. This sequence of folds
will approximate the shape of the manifold
S.

A fully connected neural networks consist of
a sequence of Dense layers.

Geometry of fully connected networks
There is a geometric interpretation of fully
connected, and in general, for all neural
networks.

We work under the manifold hypothesis:
We have data (X, Y), and we assume this
data lives in an smooth (or almost smooth)
low dimensional manifold S , but S is
represented immersed in a
high-dimensional space S ⊂ Rp.

The neural networks will tray to estimate
the shape and find this manifold S . To do
this, each dense layer folds and twists its
subjacent space Rm. This sequence of folds
will approximate the shape of the manifold
S.

A fully connected neural networks consist of
a sequence of Dense layers.

Loss function
• Regression: In a regression problem, common ways to measure the di�erence

between the estimation ŷi and the desired ground-truth yi are the MSE

L(xi, yi) = MSE =
1
n

n∑
i=1

||yi − ŷi||22,

and MAE errors

L(xi, yi) = MAE =
1
n

n∑
i=1

||yi − ŷi||1.

Backpropagation

• Forward step: , given actual weights wij` the data is passed through the network and
loss function L is computed.

• Backward step: compute the derivatives ∇wij`L and ∇bj`L, and update weights wij`
and biases bi`.

The re-calculation process is done by using variants of the stochastic gradient descent
optimization algorithm, using mini-batchs

w(k+1)
ij` = w(k)

ij` − α∇w(k)
ij`
L(x, y),

b(k+1)
i` = b(k)

i` − α∇b(k)
i`
L(x, y),

Here, α > 0 is the step size of learning rate.

Hyperparameters
Parameters: (learnable by gradient descent)
• weights wij` and biases bi`, for ` = 1, . . . , L.

Hyper-parameters: (user-defined, non-learnable by gradient descent)
• Number of layers, and the type of each layer.
• Size of each layer (number of neurons in each layer).
• Activation function of each layer.
• Connections between the layers.

• Loss function (and other metrics).
• Optimization algorithms (GD, SGD, Nesterov, Adam, Adagrad, Adamax, RMSProp, ...),

and parameters of those algorithms.
• learning rate or step-size α.
• Size ob the batch.
• Number of epochs.

• Training / Validation / Test partition size ...

Learning curves

Training/validation learning curves. The ideal case is the red curve.

Develop a neural network model
Prepare the data:
• Obtain data, select important variables, clean
• Inputation process
• Split in train / validation / test

Training:
• Propose / design an specific architecture
• Selection of hyper-parameters
• Training and validation
• Usually this process is done several times).

Testing:
• Test with new data
• Variations of the model
• (Prunning, re-ordering, ablation-study)

Dropout

Dropout
Dropout is a regularization technique, introduced in 2014 by Srivastava et al. in Dropout:
A Simple Way to Prevent Neural Networks from Overfitting. It is a very practical form of
regularization.

How it works?
• Each time a batch of data passes through the network, it chooses a random

percentage of neurons and “kills” them.
More specifically, for each Dense layer, one chooses a probability parameter
0 ≤ p < 1. Then the Dropout selects neurons with probability p, and set all weights
associated with the selected neurons as wij = 0. This is equivalent to say the these
neurons don’t perform any operation to the data (the input signal just avoid them).
Basically, it applies a Bernoulli percolator with probability p at each Dense layer.

• This method prevents to concentrate the weights in a reduced set of neurons, and
distributes the weights in a better way across all components.

• This stochastic percolator is changed with every batch.

Dropout
Dropout is a regularization technique, introduced in 2014 by Srivastava et al. in Dropout:
A Simple Way to Prevent Neural Networks from Overfitting. It is a very practical form of
regularization.

How it works?
• Each time a batch of data passes through the network, it chooses a random

percentage of neurons and “kills” them.
More specifically, for each Dense layer, one chooses a probability parameter
0 ≤ p < 1. Then the Dropout selects neurons with probability p, and set all weights
associated with the selected neurons as wij = 0. This is equivalent to say the these
neurons don’t perform any operation to the data (the input signal just avoid them).
Basically, it applies a Bernoulli percolator with probability p at each Dense layer.

• This method prevents to concentrate the weights in a reduced set of neurons, and
distributes the weights in a better way across all components.

• This stochastic percolator is changed with every batch.

Dropout

• Advantages: avoids fast overfitting, produce more robust models, stable under
missing data.

Dropout
Implementation in Keras

def Dropout_model(input_shape, output_shape):
I = Input(input_shape, name=’input’
X = Dense(128, activation=’relu’, name=’dense1’)(I)
X = Dropout(0.40, name=’drop1’)(X)
X = Dense(128, activation=’relu’, name=’dense2’)(X)
X = Dropout(0.25, name=’drop2’)(X)
X = Dense(64, activation=’relu’, name=’dense3’)(X)
X = Dropout(0.15, name=’drop3’)(X)
X = Dense(32, activation=’relu’, name=’dense4’)(X)
X = Dropout(0.15, name=’drop4’)(X)
X = Dense(output_shape, activation=None, name=’output’)(X)

model = Model(I, X, name=’FC_Dropout_model’)
return model

Early Stopping

Overfitting
Recall when we talk about finding the optimal number of epochs to training the
networks, before it starts overfitting.

Early stopping

Keras has an automatic mode to find this optimal number of epoch in the training
process. This method is called Early Stopping.

In the Early Stopping, we will check a predefined evaluation metric. One checks this
metric epoch by epoch, to see that if in the actual iteration, the metric is lower that the
best record in all previous iterations.
If the actual metric is lower, we continue the training process. If the evaluation metric
doesn’t reduce during the last k number of epochs, then Keras automatically stops the
training process. This number k is another user-defined hyper-parameter called the
patience.
Keras also has an automatic form to save the best model found during the the training.
Basically, it stores the model with lowest chosen evaluation metric.
• In practice, one usually set the evaluation metric as the validation loss.

Neural Networks for SIR

SIR model
Recall the SIR model.

0 5 10 15 20
t

0.0

0.2

0.4

0.6

0.8

1.0

Su
sc

ep
tib

le
Susceptible S(t), real and observed

0 5 10 15 20
t

0.0

0.1

0.2

0.3

0.4

0.5

In
fe

ct
ed

Infected I(t), real and observed

0 5 10 15 20
t

0.0

0.2

0.4

0.6

0.8

1.0

Re
co

ve
re

d

Recovered R(t), real and observed

Observed data
Real data
Expected
Prediction

SIR model outputs: blue = training data, red = test data, black = prediction, greeen = real.

• Input data: usually we will have a sequence of I(tk) data for some finite interval
k = 0, 1, . . . , T.

• Output data: we usually want the estimation I(t). Other times, we want the
estimations for S(t), I(t) and R(t) (same or di�erent interval). Sometimes we want
parameter estimators for β and γ.

SIR model
Recall the SIR model.

0 5 10 15 20
t

0.0

0.2

0.4

0.6

0.8

1.0

Su
sc

ep
tib

le
Susceptible S(t), real and observed

0 5 10 15 20
t

0.0

0.1

0.2

0.3

0.4

0.5

In
fe

ct
ed

Infected I(t), real and observed

0 5 10 15 20
t

0.0

0.2

0.4

0.6

0.8

1.0

Re
co

ve
re

d

Recovered R(t), real and observed

Observed data
Real data
Expected
Prediction

SIR model outputs: blue = training data, red = test data, black = prediction, greeen = real.

• Input data: usually we will have a sequence of I(tk) data for some finite interval
k = 0, 1, . . . , T.

• Output data: we usually want the estimation I(t). Other times, we want the
estimations for S(t), I(t) and R(t) (same or di�erent interval). Sometimes we want
parameter estimators for β and γ.

SIR model: Example 1

Example of a neural model for
estimate I(t) using only I data.

Suppose we have I(tk),
k = 0, 1, 2 . . . , T (1 series of data is
a vector in RT+1).

• Model input: series vectors of
dimension p = T + 1.

• Model Output: series vector of
dimension d, where d is the
length of the desired
prediction interval.

SIR model: Example 2

Example of a neural model for
estimate S(t), I(t) and R(t) using
only I data.

Suppose we have I(tk),
k = 0, 1, 2 . . . , T (1 series of data is
a vector in RT+1).

• Model input: series vectors of
dimension p = T + 1.

• Model Output: series vector of
dimension 3d, where d is the
length of the desired
prediction interval.

SIR model: Example 3
More complex architectures. A Parallel neural model for estimating S(t), I(t) and R(t)
using all S, I,R data.

SIR model: Example 4
Another complex architecture. This time we also estimate the parameters β and γ.

Objectives for Practical Session 2
• Learn how to implement Dropout layers in Keras.
• Implement a (sequencial) fully-connected + dropout neural network, for estimate

I(t) in some interval of time, similar to Model 1.
• Learn how to implement custom loss functions in Keras.
• Implement a (sequencial) fully-connected + dropout neural network, for estimate

all data S(t), I(t),R(t) in some interval of time, similar to Model 2.

• Learn how to create non-sequencial Keras models. In particular, how to split the
input in several branches and concatenate those branches.

• Implement a non-sequencial neural network, for estimate all data S(t), I(t),R(t),
similar to Model 3.

• Implement a non-sequencial neural network, for estimate all data S(t), I(t),R(t) and
the parameters β, γ , similar to Model 4.

• In all cases, we will se examples of how to generate and prepare the data.

	Session1
	Fully connected networks
	Dropout
	Early Stopping
	SIR

